
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:11
https://doi.org/10.1007/s41781-021-00054-2

ORIGINAL ARTICLE

Dynamo: Handling Scientific Data Across Sites and Storage Media

Yutaro Iiyama1,3  · Benedikt Maier2 · Daniel Abercrombie2 · Maxim Goncharov2 · Christoph Paus2

Received: 1 April 2020 / Accepted: 17 February 2021
© The Author(s) 2021

Abstract
Dynamo is a full-stack software solution for scientific data management. Dynamo’s architecture is modular, extensible, and
customizable, making the software suitable for managing data in a wide range of installation scales, from a few terabytes
stored at a single location to hundreds of petabytes distributed across a worldwide computing grid. This article documents
the core system design of Dynamo and describes the applications that implement various data management tasks. A brief
report is also given on the operational experiences of the system at the CMS experiment at the CERN Large Hadron Collider
and at a small-scale analysis facility.

Keywords  Scientific data · Data management · Dynamic data management

Introduction

Facilities like the Large Hadron Collider (LHC) [1] at
CERN, Geneva, with its experiments including Alice [2],
ATLAS [3], CMS [4], and LHCb [5] are giving rise to very
large amounts of experimental data that is now already close
to an exabyte and will continue to grow substantially in the
next 2 decades. Thousands of scientists around the globe
are analyzing these data in the pursuit of finding evidence
for new physics phenomena that are not predicted by the
established theories. Often, scientific results are produced
just in time for the next conference. In such a fast-paced
environment at the cutting edge of research, one of the key
challenges the collaborations are confronted with is the effi-
cient and reliable management of their data that are being
taken and analyzed by a large number of collaborators. This
is especially important given the fact that the experimental
data are the core asset at the center of multi-billion dollar
projects like the LHC.

The moment we accumulate data of a large volume, the
question of how to do data management arises. Even with

this problem being a very old and well-studied one [6–9],
no universal solution or implementation has emerged. The
reason is that data management has to address the specific
set of requirements of the given environment, such as the
preexisting data organization concepts and the structure of
distributed computing infrastructure. Those factors have a
strong influence on the design of data management products.

In the case of the LHC experiments, one of the defining
constraints is the distribution and types of the available data
storage. Specifically, in the tiered computing approach taken
by the LHC experiments [2, 4, 5], in which in the order of
100 geographically separated sites provide data storage, sites
are heterogeneous in terms of capacity, mass storage tech-
nology, network interconnectivity, level of support, etc. For
example, in CMS, Tier-1 sites provide large archival tape
storage, while disk storage is provided by both the Tier-1
and smaller and more copious Tier-2 sites. Data on tape
systems are not immediately accessible (cold storage), but
disk pools, which allow immediate read and write access,
are limited in capacity. Thus, nontrivial decisions have to
be taken on which pieces of data to keep on disk, with how
many copies, and where.

Another important factor in designing a data management
product is how the data are actually utilized. Data usage in
the experiments can be categorized into two big classes:
production access, made by data processing tasks planned

 *	 Yutaro Iiyama
	 yutaro.iiyama@cern.ch

1	 CERN, Geneva, Switzerland
2	 Laboratory for Nuclear Science, Massachusetts Institute

of Technology, Cambridge, MA 02139, USA
3	 International Center for Elementary Particle Physics, The

University of Tokyo, Bunkyo City, Tokyo, Japan

http://orcid.org/0000-0002-8297-5930
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00054-2&domain=pdf

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 2 of 17

by the experimental collaboration to produce collaboration-
wide common datasets,1 and user analysis access, made by
individual analysts. The biggest difference between the two
classes is that production access is predictable while user
analysis is inherently unpredictable. As an example, the
reprocessing of the data with updated calibrations is care-
fully planned and the necessary inputs can be staged from
tape without injecting any additional latency into the repro-
cessing schedule. On the other hand, a user might one day
decide to analyze a dataset that has not been accessed for
multiple years, or hundreds of users might want to read the
same dataset at the same time. To avoid bottlenecks in the
analysis tasks, data management must provide some slack
in the form of distributed copies of datasets, and possess
certain intelligence to keep that slack under control.

The initial approach in CMS towards data management
was to ensure that datasets can be efficiently and safely trans-
ferred from one storage site to another, with a rich set of
permissions to identify who is allowed to perform certain
actions on the data. Sites were put in charge to install local
software agents to execute transfers and communicate with
the central agents about their progress. The intelligence
about which data was supposed to be available at the sites
was to be provided by data managers, who were individuals
appointed by the subgroups of the collaboration. Each sub-
group was assigned three to five specific Tier-2 sites to fill
with the datasets of their interests, with exclusive ownership
(custodianship) on these datasets. Some coordination was
required to decide who was in charge of the large datasets,
such as ones containing at least one muon as determined by
the CMS trigger system, because they are used by almost all
physics analysis groups. This coordination of data ownership
was quite time-consuming in certain cases.

For the first few years, this concept worked, because there
was enough disk space, a lot of interest and support from
the sites and the data managers, and there were relatively
few datasets. Over time, sites and data managers had less
resources, and with the rapidly growing amount of data and
number of datasets, the scheme became virtually unmanage-
able. Another important development was that the strict rule
of re-processing the detector and Monte Carlo simulation
data only at the Tier-1 sites proved to be a major bottleneck
on the production process. Moving the re-processing also to
the Tier-2 sites meant a substantial increase in data transfers,
which became impossible to support with the team available
for computing operations. In short, there was a large need for
automation and intelligence, which was particularly evident
in the computing operations community in CMS at the time.

Studying this situation, there were a number of key con-
clusions reached.

–	 Users should not have to care where their analysis jobs
run, as long as they finish successfully and quickly;

–	 subgroups did not want to and could not manage their
own data;

–	 sites did not want to manage the exact data content of
their storage; and

–	 data production systems needed an automatic way to
spread the data across all production sites with the least
amount of effort.

To address these points, we introduced an automated data
management system, which we dubbed Dynamo. Dynamo
was developed with the goal of eliminating or at least mini-
mizing human interactions with the data management sys-
tem, and at the same time optimizing the way the storage
is used to hold the data for user analysis and for the data
production system. In addition, a number of important sim-
plifications and features were introduced to the data manage-
ment model. To name a few:

–	 Sites were opened to any datasets that users or production
were interested in.

–	 Data ownership by subgroups was deprecated, and was
replaced with that by two main groups: analysis and pro-
duction.

–	 Predefined data replication and deletion rules (data
placement policies) were introduced to fill the disk space
automatically with popular data replicas while removing
less popular ones.

–	 A fully automatized site consistency enforcement was
introduced to address any failures in the data manage-
ment system.

–	 A fully automatic site evacuation was introduced to
quickly and efficiently deal with major site failures.

–	 An interface to the batch submission system was pro-
vided to automatically download data that are only avail-
able on tape to disk, when required by the users.

Dynamo is a software package which enables intelligent
and flexible data management by incorporating a rich rep-
resentation of the global storage system and its contents.
The package can be used as a high-level intelligence layer
of a data management software stack, only making the data
placement decisions but not performing the actual file trans-
fers and deletions, or as a full-stack standalone data man-
agement product. The data placement policies in Dynamo
are expressed in a human-readable syntax and can be easily
defined at run time, increasing the transparency of data man-
agement to the collaborators while minimizing the necessary
human intervention to the system.

1  Data in CMS are mainly organized in datasets, which are collec-
tions of files sharing semantic properties (see “Concepts”).

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 3 of 17  11

In this article, we document the design and some imple-
mentation details of Dynamo. We then describe various
Dynamo applications, which are the key components of the
system that implement actual data management operations.
Finally, we introduce real-world use cases of Dynamo in
the CMS collaboration and at a single local analysis facility.

Overview of the System

Basic Functionalities and Assumptions

The core purpose of Dynamo is to oversee the physical
placement of data and to orchestrate their bulk transfers
among the storage sites. It is intended to operate in an eco-
system including a production system, which creates data
files of experimental data and/or simulation, and an analy-
sis system, which schedules and distributes analysis jobs.
These systems interact with Dynamo through its REST [10]
application programming interface (API). However, the pro-
duction and analysis systems are not absolute necessities
for Dynamo’s operation, and it is possible in small-scale
installations that data management is performed manually by
administrators issuing commands to Dynamo’s REST API
or by an appropriate set of Dynamo applications, which are
explained later. It should be noted that end users, who per-
form the analyses over the data files, would normally not
interact with Dynamo directly to e.g. download single files
to their laptops, as there are other tools, such as XRootD
[11], to fulfill those needs.

It is also expected that there independently exists an
authoritative catalog of all files and their groupings (data-
sets), presumably populated by the production system. While
Dynamo can in principle serve as such a catalog, it stores
a minimal and fixed set of metadata of files and datasets
by design, and would likely fall short of an experiment’s
needs. The authoritative catalog needs to provide some API
to allow Dynamo to read its content but does not need to be
able to initiate interactions with Dynamo.

In a full-scale installation under the data-local paradigm
(compute moves close to the data), Dynamo enters typical
workflows in the following ways:

–	 The production system schedules to process a source
dataset and create a derived-format dataset. It first que-
ries Dynamo to locate the source dataset at a disk storage
site. It also requests Dynamo to create an additional copy
of the dataset at another site to split the production work
in half. After the production jobs are submitted and run
at the two sites, a half of the derived dataset that is cre-
ated locally is left at each site. The production system
then requests Dynamo to copy the half on one of the
sites to the other site, effectively consolidating the dataset

and creating a full copy. Dynamo deletes the additional
copy of the source dataset and the remaining half of the
derived dataset after the workflow is completed.

–	 The analysis system accepts a task from a user. It first
queries Dynamo to locate the dataset the user wants to
analyze. If the dataset is found on a disk storage site, the
analysis jobs are sent to the site. If it is only found on a
tape archive, the analysis system requests Dynamo to cre-
ate a copy of the dataset at a disk site (stage the dataset),
and regularly queries it to check for completion of the
transfer.

–	 Alternatively, although the dataset is found at a disk stor-
age site, the analysis jobs need to run at a specific site
because e.g. the site has a special hardware configura-
tion. The analysis system requests a copy of the dataset
at the site to Dynamo and waits for the completion of the
transfer.

Clearly, what is a typical workflow depends largely on the
scale of the installation and various constraints of the experi-
ment, such as the available disk storage and the connectivity
of the sites. Dynamo is designed to be flexible enough to
accommodate vastly different use cases. In the next sections,
we describe its design and the underlying components.

System Design

Dynamo is written in Python [12] 2.7 with a modular archi-
tecture. The central component depends only on the Python
standard library, to decouple the system core from specific
technologies for storage, transfer, and metadata manage-
ment. Interface to various external services and to internal
bookkeeping persistence are provided as plugins. A mini-
mum set of plugins required to perform the standard tasks in
a small-scale standalone environment are packaged together
with the core software.

A schematic of the Dynamo system is shown in Fig. 1.
The core of the system is the Dynamo server process, which
possesses the full image of the global storage system under
its management, called the inventory. In the inventory,
sites, datasets, and other entities described in “Concepts”
are all represented as objects interlinked with each other
through one-to-one or one-to-many references (see Fig. 2).
The entirety of the inventory, excluding the information on
individual files, are kept in RAM, allowing fast execution
of flexible and complex data placement algorithms. Infor-
mation on files are not required until the data placement
decisions are taken and when actual transfers and deletions
take place, at which point it is automatically and transiently
loaded from a persistence provider into the inventory image.
Note that everything beyond the data placement decisions
can be outsourced to external systems through plugins;
by doing so, it is possible to operate Dynamo without any

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 4 of 17

file-level information. Each object in RAM has an average
footprint of a few hundred bytes. As explained later, the

inventory for the CMS experiment, which is arguably one

Fig. 1   Schematic of the Dynamo system

Fig. 2   Dynamo objects in the inventory and their relations. Each box
is a class representing an entity in the inventory, with examples of
object attributes listed inside. Attributes labeled as unique identifiers
are used to identify the object. The box for the File class is drawn

with a different color from the others to indicate that the File objects
are not in the inventory RAM image but are created transiently on
demand. The links between the boxes specify the types of relations
between the classes

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 5 of 17  11

of the largest use cases, requires approximately 8 gigabytes
of RAM.

The server process is meant to stay running continuously,
but if it is to be stopped and restarted, the inventory image
in RAM needs to be somehow persisted. In principle, per-
sistence can be provided in any form with an appropriate
plugin; one can even choose to serialize the image into an
ASCII text file if desired. In practice, a relational database is
used as the persistence provider, with a table for each class
of objects in the memory. This is because it is more desirable
to take real-time backup of the inventory at each update than
just at the system stop, and relational databases naturally
support frequent data insertion and update operations. How-
ever, it should be stressed that Dynamo is not a database-
centric application, which is its main distinction to be drawn
with respect to existing data management solutions.

Individual data management tasks, such as identifying
data units to be copied or deleted and initiating the file oper-
ations, are carried out by Dynamo applications, which are
child processes of the server process. As child processes,
applications inherit the inventory image from the server.
Owing to the design that decouples the persistence from the
inventory content, applications are written as simple Python
programs that have access to the inventory as a normal
Python object. Thus, at its core, from a technical perspective,
Dynamo is an engine to execute an arbitrary Python program
with one specific large structure (inventory) pre-loaded in
memory. Default applications for standard tasks are included
in the software package, and are described in “Applications”.

Because an application is a child process of the server,
any modifications it makes to the inventory within its address
space are discarded automatically at the end of its execution,
and are not visible from the server or the other applications
that may be running concurrently. However, pre-authorized
applications can communicate the changes they make to the
inventory back to the server before the process termination.
Such applications are said to be write-enabled.

Although not a component of the Dynamo server,
MySQL [13] database schemas for two auxiliary databases,
registry and history, are included in the software package.
These databases are used by the default applications and
web modules for asynchronous inter-process communica-
tions (the registry database) and recording operation histo-
ries (the history database).

If an application performs actual file transfer and/or
deletion operations, it can do so using any means (arbitrary
Python programs can become Dynamo applications), but
can also choose to delegate the operations to the built-in file
operation manager (fom). File operation manager is one of
the default Dynamo applications that communicates with
FTS3 [14] or other file operation services and updates the
inventory as file transfers and deletions complete. File trans-
fer and deletion commands are passed to the file operation

manager through the registry database. The fom application
is described in detail in “File operations: fom”.

Within the Dynamo server process, the app server com-
ponent runs in a dedicated thread and listens for requests to
execute applications. Execution requests come from a com-
mand-line client or the built-in application scheduler. The
command-line client is mainly used by application develop-
ers and system administrators who need ad-hoc access to the
inventory. The application scheduler should be used in the
production environment, where fixed sets of applications are
executed repeatedly. The scheduler makes execution requests
of sequences of registered applications with configurable
intervals between the requests. The app server component
authenticates and authorizes the user (when the command-
line client is used) and the application (if write access to the
inventory is requested). The applications are then placed in
a queue, from which they are picked up by the server in the
order of arrival.

The Dynamo server can also run a web server as a child
process. The web server communicates with an external
HTTP(S) server through FastCGI [15] and exports a web
page (HTML document) or provides a REST interface,
depending on the requested URL. External systems (e.g. the
production system) normally interact with Dynamo through
the web interface. The actual content delivered through the
web server is created by web server modules, which are eas-
ily expandable according to the needs. Default web modules
for basic tasks are included in the Dynamo software pack-
age. Many modules are accessible only by authorized users.
The web server uses the same authentication and authoriza-
tion mechanism as the app server component of the Dynamo
server. In a manner similar to the applications, web modules
can be either read-only or write-enabled.

Finally, Dynamo server processes can operate concur-
rently on multiple machines communicating with each other.
Each server instance in such a setup is equipped with an
inventory image and optionally a local persistence provider.
With the use of a load-balancing mechanism such as kee-
palived [16], linked parallel Dynamo instances can share
the tasks of running applications and responding to HTTP
requests. The multi-server setup also provides resiliency
against individual node failures. As detailed in “Paralleliza-
tion”, the protocol for communications between the servers
is equipped with a locking mechanism to ensure consistency
of the copies of the inventory in the system.

Concepts

The Dynamo system revolves around the inventory and,
therefore, the basic concepts of the system are best under-
stood through the objects in the inventory. Figure 2 lists
the classes of objects in the inventory and their relations.

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 6 of 17

We refer to the objects in Fig. 2 as Dynamo objects in the
following.

In Dynamo, data are managed in a three-tiered hierarchy.
At the bottom of the hierarchy is the file, which naturally
maps to a POSIX file but can also represent other types of
data units. A file in Dynamo is the atomic unit of data trans-
fer and deletion. The system has knowledge only of whether
a file exists fully in a given storage unit or not; there is no
concept of any intermediate states such as partially trans-
ferred files.

Files that share semantic properties are grouped into
a dataset, which is the highest level of the hierarchy. For
example, experimental data from a continuous period in
a year and a Monte Carlo simulation sample for the same
physics process are each organized as a dataset.

Because datasets can greatly vary in size, the intermediate
grouping of blocks is introduced to facilitate various data
management tasks. Blocks are non-overlapping subdivi-
sions of datasets, consisting of one or more files. There is no
guideline for how blocks should be formed, but the intention
is that they are purely logistical units that are semantically
indistinguishable within a dataset. A block is the algorith-
mic atomic unit of data in Dynamo. In other words, deci-
sions to replicate, move, and delete data are taken on the
level of either datasets or blocks, but not files. Therefore,
the typical volume and number of files of blocks affect the
balance between fine-grain control of data placement and
management efficiency. In the CMS experiment, the concept
of blocks is actually incorporated into the file catalogue,
which is populated by the production systems. The typical
block size in this case is thus driven by the data organization
needs at the production stage. The size of a CMS dataset is
anywhere between a few gigabytes to a few hundred tera-
bytes, and a typical block of a large dataset contains 5–10
files, adding up to 10–20 gigabytes in volume.

Computing clusters and other storage elements across the
globe are represented as sites in Dynamo. Sites are only
defined by their network endpoints for data transfer and
deletion. Attributes such as the external network bandwidth,
total storage capacity, and the number of associated compute
cores that may utilize the data in the storage can be option-
ally assigned to sites.

A copy of a dataset or a block at a site is called a dataset
or block replica. Following the hierarchy between datasets
and blocks, a dataset replica at a site consists of replicas
of the blocks of the dataset at the site. A block replica is
considered complete if copies of all constituent files are at
the site, and incomplete otherwise. Similarly, a dataset rep-
lica is incomplete if any of the constituent block replicas
are incomplete. A dataset replica with no incomplete block
replica is complete if all blocks of the dataset have a copy at
the site, and partial if replicas of only a subset of the blocks
exist.

A partition of the entire global storage system is a group
of block replicas defined by a set of rules. For example, a
partition can be defined by replicas of blocks belonging to
datasets with specific name patterns. Partitions do not have
to be mutually exclusive. Sites may set quotas for different
partitions at their storage elements. Quotas are however not
enforced by the Dynamo system core, and it is up to the
individual Dynamo applications to decide to respect them.

Dynamo has a simple language set that consists of short
human-readable predicates regarding datasets, blocks, their
replicas, and sites. The predicates may refer directly to
attributes of the objects such as their last update timestamps,
or can involve dynamically computed quantities such as the
total number of replicas that currently exist in the over-
all system. The language set is called the policy language
because its primary use is in setting data placement policies
for the applications, but is available for any other part of the
program. For example, the rules on block replicas defining
the partitions are written in the policy language.

One of the attributes of a dataset or block replica is its
owning group. Ownership is an easy way to flag the use
purpose of a data element. For example, in the CMS experi-
ment, data managed by Dynamo are mostly used either for
physics analysis or for production of derived-format data,
with significantly different usage patterns. Therefore, block
replicas are owned by analysis or production groups, and
partitions and data management policies are set separately
for the two ownership groups. Ownership is transferred
under special circumstances, such as when a block replica
owned by one group is scheduled simultaneously for deletion
and replication under another owning group. Note that the
block replica ownership is purely a logical concept within
the Dynamo software and does not relate to file ownerships
of managed data at the site storage elements.

Details of the System Components

Dynamo Server and the Inventory

The main function of the Dynamo server is to manage the
inventory and to launch the applications. The inventory
is constructed in memory during the startup phase of the
Dynamo server and kept until the server process is termi-
nated. The server process runs as a daemon in a loop of
checking for a new application to run, spawning an appli-
cation child process if there is one, checking for inventory
updates sent by write-enabled applications, and collecting
completed applications.

The inventory object consists of simple Python dictionar-
ies for datasets, sites, groups, and partitions, with the names
of objects as the key and the objects themselves as values.
The objects are interlinked to reconstruct their conceptual

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 7 of 17  11

relationships. For example, a dataset object has a list of its
replicas and a list of its constituent blocks as attributes, and
the dataset replica and block objects each point back to the
dataset object also as their associated dataset. See Fig. 2 for
the full schematics of the relationships among the objects.

As mentioned in “System Design”, the inventory can
be updated by write-enabled child processes (applications
and web modules). Write-enabled processes commit the
changes they made to the inventory at the end of execution
by passing a list of updated and deleted Dynamo objects to
the server process. The objects are serialized into respective
representation text strings and sent through an inter-process
pipeline. For updated objects, the server process deserial-
izes the received objects and realizes their new states in the
inventory, i.e., an object is created if it did not exist previ-
ously, and its attributes are updated otherwise. Similarly, for
deleted objects, the server finds the corresponding object
in the inventory using the unique identifier of the object
and unlinks it. These changes to the inventory are optionally
persisted immediately, if a persistence provider is configured
accordingly.

New applications are not started during the update, but
the ones that have been already running at the start of the
inventory update keep running with the pre-update inven-
tory image. The web server is restarted upon completion of
the update.

Applications, Scheduler, and Interactive Sessions

Actual data management tasks are performed by Dynamo
applications, using the Dynamo server and the inventory
as infrastructure. Dynamo application executables are sin-
gle-file python scripts that are submitted to the server and
executed asynchronously. Any valid python script will be
accepted as an application. Submission is done through a
TLS socket connection to a designated port the Dynamo
server listens to, using a command-line client program
called dynamo, included in the Dynamo package. The
python script is sent over the network or, if submitted from
the machine the server is running on, copied from a local
path. Submitter of the application is authenticated with their
X.509 [17] certificate. The certificate Distinguished Name
must be authorized beforehand to run applications on the
server. Once the submitter is authenticated and passes the
authorization check, the application execution request is
queued in the server and is picked up in one of the server
loop iterations.

The application programs access the inventory object
by importing it to the namespace through a statement like
from dynamo.core import inventory Because the inventory
object seen by a Dynamo application exists in the address
space of the application process, contents of the inventory
can be modified in any way within the program without

affecting the server or other concurrently running appli-
cations. Write-enabled applications call the update and
delete methods of the inventory object to register updated
and deleted Dynamo objects, respectively, to be sent to the
server process.

In a production environment, the application sched-
uler would be used to execute same sets of applications in
sequences repeatedly. Multiple sequences can be managed
concurrently, allowing, for example, having one sequence
that executes the transfer request processing with high
frequency while scheduling a thorough consistency check
of the global storage system once per week. To create a
sequence managed by the scheduler, a sequence definition
file is submitted to the Dynamo server using the dynamo
command. The sequence definition file uses a simple syntax
to specify the applications to run, the order of execution,
idle time between the executions, exception handling (ignore
exceptions and move on to the next application; repeat the
failed application; or repeat the entire sequence), and how
many times the sequence should be repeated. The appli-
cation scheduler runs in an independent thread within the
Dynamo server process, cycling over the sequences and the
applications therein indefinitely until the server process is
stopped.

System administrators or authorized users who wish to
explore the contents of the inventory interactively can also
start an interactive session over the socket connection using
the dynamo command. These sessions also run as child
processes of the server and therefore have a fully constructed
inventory object available as a python object. The interface
for the interactive session resembles the prompt of the inter-
active mode of the Python interpreter. This feature is also
useful for application developers for prototyping applica-
tions at a small scale.

Web Server

The Dynamo web server is an optional child process of
the Dynamo server. It communicates via FastCGI with an
external HTTP(S) frontend server, which handles the HTTP
requests and their TLS authentications. The web server first
parses the requested URL of the incoming HTTP request
passed from the frontend. The URL specifies whether a web
page or a data service (REST API) is requested, and also the
name of the module that provides the contents. If the module
is with restricted access, the request must have come over
HTTPS, and the Distinguished Name of the user certificate
is checked for authorization.

The identified module is then called with the full detail
of the HTTP request, including the query string contained
in the URL or posted in the HTTP request body. The mod-
ule returns an HTML document string or a Python diction-
ary depending on whether a web page or a data service is

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 8 of 17

requested. The web server formats the returned value from
the module into the final string passed back to the HTTP
frontend, to be sent to the requesting user.

The list of modules, and therefore available web services,
is easily extendable. Modules are written as Python classes
with certain methods. The author of the module only needs
to provide a mapping from the module name in the URL to
the class, which can be picked up by the web server without
stopping the Dynamo server.

A child process of the web server is spawned for each
HTTP request. While a thread-based web server is more
efficient in terms of resource usage than one that spawns a
process for each request, process-based web server isolates
each module in its own address space in the same way that
Dynamo applications are isolated. This guarantees that mod-
ules with read-only access to the inventory do not modify the
inventory image held by the Dynamo server, and intermedi-
ate updates by write-enabled modules do not interfere with
other web modules and applications.

When write-enabled web modules, such as the API for
data injection, are executed, updates are communicated to
the Dynamo server in terms of Dynamo objects, through
the same pipeline used by write-enabled applications, at the
end of the module execution. The web server process then
restarts itself to reflect the change in the inventory in the
server process.

Transfer and Delete Operations

The interfaces to transfer and delete operations, at the block
replica level and at the file level, are provided as Python
modules within the Dynamo package. The two levels are
separated so that applications can work at different degrees
of abstraction. For example, an application that determines
which dataset replicas should be deleted from a site can use
the replica-level interface and thus does not need to consider
any file-level information.

These Python modules merely define the programming
interfaces for the transfer and delete operations. Specific
plugins implement the actual functions, and it is up to the
applications to configure the interfaces with appropriate
plugins. Default plugins are included in the Dynamo pack-
age for both operation levels. The plugin for the replica-level
operations writes the operation information to the registry
database, to be read and acted on by the file operation man-
ager (see File operations: fom). Two plugins are provided
for the file-level operations. One communicates with an
FTS3 server to issue and track file transfers and deletions.
In case there is no FTS3 instance available, the other plugin
can be used together with a standalone lightweight daemon
(dynamo-fileopd), based on the GFAL2 library [18], also
included in the Dynamo package. This daemon however is

written to run on a single server and therefore is unable to
manage a large number of parallel operations.

There are only a few functions that these plugins must
implement, making it straightforward for an experiment
with an existing data management tool to adopt Dynamo as
its higher-level layer. As long as the existing tool exposes its
transfer and deletion commands in an API, either at the level
of files or some larger unit that corresponds to blocks, a plugin
can be written and Dynamo can function completely agnostic
to how the operations are performed.

Parallelization

Multiple Dynamo servers, each equipped with its own inven-
tory, can be linked into a single server cluster for load balanc-
ing and high availability. The cluster is formed sequentially;
when the first two servers are connected, one of the nodes
assumes the role of the master server, which holds the mes-
saging board (a set of database tables which can be connected
remotely), through which the members of the cluster commu-
nicate. Subsequent servers join the cluster by first connecting
to any of the nodes in the cluster. Upon establishing the con-
nection, the node that was already in the cluster will send the
host name of the master server to the new node, allowing the
latter to connect to the correct master server if it is different
from the former.

Heartbeat signals are sent from the member nodes of
the cluster to the master node at a regular interval, and as a
response, the contents of the messaging board are sent back.
Thus, although the master server acts as the communication
hub of the members of the cluster, all nodes are on equal foot-
ing in terms of their information content. This ensures that
there is no single point of failure in the cluster. If a non-master
server fails and does not send a heartbeat for some time, it is
trivially excluded from the cluster. If the master server fails,
the second server registered in the messaging board becomes
the new master server.

When a new node connects to a cluster, its inventory con-
tent is copied from one of the nodes already in the cluster. The
inventories in the cluster are kept in synchronization by allow-
ing only one write-enabled application or web module to run at
a time throughout the cluster, using a locking mechanism pro-
vided through the messaging board. The updates made to one
inventory are then broadcast to the linked servers before the
lock is released. The same serialized queue of Dynamo objects
used to update the local inventory is used for remote updates.

To create a load-balancing cluster where multiple nodes
are accessed under a single host name in e.g. a round-robin
mechanism, services such as keepalived must be run on
top of the Dynamo cluster. Dynamo itself only provides the
machinery to operate parallel linked server instances.

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 9 of 17  11

Applications

While Dynamo server manages the inventory image, it is
the individual applications that utilize the information in
the inventory and carry out the actual data management
tasks. As noted in “System Design”, any valid Python pro-
gram can become a Dynamo application, allowing the user
of the system to define and execute arbitrary new tasks
under the system.

As an example, Fig. 3 shows a schematic of how two
default applications, detox and fom, work in tandem.
As Dynamo applications, both are child processes of the
Dynamo server process, and read and possibly update the
inventory. Utility components of the Dynamo software
package, such as the policy language and the replica or file
deletion interfaces, are used within the applications. The
deletion interfaces are configured with backend plugins
that carry out the deletion operations.

This section describes these and other default appli-
cations for common tasks that a data management sys-
tem would perform. The source code for these appli-
cations is included in the standard Dynamo software
package.

Data Deletion: detox

The dynamic management of space adheres to two funda-
mental principles: firstly, the utilization should not go too
close to 100% of the available disk space for reasons of flex-
ibility and stability; secondly, having a substantial fraction
of empty, but in principle available space resources is not an
economic approach. A proper, high utilization is therefore
desired.

A deletion agent application, called detox, is run regu-
larly to prevent storage sites from overflowing. The applica-
tion evaluates a policy at run time to determine if deletions
are necessary and allowed at a given site. A policy in detox
consists of general directives, such as which sites and parti-
tions are cleaned up, and a list of rules and actions that are
taken on replicas satisfying the rules. In a standard detox
operation, dataset replicas at sites with occupancy above
the upper watermark are marked for deletion in the order
specified in the policy until their projected occupancy after
deletions have been brought down to the lower watermark.

Data attributes, which are freely configurable in the detox
libraries, are evaluated and matched line by line to the rules
in the policy. These rules make use of data attributes like the

Fig. 3   Schematic of the data deletion application detox and the
file operation manager (fom). Solid lines represent the flow of infor-
mation. Boxes with dashed outline are utility components of the
Dynamo package, i.e., software provided in the package but are not

parts of the system core (Dynamo server). As explained in “System
Design”, the registry database facilitates asynchronous inter-process
communications

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 10 of 17

popularity of a dataset or whether it has a replica on tape
storage. The attributes are set by dedicated producers at run
time. Data are sorted into cannot-be-deleted, can-be-deleted,
or must-be-deleted categories. Data in the can-be-deleted cat-
egory are deleted if the site requires cleanup (e.g. because the
occupancy is above the upper watermark).

The following is an example of a detox policy. This policy
applies to all sites and aims to keep the site occupancy between
upper and lower watermarks of 90% and 85%, respectively.
Lines starting with action statements Delete, Protect,
and Dismiss are applied to dataset replicas on a first-match
basis. In the example, replicas of invalidated datasets are
deleted unconditionally. For valid datasets, replicas are pro-
tected if they do not have full copies on tape archives, but
otherwise can be deleted if their usage rank (which roughly
corresponds to the number of days since the last usage) is
greater than 200. Replicas that do not match any of the above
criteria are protected by the last Protect line, which sets
the default action.

On site.name in [*]
When site.occupancy > 0.9
Until site.occupancy < 0.85
Delete dataset.status == INVALID
Protect dataset.on_tape != FULL
Dismiss dataset.usage_rank > 200
Protect
Order decreasing dataset.usage_rank \

increasing replica.size

Custom locks preventing items from being deleted from
sites can be placed from the REST API of the Dynamo web
server. A web module accepts lock requests from author-
ized users and records the specifications of the dataset and
block replicas to be locked in the registry database. These
locks will be respected by detox upon adding the line

Fig. 4   A snapshot of the site usage after a detox cycle has com-
pleted. Blue bars correspond to data that cannot be deleted because
it is explicitly locked or protected for another reason. Green bars indi-
cate the data for which there were no policy match and can therefore

be deleted if the corresponding site occupancy exceeds the upper
watermark at 90%. Storage sites with orange bars have protected data
above the upper watermark. Sites whose names are grayed out are
currently dysfunctional and consequently have been emptied

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 11 of 17  11

ProtectBlock blockreplica.is_locked to the policy.
Figure 4 shows a snapshot of the disk utilization of sites

in the CMS experiment after a detox cycle has run. In this
cycle, 0.2 petabytes of can-be-deleted data have been deleted
because the occupancies of the respective storage sites were
above the upper watermark. Snapshot plots like this are gen-
erated in the detox web page, included as a default web
server module in the Dynamo package.

The detox application can be run in simulation mode
to easily gauge the effect of a new policy on the system
state without actually performing the deletions. Using this
feature, detox is also being used in the CMS experiment
to plan, organize, and execute dedicated deletion campaigns
to remove obsolete datasets from tape archives on a yearly
basis.

Data Replication: dealer

Various reasons exist for why a specific piece of data should
be replicated at specific sites or unspecifically across the
global storage pool: a high demand by users; (temporary)
unreliability of specific storage sites; desire to evenly dis-
tribute critical datasets to prevent imbalances and therefore
single-points-of-failure in the system; recall from tape; ini-
tial data injection; etc.

An application called dealer is run in a regular cycle
to evaluate the replication requests and determine the data
copies to make. The application collects the requests from
its various plugins, each representing a different reason for
requiring data replications.

The different plugins are described briefly in the
following.

–	 The popularity plugin proposes replications of datasets
that are frequently read by analysis users. The informa-
tion on access frequency, provided by an external service,
are combined with other factors, such as the size of the
dataset, into a weight factor assigned to each dataset. It
should be noted that this weight factor is a good place for
the incorporation of machine learning algorithms, like
reinforcement learning, to predict which datasets will be
accessed in the near future and hence have them ready
and available on multiple sites to facilitate their access
for the users.

–	 The balancer plugin aims at replicating data present
only at a single site (“last copy”) which has a large frac-
tion of protected data. It will propose to replicate these
data at a second destination so that the protected space
can be freed up at the original site and the protected
data are evenly distributed across the storage sites. This
minimizes the risk of data unavailability and creates a
contingent of data at each site that can be deleted upon
demand.

–	 The enforcer plugin deals with static rules for replication.
It will try to accommodate special rules for data place-
ment, such as “The replication factor for datasets of type
X on continent A should equal 2”. A special attribute
on dataset and block replicas indicate that the replica is
being managed by an enforcer rule. Detox policy should
be set up to protect replicas with this attribute set to true.

–	 When a storage site will be unavailable for an extended
period of time, it is advised to remove all data from the
site so that user jobs do not try to access data and get
stuck or fail in the attempt of doing so. The undertaker
plugin proposes replication of dataset replicas that are
unique at specified problematic sites. Replicas copied
to other sites will then be deleted by detox, clearing
out the problematic sites. Figure 4 displays sites in non-
functional state as greyed out and cleaned out.

–	 The request plugin works in combination with a REST
API web module, to which production and analysis sys-
tems (and any authorized users) make explicit data rep-
lication requests. The production system would request
data replications to prepare the input for its tasks or to
consolidate the output of the production jobs that are
scattered across the distributed computing system. The
requests from the analysis system may occur when e.g.
the dataset to be analyzed has replicas only in the tape
archives.

The decision on which datasets to finally replicate is made
from the proposed candidates at random, taking into account
a configurable priority value assigned to the proposing
plugin, until the target occupancy of the storage sites is met
(also considering the projected volume of ongoing trans-
fers) or until a certain threshold is reached which limits the
amount of data replicated per dealer cycle.

Site Consistency

The application dynamo-consistency checks the
consistency between Dynamo’s inventory and files actu-
ally located at managed sites. Even though Dynamo con-
trols and tracks the history of file transfers and deletions
at its sites, a separate check is needed to ensure that files
are not lost or accumulated due to user or system errors.
Actual site storage content and the inventory can become
inconsistent either when files that are supposed to be at
a site according to the inventory are deleted or inacces-
sible (missing files) or when files that are not cataloged
in the inventory exist (orphan files). Missing files cause
failures of block transfer requests. Jobs that are assigned
to run at the site with missing files, assuming to read these
files locally will fail, or if there is a backup scenario will
be inefficient as they are forced to read the files remotely
instead. Orphan files on the other hand lead to wasted disk

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 12 of 17

space. dynamo-consistency can be run regularly to
check consistency by listing the contents of each remote
site and comparing the results to the inventory.

Sites managed by Dynamo may all employ different mass
storage technologies and their remote interfaces. dynamo-
consistency supports remote site listing using XRootD
Python bindings, xrdfs subshell, and the gfal-ls CLI
of the GFAL2 library. The base lister class is easily exten-
sible in Python, allowing for new site architectures to be
checked by dynamo-consistency.

Files matching filtering criteria, which are configurable,
are excluded from being listed as missing or orphan, even if
they are inconsistent with the inventory. For example, a file
with a recent modification time may appear as an orphan
only because there is a time lag in updating the inventory,
and thus should be exempt from listing. In addition, certain
paths can be excluded from the check via pattern matching.
The consistency check also does not report files that are
present in Dynamo’s pending deletion and transfer requests
to not trigger redundant actions.

Summaries of check results, as well as the statuses of run-
ning checks, are displayed on a webpage. The page consists
of a table that includes links to logs and lists of orphan and
missing files. Cells are color coded to allow operators to
quickly identify problematic sites. Historic summary data
for each site is also accessible through this page.

File Operations: fom

The Dynamo software package contains an application
for scheduling and monitoring file transfers and deletions
named fom. As noted in “Transfer and Delete Operations”,
the transfer and deletion operation backend is decoupled
from the Dynamo core, allowing experiments with existing
file operations programs to retain them by writing a sim-
ple plugin upon adopting Dynamo. When no such program
exists or a full-stack standalone operation of Dynamo is
desired, fom can be used as the file operations provider.

To use fom, applications must use the replica-level
transfer and deletion operations interface, as described in
“Transfer and Delete Operations”, configured with fom as
the backend. Transfer and deletion decisions made by the
applications are then written to the registry database, to be
read later by fom.

Because fom is a Dynamo application, it cannot be run
as a daemon, and therefore does not monitor the progress of
file transfers and deletions continuously. In fact, fom must
itself delegate the management of transfers and deletions to a
backend daemon program. At each execution, fom translates
block-level transfer and deletion commands in the registry
database into file-level information and issues the corre-
sponding commands to the file-level operations backend. It
also queries the backend to collect the reports on operations

Fig. 5   The transfer flow dia-
gram from the CMS Dynamo
instance. The width of the bands
represent the total volume of
scheduled transfers between the
sites indicated at the two ends.
The color scale corresponds to
the fraction of failed transfer
attempts for a period of time
(here: the last 3 days). The dia-
gram helps to quickly identify
problematic links that then can
be investigated closer

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 13 of 17  11

started in previous execution iterations. The reports (suc-
cess or failure) are then used to update the inventory. The
backend daemon can either be FTS3, dynamo-fileopd,
or any other service if a plugin can be written.

Transfer success and failure reports collected from
the backend are also used to evaluate the quality of links
between the sites. Figure 5 is a plot showing ongoing trans-
fers between different sites, where the widths of the bands
represent the total volume of scheduled transfers and the
colors of the bands encode the historical link quality infor-
mation. This diagram is available in a web page generated
by one of the default web server modules in the Dynamo
package.

Another web module exists to display the volume and
rate of transfers as a time series. An example of the transfer
volume history plot is in Fig. 6.

REST API

Although they are not strictly Dynamo applications, Dynamo
web server modules, and consequently the REST API, also
run as child processes of the Dynamo server process with
access to the inventory image. The REST API allows general
users to access the information in the inventory through a
number of remote calls described in this section. Because
the inventory is fully loaded onto RAM except for the infor-
mation on files, responses to most API calls do not involve
database I/O and thus are fast.

There are two distinct types of API calls available. The
first, writing type invokes operations that modify the state
of the inventory, such as transfer and deletion of dataset and
block replicas, or injection of new datasets and blocks. Only
authorized users are allowed to execute these calls. These

calls are exclusive, i.e., when a writing call is made while
another writing call is being processed, the second call fails
and reports HTTP error code 503 (service unavailable). Fail-
ure is necessary since the web server process is restarted to
refresh the inventory image as soon as the first writing call
completes, which implies that existing connections made to
the server would have to be closed. Writing calls also fail
during the execution of write-enabled Dynamo applications.
The second, read-only type of API calls allows general users
to obtain various information about the inventory without
changing its state. These calls do not have authorization
restrictions and can be executed in parallel with any other
web modules or applications running concurrently.

The list of existing REST API URLs can be found in
Appendix A.

All incoming HTTP requests are sorted into two sepa-
rate queues for further analysis for possible development
of the API. The first queue contains calls that are mal-
formed or do not exist at the moment. In this way users
can signal the developers what they would like to have
available in the future. The second queue contains valid
calls to existing functions. Analysis of the second queue
can shed light on which calls are popular and which ones
can be possibly made obsolete.

The Dynamo web server has two layers of defense
against distributed denial of service (DDoS) attacks.
First layer is a DenyHosts [19] service that blocks well-
recognized sources of attacks. The second layer analyzes
the HTTP request queues. If the frequency of correct or
malformed requests from a single source passes a certain
level that is deemed intrusive, the issuing address is auto-
matically blacklisted in the firewall to prevent any further
connection.

Fig. 6   History of transferred
volume per hour, color-coded
by transfer destinations

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 14 of 17

Use Cases

CMS Experiment

Dynamo has been in use by the CMS collaboration since
the beginning of the LHC Run 2. This CMS instance han-
dles several hundreds of petabytes of recorded and simu-
lated experimental data stored across a worldwide com-
puting grid, and has proven to work well at these scales
and volumes. There are some noteworthy points from the
operational experience.

First, loading the inventory at the startup phase of the
Dynamo server is not instantaneous for a system of this
scale, but completes within a manageable time. The CMS
experiment has roughly 5 × 105 datasets, 5 × 106 blocks, 106
dataset replicas, and 107 block replicas, and the inventory
construction takes approximately 15 min using a machine
with an Intel®Xeon®Gold 6134 CPU and MariaDB [20]
database on a solid-state drive for persistence. The con-
structed inventory has a size of approximately 8 gigabytes.

Construction of the inventory for the CMS experiment
would require a substantial amount of time, if done from
scratch. With the order of five machines running paral-
lel Dynamo servers, there is very little risk of losing the
information in the inventory. However, even in the case
of a catastrophic failure, Dynamo can be started with no
block and dataset replicas registered in the inventory, and
dynamo-consistency can be used to detect which
files, and thus block and dataset replicas, are at each site.
Since listing the content of one of the largest CMS site
with 20 petabytes of disk storage with dynamo-con-
sistency (remotely) takes roughly 50 h, such recov-
ery procedure (running many dynamo-consistency
application instances in parallel) would take a few days.

Applications also do not execute instantaneously in the
CMS instance but complete within practically reasonable
time. For example, it takes at least 15 min to complete a
full cycle of routine detox execution, in which the occu-
pancy of in the order of 60 sites are checked and the data-
set replicas to delete are determined. The execution time is
driven by both the number of dataset replicas to consider
and the number of policy lines, which is 33 at the time of
writing, to evaluate for each replica. Similarly, a routine
dealer cycle evaluating replication requests from all of
the plugins listed in “Data Replication: dealer” takes
10 min. Because the datasets in this instance are typically
accessed by non-interactive batch jobs, execution time
scale of less than O(1) h is acceptable.

Figure 7 demonstrates that the CMS instance of
Dynamo is able to operate stably at the required scale. The
figure shows the monthly total of data volume transferred
to and deleted from the CMS Tier-1 and Tier-2 sites by
Dynamo for the year 2019. Several dozens of petabytes

were moved and deleted per month. Here, deleted datasets
are typically the unpopular ones, perhaps because of their
age, and the transfers replaced them with high-demand
datasets. Thus Dynamo creates a “data metabolism” of
the CMS experiment to utilize the limited disk space most
effectively. There are more deletions than transfers because
the simulation datasets are constantly being generated at
the sites, acting effectively as sourceless transfers.

While file deletion operations usually complete quickly,
transferring terabyte-size datasets can take from several hours
to even several days depending on the connectivity and avail-
able bandwidth between the involved sites. Therefore, at any
given moment, there is a queue of incomplete transfers in the
CMS Dynamo instance. The dealer application has a feed-
back mechanism that suppresses new replications when the
queue of pending transfers is too long, but if this mechanism
is invoked too frequently, the system will be slow to respond
to e.g. a surge of popularity of certain datasets. Therefore, a
limit must be placed on the total volume of dataset replica-
tions to be requested in a single dealer execution to ensure
a healthy data metabolism. Experience has found that ordering
at most 200 terabytes worth of replicas per dealer execu-
tion iteration, repeated after roughly 1 h of interval, allows
the creation of sufficient amount of new replication orders at
each cycle while keeping the utilization of the transfer system
high. Figure 8 shows a time series of the total volume of data
replication (“Total”) scheduled by dealer and its subset
that has not completed yet (“Missing”). As individual dataset
replications progress, the missing volume are brought lower,
and when the replication of a dataset completes, its volume is
taken out of the total. In the figure, the “Total” curve stays at
a similar level because new replication requests are constantly
being made, and the “Missing” curve follows the “Total” curve

Fig. 7   Monthly data volume transferred to and deleted from the
Tier-1 and Tier-2 disk sites in CMS in 2019

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 15 of 17  11

because the overall CMS storage system is able to handle this
scale of transfers.

As seen from Fig. 9, Dynamo is able to hold the data
volume on disk at around 85% of the total space pledged
by the storage sites for the entirety of 2017–2020. A target
occupancy of 85% is an input parameter to Dynamo and is
chosen as a good compromise between a high disk utiliza-
tion and the availability of free buffer space, operating the
system sufficiently far away from the critical scenario of all
disks running full.

Local University Research Group

To evaluate the behavior of Dynamo in a different scenario,
a full-stack instance is installed at a local university research
group. This instance manages two storage sites, where one
site is the “master” storage that holds all of the approxi-
mately 600 terabytes of data under management, and the
other site, with a smaller capacity of 150 terabytes, is the
cache storage for locally running jobs. Thus, the primary
purpose of Dynamo in this instance is to keep the cache
storage filled with datasets that are the most useful for the
ongoing analyses at any given moment.

Managed data in this instance are organized into approxi-
mately 4 × 103 datasets, with dataset sizes varying from a
few gigabytes to a few tens of terabytes. There are 9 × 104

Fig. 8   Weekly overview of the missing and total volume of incom-
plete transfers. The missing volume roughly follows the total volume
of transfers

Fig. 9   Time series of the disk space managed by Dynamo. The occu-
pied volume (blue line) is held at a target size of 85% of the quota
pledged by the storage sites (red dotted and solid lines, respectively).

An orange line indicates the volume per Detox cycle that was pro-
tected according to the policies and could not be deleted

	 Computing and Software for Big Science (2021) 5:11

1 3

 11   Page 16 of 17

blocks and 5 × 105 files, with a typical file size of 2 giga-
bytes. At this scale, server startup (loading inventory) com-
pletes in 20 s, and the execution of detox and dealer
only takes a few seconds. This enables, in particular, running
dealer every minute or more frequently, enabling a virtu-
ally real-time Dynamo response to user demands.

Summary

A data management software named Dynamo was created
to satisfy the operational needs of the CMS experiment.
Dynamo consists of a main server, which holds the image
of the managed storage system in memory, and several appli-
cations, which perform the actual data management tasks.
Its extensive web interface allows remote users and external
services to monitor the status of various operations and to
interact with the system. While the system was designed
with usage in the CMS experiment in mind, its architecture
easily accommodates different use cases at a wide range of
installation scales.

Software Availability

Dynamo standard software package is available at
https://github.com/SmartDataPro-
jects/dynamo . The dynamo-consistency
application is available at https://github.com/
SmartDataProjects/
dynamo-consistency.

A List of APIs

Groups: A List of known groups. Input options are:

–	 required: none
–	 optional: group (name of the group)

Output:

–	 name: group name
–	 id: group id

Nodes: A list of sites known to Dynamo. Input options are:

–	 node: Dynamo site list to filter on (*)2

–	 noempty: filter out sites that do not host any data

Output:

–	 name: Dynamo site name
–	 se: node type, can be ‘Disk’ or ‘MSS’ (i.e., tape)
–	 id: unique site id assigned intrinsically by Dynamo

 Datasets: Basic information about datasets. Input options
are:

–	 dataset: dataset name, can be multiple (*)

Output:

–	 name: List of the matched datasets that include full data-
set name, size, number of file, status, and type.

 Subscriptions: Show current subscriptions (dataset and
block replicas) and their parameters. Input options are:

–	 dataset: Dataset name (*)
–	 block: Block name (*)
–	 node: Site name (*)
–	 group: Group name
–	 custodial: y or n, indicates if it assigned to tape stor-

age

Output:

–	 dataset: List of datasets, each list item contains a
dataset replica if a complete replica exists, and a list of
blocks replicas if not

–	 block: Each item in list of blocks contains a block rep-
lica

–	 subscription: contains node (site name), id (site
name), request (request id), node_files (number of files
at this site), node_bytes (number of bytes at this site),
group, time_create (when the replication request was
made), percent_files (percentage of files at the site), and
percent_bytes (percentage of bytes at the site).

 RequestList: A list of requests. Input options are:

–	 request: request id (*)
–	 node: name of the targeted site (*)
–	 dataset: dataset name as a part of the request (*)
–	 block: block name as a part of the request (*)
–	 requested_by: requester name (*)

Output:

–	 id: request id
–	 time_create: time of the request creation
–	 requested_by: requester name

2  (*) means any sequence of characters. For example, ‘T2_US*’
would match any site that starts with ‘T2_US’

Computing and Software for Big Science (2021) 5:11 	

1 3

Page 17 of 17  11

–	 list of sites: for each site
–	 node_id: target site id
–	 name: target site name

Acknowledgements  This material is based upon work supported by the
U.S. National Science Foundation under Award number PHY-1624356
and the U.S. Department of Energy Office of Science Office of Nuclear
Physics under Award number DE-SC0011939.

Disclaimer: “This report was prepared as an account of work spon-
sored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.”

The authors thank the CMS collaboration for extensive feedback
and support.

Funding  Open Access funding provided by CERN.

Compliance with ethical standards 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Evans L, Bryant P (2008) LHC machine. JINST. https://​doi.​org/​
10.​1088/​1748-​0221/3/​08/​s08001

	 2.	 The ALICE Collaboration (2008) The ALICE experiment at the
CERN LHC. JINST. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​
s08002

	 3.	 The ATLAS Collaboration (2008) The ATLAS experiment at the
CERN Large Hadron Collider. JINST. https://​doi.​org/​10.​1088/​
1748-​0221/3/​08/​s08003

	 4.	 The CMS Collaboration (2008) The CMS experiment at the
CERN LHC. JINST. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​
s08004

	 5.	 The LHCb Collaboration (2008) The LHCb detector at the LHC.
JINST. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​s08005

	 6.	 Egeland R, Wildish T, Huang CH (2010) PhEDEx data service. J
Phys Conf Ser. https://​doi.​org/​10.​1088/​1742-​6596/​219/6/​062010

	 7.	 Baud JP, Charpentier P, Ciba K, Graciani R, Lanciotti E, Màthè Z,
Remenska D, Santana R (2012) The LHCb data management sys-
tem. J Phys Conf Ser. https://​doi.​org/​10.​1088/​1742-​6596/​396/3/​
032023

	 8.	 Martinez Pedreira M, Grigoras C, Yurchenko V (2019) JAliEn: the
new ALICE high-performance and high-scalability grid frame-
work. EPJ Web Conf 214:03037. https://​doi.​org/​10.​1051/​epjco​nf/​
20192​14030​37

	 9.	 Barisits M, Beermann T, Berghaus F, Bockelman B, Bogado J,
Cameron D, Christidis D, Ciangottini D, Dimitrov G, Elsing M,
Garonne V, di Girolamo A, Goossens L, Guan W, Guenther J,
Javurek T, Kuhn D, Lassnig M, Lopez F, Magini N, Molfetas A,
Nairz A, Ould-Saada F, Prenner S, Serfon C, Stewart G, Vaander-
ing E, Vasileva P, Vigne R, Wegner T (2019) Rucio: scientific data
management. Comput Softw Big Sci 3(1):11. https://​doi.​org/​10.​
1007/​s41781-​019-​0026-3

	10.	 Fielding RT (2000) Architectural styles and the design of network-
based software architectures. Ph.D. thesis, University of Califor-
nia, Irvine

	11.	 SLAC, CERN. XRootD. https://​xrootd.​slac.​stanf​ord.​edu/
	12.	 Python Software Foundation. Python Language Reference, version

2.7. http://​www.​python.​org
	13.	 MySQL Documentation. https://​dev.​mysql.​com/​doc/
	14.	 Ayllon AA, Salichos M, Simon MK, Keeble O (2014) FTS3: new

data movement service for WLCG. J Phys Conf Ser. https://​doi.​
org/​10.​1088/​1742-​6596/​513/3/​032081

	15.	 Open Market Inc., M. Carbonneaux. FastCGI.com Archives.
https://​fastc​gi-​archi​ves.​github.​io/

	16.	 Mack J, Cassen A, Armitage Q keepalived. https://​www.​keepa​
lived.​org/

	17.	 Cooper D et al Internet X.509 public key infrastructure certificate
and certificate revocation list (CRL) profile. RFC 5280. https://​
www.​ietf.​org/​rfc/​rfc52​80.​txt

	18.	 CERN. GFAL2. https://​dmc.​web.​cern.​ch/​proje​cts/​gfal-2/​home
	19.	 Schwartz P et al DenyHosts. https://​github.​com/​denyh​osts/​denyh​

osts
	20.	 MariaDB Foundation. MariaDB. https://​maria​db.​org

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1742-6596/219/6/062010
https://doi.org/10.1088/1742-6596/396/3/032023
https://doi.org/10.1088/1742-6596/396/3/032023
https://doi.org/10.1051/epjconf/201921403037
https://doi.org/10.1051/epjconf/201921403037
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1007/s41781-019-0026-3
https://xrootd.slac.stanford.edu/
http://www.python.org
https://dev.mysql.com/doc/
https://doi.org/10.1088/1742-6596/513/3/032081
https://doi.org/10.1088/1742-6596/513/3/032081
https://fastcgi-archives.github.io/
https://www.keepalived.org/
https://www.keepalived.org/
https://www.ietf.org/rfc/rfc5280.txt
https://www.ietf.org/rfc/rfc5280.txt
https://dmc.web.cern.ch/projects/gfal-2/home
https://github.com/denyhosts/denyhosts
https://github.com/denyhosts/denyhosts
https://mariadb.org

	Dynamo: Handling Scientific Data Across Sites and Storage Media
	Abstract
	Introduction
	Overview of the System
	Basic Functionalities and Assumptions
	System Design
	Concepts

	Details of the System Components
	Dynamo Server and the Inventory
	Applications, Scheduler, and Interactive Sessions
	Web Server
	Transfer and Delete Operations
	Parallelization

	Applications
	Data Deletion: detox
	Data Replication: dealer
	Site Consistency
	File Operations: fom
	REST API

	Use Cases
	CMS Experiment
	Local University Research Group

	Summary
	Software Availability
	Acknowledgements
	References

