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Abstract. RooFit and RooStats, the toolkits for statistical modelling in ROOT, are used in
most searches and measurements at the Large Hadron Collider. The data to be collected in
Run 3 will enable measurements with higher precision and models with larger complexity, but
also require faster data processing.

In this work, first results on modernising RooFit’s collections, restructuring data flow and
vectorising likelihood fits in RooFit will be discussed. These improvements will enable the LHC
experiments to process larger datasets without having to compromise with respect to model
complexity, as fitting times would increase significantly with the large datasets to be expected
in Run 3.

1. Introduction
RooFit [1] is a C++ package for statistical modelling distributed with ROOT [2]. RooFit allows
to define computation graphs connecting observables, parameters, functions and PDFs in order
to compute likelihoods and perform fits to data. An example of such a computation graph is
shown in figure 1. Every node of the graph can be evaluated to a real value (i.e., real-valued
number), which for a PDF denotes the probability to find a data event with the given values of
observables, for a given model and its set of parameters.

RooStats is a collection of statistical tools to perform statistical tests with RooFit models
(e.g. Toy Monte Carlo, setting limits). Further, HistFactory provides tools to create RooFit

models from a collection of ROOT histograms.
RooFit was originally developed for the BaBar collaboration, but later picked up by many

others. Its central parts were designed for single-core processors, and were neither optimised for
large caches nor SIMD computations. This work stands at the beginning of efforts to modernise
RooFit to speed up fits, and make it more accessible from both C++ and Python. The features
to be described in the following two sections will be released in ROOT 6.18.

2. Modernising RooFit’s Internal Collections
In RooFit, computation graphs and sets/lists of functions, PDFs, observables and parameters are
saved with the help of RooAbsCollection, the base class of RooFit’s main collections RooArgSet
and RooArgList. Internally, these were using a linked list with optional hash lookup.

The most common operation on these collections during fitting, i.e., repeated evaluation of the
computation graph, is iteration. Less frequent operations are appending and finding elements,
and collections are very rarely sorted or modified. This favours array-like data structures, and
indeed the linked lists were identified as a bottleneck for fits.
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Figure 1. A RooFit likelihood model2. This model represents the sum of a signal and
background PDF, where the former is a convolution of other PDFs, the latter is a polynomial
distribution. Likelihood models are implemented as tree-like structures of nodes that can be
evaluated to real values. Blue nodes represent parameters or observables, red nodes, which
depend on the values of other nodes, represent functions or PDFs.

Therefore, the linked list in RooAbsCollection was replaced by a std::vector, mostly to
speed up iterating. RooAbsCollection was further provided with an STL-like interface (size,
begin, end) to enable range-based for loops. This speeds up forward iteration by about 20 %,
and random access completes in constant time. The figures 2 and 3 compare the old and new
interface. The STL-like interface allows to reduce heap allocations, and replaces while loops
with non-local variables by range-based for loops. This reduces code clutter and the danger
of memory leaks, dangling pointers and variable shadowing. It will also facilitate generating
ROOT’s automatic Python bindings to iterate through RooFit’s collections in Python. Figure 4
compares run times for typical RooFit workflows3 between ROOT 6.16 and 6.18. Depending
on how often collections are iterated, the speed up varies between 5 and 21 %. Tests with an
ATLAS likelihood model [3] yielded a speed up of 19 %.

Figure 2. Iterating through a RooFit collection
with old interface.

Figure 3. Iterating through a RooFit

collection with new interface.

2.1. Backward Compatibility
The old interface of RooAbsCollection and its subclasses exposed three kinds of iterators to
users, one of which is shown in figure 2. All three are being used in RooFit, and it is likely that
RooFit’s users also use all three. Removing any of these would therefore break user code.

To provide backward compatibility, these legacy iterators were re-implemented to also work
with the new collections. Since the old RooFit collections were based on a linked list, the legacy

2 This figure was obtained using the graphVizTree() export supported by all nodes in a RooFit graph.
3 These are a selection of representative RooFit tutorials.
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Figure 4. Comparison of run times for typical RooFit workflows between ROOT 6.16 and 6.18.
Frequent use of STL-like iterators leads to a speed up of 20 %, heavy use of legacy iterators to
a slow down.

iterators need to remain valid also when reallocations happen. Therefore, the legacy iterators
hold a reference to the new collection, and use index access to iterate through it. This makes
them tolerant against reallocations, but inserting or deleting elements before the current position
is not supported, unlike for linked lists. Not a single instance of such usage was found in RooFit,
though. Nevertheless, run-time checks were added to warn users if they insert/delete before the
current iterator. These are performed only if ROOT is compiled with assertions enabled, and only
for legacy iterators.

All legacy iterators further need to work both with the original RooLinkedList and with
the STL-based collections4. They were therefore implemented as adapters to a polymorphic
iterator interface, which supports both the RooLinkedList and the counting iterator. This
means that all legacy iterators will work irrespective of reallocations and the actual type of the
collection, but they are slower than the fastest original RooFit iterator, because they require a
heap allocation to polymorphically switch between different backends. The slow down observed
for one workflow in figure 4 is caused by this.

Nevertheless, instances of slow legacy iterators are easily found using profiling tools, and can
be replaced by STL iterators by changing the code as shown in figures 2 and 3, which leads to
a speed up of 20 %. The most critical iterators in RooFit have already been replaced, and less
critical iterators will be replaced as the modernisation of RooFit continues.

3. Faster HistFactory Models
HistFactory [4] is a toolkit to create RooFit models from a collection of histograms. It supports
multiple channels, multiple signal and background samples, sample scale factors, systematic
uncertainties for shape and normalisation differences in histograms, and allows to implement
combined measurements of parameters such as a signal strength.

4 The RooLinkedList will be deprecated, but not all instances of its usage have been removed. It might further
be used in user code.



To parametrise systematic uncertainties using histograms, users supply three histograms
of the same distribution: the nominal distribution and two histograms representing the ±1σ
uncertainty. Given that these have to be evaluated for multiple (sometimes hundreds) of
systematic uncertainties, for multiple samples and multiple channels, several thousands of
histograms might have to be analysed.

When HistFactory was implemented, move semantics or shared pointers were not available.
The authors therefore resorted to copying histograms, leading to a large overhead of copying
and deleting histograms. Performance-critical sections of the HistFactory code were therefore
revisited, and move semantics as well as shared pointers implemented. This speeds up creating a
likelihood model for an ATLAS measurement [3] by more than ten times, with identical results.
This model comprises 10 832 histograms, 28 channels and 253 systematic uncertainties, and was
constructed in 150 s instead of 1 800 s. Fits using this model furthermore converged 20 % faster
because of the optimisations discussed in section 2.

4. Batched Likelihood Computations
A bottleneck for likelihood computations in RooFit is the repeated evaluation of the computation
graph such as the one shown in figure 1. To compute a likelihood, the probability of observing
each event in the dataset has to be computed. RooFit achieves this by loading the values of
the observables into the leaves of the computation graph for a single event, and evaluating the
probability of the top node. Each node caches its last value, and therefore constant branches of
the computation graph (e.g. branches that only depend on parameters) are only computed once.
Yet, all branches that depend on observables have to be recomputed for each entry in the dataset.
In figure 1, for example, the node ”t” in the centre of the graph is the observable, whereas other
leaves are parameters. This means that the majority of nodes has to be recomputed for each entry
in the dataset. Evaluating a node involves virtual function calls, and the number of such calls is
proportional both to the number of entries in the dataset and to the number of (non-constant)
nodes in the graph, NData ·NNodes. For a small graph of 10 nodes and one million events, this
already amounts to considerably more than 10 million function calls because additional calls for
the normalisation of PDFs and for invalidating (node-local) caches are necessary.

Furthermore, loading single values into the nodes of the computation graph is hostile to CPU
caches. There is a high likelihood that when a node is being revisited to load the next entry, data
have been thrashed from the highest-level cache(s). This means that RooFit runs inefficient on
modern CPUs because of poor data locality and inefficient memory access patterns.

4.1. Batch Computations for Higher Data Locality
To demonstrate that a likelihood evaluation can be sped up by loading batches of data, a
preliminary interface using std::span was implemented for a few selected PDFs (Gaussian,
Poisson and exponential distribution, summation of PDFs). Instead of computing only one
probability per node, all probabilities for all entries in the data set were computed in a single
function call for each node. Since such computations operate on array-like structures, data
locality, caching and prefetching improve. Figure 5 shows that run times for fitting simple
models decrease by a factor 2 to 3.5. The speed up is expected to be even larger for larger
models.

4.2. SIMD Computations
When computations on array-like structures are performed, single-instruction-multiple-data
computations (SIMD) can be used. The automatic vectorisation optimisation of the clang
compiler was used to vectorise computations for an AVX2 architecture for the Gaussian and
exponential distributions, as well as the addition of PDFs and the normalisation of the three.
This requires auto-vectorisable mathematical functions, which need to be inlinable, and not



Figure 5. Run time for fitting different likelihood models to datasets of two million events, Intel
i7-4790. Top: Using AVX2 SIMD instructions and batch data processing increases the speed by
7×. Middle: Batch data processing leads to a speed up of 3.5×. Bottom: Current RooFit.

have any data dependencies between elements of the underlying arrays. Such functions are
provided by the VDT [5] package, of which the logarithm and exponential function were used.
Further, computations were rewritten such that there are no data dependencies, that they can
be executed entirely in registers, and that they use only limited branches, no (non-inlinable)
functions and only simple reductions.

Auto vectorisation for these selected PDFs with AVX2 instructions increased the speed up to
6× to 7×.

5. Summary
The improvements discussed in sections 2 and 3 will be released in ROOT 6.18, and the work on
batched and vectorised computations will continue. The batch interface will be refined to work
with any PDF, and a fall-back implementation for PDFs that have not been modified will be
provided. Auto-vectorisable batch computations will be implemented for a growing number of
PDFs to increase the single-thread performance of RooFit by several factors without requiring
code changes on the user side. In conjunction with work an parallelising computations [6], a
speed up by more than an order of magnitude can be expected.
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