002713400 001__ 2713400
002713400 003__ SzGeCERN
002713400 005__ 20200716180105.0
002713400 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-eeFACT2018-TUYBA01
002713400 0248_ $$aoai:inspirehep.net:1736330$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002713400 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1736330$$d2020-03-20T05:16:55Z$$h2020-03-20T07:21:19Z$$mmarcxml
002713400 035__ $$9Inspire$$a1736330
002713400 041__ $$aeng
002713400 100__ $$aOhmi, Kazuhito$$iINSPIRE-00047850$$jJACoW-00000926$$uKEK, Tsukuba
002713400 245__ $$aBenchmarking of Simulations of Coherent Beam-beam Instability with SuperKERKB Measurement
002713400 246__ $$9JACoW$$aBenchmarking of Simulations of Coherent Beam-beam Instability
002713400 260__ $$bJACOW$$c2019
002713400 300__ $$a3 p
002713400 520__ $$9JACoW$$aCoherent beam-beam instability in head-tail mode has been predicted in collision with a large crossing angle. The instability is serious for design of future e⁺e⁻ colliders based on the large crossing angle collision. It is possible to observe the instability in SuperKEKB commissioning. Horizontal beam size blow-up of both beams has been seen depending on the tune operating point. We report the measurement results of the instability in SuperKEKB phase II commissioning.
002713400 540__ $$3publication$$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002713400 542__ $$3publication$$dAuthors$$g2018
002713400 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002713400 6531_ $$2JACoW$$asimulation
002713400 6531_ $$2JACoW$$aMMI
002713400 6531_ $$2JACoW$$aexperiment
002713400 6531_ $$2JACoW$$aluminosity
002713400 6531_ $$2JACoW$$asynchrotron
002713400 690C_ $$aCERN
002713400 693__ $$eSuperKEKB
002713400 700__ $$aEl Khechen, [email protected]$$uCERN
002713400 700__ $$aHirosawa, [email protected]$$uSokendai, Tsukuba
002713400 700__ $$aKoiso, Haruyo$$iINSPIRE-00330221$$jJACoW-00000922$$uKEK, Tsukuba
002713400 700__ $$aOhnishi, Yukiyoshi$$iINSPIRE-00330233$$jJACoW-00000956$$uKEK, Tsukuba
002713400 773__ $$01736227$$cTUYBA01$$qeeFACT2018$$wC18-09-24.11$$y2019
002713400 8564_ $$81605735$$s1311447$$uhttp://cds.cern.ch/record/2713400/files/tuyba01.pdf
002713400 960__ $$a13
002713400 962__ $$b2674168$$kTUYBA01$$nhongkong20180924
002713400 980__ $$aARTICLE
002713400 980__ $$aConferencePaper
002713400 999C5 $$01628005$$hOhmi, K.$$hZimmermann, F.$$hZhou, D.$$hOide, K.$$hKuroo, N.$$o1$$sPhys.Rev.Lett.,119,134801$$x[1] K. Ohmi, N. Kuroo, K. Oide, D. Zhou, F. Zimmermann, Phys. Rev. Lett. 119, 134801 (2017).$$y2017$$z0
002713400 999C5 $$01730902$$9CURATOR$$hOhnishi, Y.$$mpresented at eeFACT, Hong Kong, Sept., paper MOXAA02, in this conference. Figure 8: Log of beam size at an machine experiment held on 13 July$$o2$$rarXiv:1904.10236$$x[2] Y. Ohnishi et al., presented at eeFACT2018, Hong Kong, Sept. 2018, paper MOXAA02, in this conference. Figure 8: Log of beam size at an machine experiment held on 13 July.$$y2018$$z0
002713400 999C5 $$01666139$$9CURATOR$$hKuroo, N.$$hOhmi, K.$$hOide, K.$$hZhou, D.$$hZimmermann, F.$$mPhys. Rev. AB 21, 031002 . 105 νx(e-)=0.542 0.550 200 σx (µm) σx (µm)$$o3$$sPhys.Rev.Accel.Beams,21,031002$$x[3] N. Kuroo, K. Ohmi, K. Oide, D. Zhou, F. Zimmermann, Phys. Rev. AB 21, 031002 (2018). 105 νx(e-)=0.542 0.550 200 σx (µm) σx (µm)$$y2018$$z0