
Available on CMS information server CMS CR -2020/060

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
10 February 2020 (v3, 27 February 2020)

Using OpenMP for HEP Framework Algorithm
Scheduling

Christopher Jones for the CMS Collaboration

Abstract

The OpenMP standard is the primary mechanism used at high performance computing facilities to al-
low intra-process parallelization. In contrast, many HEP specific software packages (such as CMSSW,
GaudiHive, and ROOT) make use of Intels Threading Building Blocks (TBB) library to accomplish
the same goal. In this talk we will discuss our work to compare TBB and OpenMP when used for
scheduling algorithms to be run by a HEP style data processing framework (i.e. running hundreds
of interdependent algorithms at most once for each event read from the detector). This includes both
scheduling of different algorithms to be run concurrently as well as scheduling concurrent work within
one algorithm. As part of the discussion we present an overview of the OpenMP threading model. We
also explain how we used OpenMP when creating a simplified HEP-like processing framework. Us-
ing that simplified framework, and a similar one written using TBB, we will present performance
comparisons between TBB and different compiler versions of OpenMP.

Presented at CHEP2019 24th International Conference on Computing in High Energy and Nuclear Physics



Using OpenMP for HEP framework algorithm 
scheduling 
Christopher Jones1, , Patrick Gartung1 *

1Fermi National Accelerator Laboratory, Batavia, IL, USA 

Abstract. The OpenMP standard is the primary mechanism used at high 
performance computing facilities to allow intra-process parallelization. In 
contrast, many HEP specific software packages (such as CMSSW, 
GaudiHive, and ROOT) make use of Intel's Threading Building Blocks 
(TBB) library to accomplish the same goal. In this talk we will discuss our 
work to compare TBB and OpenMP when used for scheduling algorithms 
to be run by a HEP style data processing framework (i.e. running hundreds 
of interdependent algorithms at most once for each event read from the 
detector). This includes both scheduling of different algorithms to be run 
concurrently as well as scheduling concurrent work within one algorithm. 
As part of the discussion we present an overview of the OpenMP threading 
model. We also explain how we used OpenMP when creating a simplified 
HEP-like processing framework. Using that simplified framework, and a 
similar one written using TBB, we will present performance comparisons 
between TBB and different compiler versions of OpenMP.. 

1 Introduction 

The  CMS  experiment  at  the  LHC  has  used  a  multi-thread  enabled  data  processing 
framework, CMSSW [1], for large scale data processing since the start of LHC Run 2 in 
2016. This framework makes use of Intel’s Threading Building Blocks (TBB) library [2] to 
handle scheduling of processing tasks across the limited number of threads available to the 
process. The framework supports concurrency on three different levels via TBB. The first is 
concurrently  processing  multiple  transitions,  e.g.  multiple  Event  or  begin  of 
LuminosityBlock  transitions.  The  second  is  allowing  different  algorithms  to  run 
concurrently during each transition. The third level is within a given algorithm concurrent 
tasks can be scheduled and run. On the whole,  CMS has found this system to be very 
successful. 

Given the success of the system, why did we bother with exploring the use of OpenMP  
[3] to do the same processing? The reason is the growing need for CMS to exploit resources  
from  High Performance Computing (HPC) facilities in the coming years. These facilities 
typically  support  only  OpenMP as  the  intra-process  concurrency  mechanism.  We have 
found when we communicate with HPC specialists, they often ask why we are not using 
OpenMP for concurrency. As CMS’s utilization of HPC facilities increases we should either 
have a strong case for why the software does not use OpenMP or we should convert to 
using OpenMP.

In this paper we will present our findings of a comparison between TBB and OpenMP 
via the use of demonstrator frameworks. We begin by presenting a review of the relevant 
OpenMP commands used to create a demonstrator framework capable of the three levels of 

 Corresponding author: cdj@fnal.gov*



concurrency already supported by CMS’s framework. We then go on to briefly describe the 
abilities of the demonstrator frameworks. This is then followed by the experimental setup 
used to do the measurements as well as the results of the measurements.

2 Review of OpenMP Commands 

OpenMP is implemented as an extension to a C++ compiler. That is in stark contrast with 
TBB which is a standard C++ style third party library. OpenMP C++ syntax is implemented 
as pragma statements dictated by the OpenMP standard. How the OpenMP features are 
implemented  by  a  given  compiler  can  vary  greatly  from  compiler  to  compiler  as  the 
OpenMP standard  gives  a  great  deal  of  freedom for  the  implementations.  These  large 
variations can be true across versions of a compiler as well as across compiler vendors.

In the rest of this section we will describe four OpenMP 4.5 constructs which we used 
to  construct  the  demonstrator  framework:  omp  parallel,  omp  for,  omp  task,  and  omp 
taskloop.

2.1 Construct: omp parallel

The #pragma omp parallel statement starts threads which are then used to process the C++ 
block directly following the statement. Once assigned, those threads can only be used by 
that  parallel  construct.  (This  is  relevant  for  the  case  of  nested  parallel  blocks  we will 
discuss  in  subsection  2.3.)  The  thread  which  first  encountered  the  pragma  statement, 
OpenMP refers to this thread as master, will also join in processing the block. The master 
thread will not continue past the end of the block until all other threads used by the omp 
parallel statement have finished with the block. What happens with the other threads used 
for processing is implementation defined, not dictated by the OpenMP standard.

The number of threads used by each parallel construct is controlled by the environment 
variable,  OMP_NUM_THREADS  or  by  calling  the  function  omp_set_num_threads.  The 
maximum number of concurrently running threads which OpenMP is allowed to use for one 
job can only be set via the environment variable OMP_THREAD_LIMIT.

2.2 Construct: omp for 

The OpenMP for construct, #pragma amp for, must directly precede a for loop and is used 
to distribute the iterations of the for loop to threads associated with the inner most parallel 
statement.  By default,  the master  thread waits  until  all  iterators  have completed before 
moving onto any C++ statements following the for loop. 

The OpenMP for construct and OpenMP parallel construct can be combined into one 
statement for ease of use.

2.3 Nested parallel blocks 

In OpenMP, support  for  concurrent  nested parallel  blocks is  implementation defined.  If 
supported,  the  feature  is  controlled  via  the  environment  variable  OMP_NESTED  or  by 
calling the function omp_set_nested.  In addition, the number of threads assigned to the 
inner nested parallel blocks is the same as the number of threads assigned to the outer most 



block.  How threads  are  assigned,  in  the  case  where  nested parallelism is  supported,  is 
explained below using an example.

Fig. 1. Example illustrating the use of nested parallel blocks with each block using OpenMP for 
constructs. In the example, the function doWork will be called 9 times which means there is the 
possibility for 9 concurrently running calls to the function.  

Figure  1  shows  code  for  a  parallel  nested  for  loop  using  OpenMP.  The  call  to 
omp_set_num_threads restricts each parallel for construct to use 3 threads. The loop over i 
can use three threads (one per iteration) and each of those threads each see the inner loop 
over j. In turn each of the j loops can also use up to 3 threads. Therefore the maximum 
number of concurrent threads for the doubly nested loop is 9. Since the total number of 
calls to doWork is also 9, it is theoretically possible to have all 9 calls running concurrently.
As  explained  earlier,  the  master  thread  for  each  inner  loop  must  wait  for  each  of  the 
iterations to finish before proceeding. Similarly, the master thread for the outer loop must 
wait  for  all  inner  loop master  threads to finish before proceeding.  Figure 2 shows two 
different examples where different numbers of maximum threads per job are used to run the 
code from Figure 1. In the left sub figure, the maximum number of threads is 9 and we see 
the main thread only has to wait until the longest running inner iteration finishes. For the 
right sub-figure the total number of threads is only 6. In this case, the i = 0 loop gets three 
threads, the i = 1 gets 1 thread and the i = 2 loop gets 2 threads. Once threads are assigned 
to the inner loops, they can not be re-assigned. Therefore the main thread must wait for the 
i = 1 iteration to process all three inner iterations on a single thread before it can proceed. 
The other  threads  are  not  allowed to  do any other  work once they have finished their 
iterations.  Clearly  this  behavior  does  not  make  the  most  efficient  use  of  the  available 
threads.

a)   b)
Fig. 2. Possible distributions of work for nested for loops shown in Figure 1. Sub-figure a) shows the 
optimal distribution when a total of 9 threads are used. Sub-figure b) shows one potential sub-optimal 
distribution where only a maximum of 6 threads are allowed.

2.4 Construct: omp task

The omp task construct, #pragma amp task,  is used to place all code in the block following 
the construct into a task object. The task object is then scheduled to run on a thread. If the 

omp_set_num_threads(3); 
#pragma omp parallel for 
for(int i = 0; i< 3; ++i){ 
#pragma omp parallel for 
   for(int j = 0; j< 3; ++j){ doWork(i,j);} }



untied keyword is also used when declaring the task, the resultant task can be run by any 
thread  being  controlled  by  the  inner  most  parallel  construct.  When  a  task  completes, 
another task can be scheduled on that thread. The only restriction on the following task is it 
must be from the same parallel construct.

2.5 Construct: omp taskloop

The  omp  taskloop  construct,  #pragma  omp  taskloop,  is  very  similar  to  the  omp  for 
construct  except  each  iteration  is  encapsulated  into  an  OpenMP task.   In  addition,  the 
master thread may run other non-iteration tasks while waiting for all the tasks created by 
the taskloop to end. This is known as task stealing which some OpenMP implementations 
use.

3 Demonstrator Frameworks 

Three separate, but related, simplified demonstrator data processing frameworks were used 
for the experiments. One framework used OpenMP to schedule work, the second uses TBB, 
and  the  third  is  a  single  threaded  framework.  All  three  frameworks  use  the  same 
configuration  file  format  thereby  making  it  easier  to  run  the  same  configuration  using 
different technologies. In addition, all the frameworks process an input sequence of Events.

All  three frameworks bundle the work needed to be done into Modules.  A Module 
generates data and puts it into an Event. A Module can depend on data from another module 
and the frameworks guarantee proper ordering of Modules based on that dependency. For 
the multi-thread capable frameworks, the execution of a Module is wrapped in either an 
OpenMP or a TBB task. A Module’s task only starts once the data needed by the Module is 
available in the Event. When implementing a Module, the use of either OpenMP’s or TBB’s 
parallel for construct is allowed. This allows testing of nested parallelism for the different 
technologies.

The code for all three frameworks and all the Modules can be found at GitHub [4].

4 Experimental Setup and Results 

We used the demonstrator frameworks to allow fair performance comparisons for the three 
different cases: OpenMP and TBB using multi-threading, and running N concurrent single-
threaded processes. Given that the implementations of OpenMP differ across compilers, we 
made all  the  performance  measurements  using  both  the  gcc  8  [5]  and the  clang 7  [6] 
compiler. For the single-threaded and TBB cases, the performance differences of the gcc 
and clang build executables were indistinguishable within measurement error. Therefore for 
TBB and the single-threaded performance numbers we only report a single number rather 
than one for each of gcc and clang.

The configuration used to run the tests was built to emulate the behavior of the actual 
CMS reconstruction application. This was achieved by using the same data dependency 
between Modules as the actual  CMS reconstruction process.  In addition,  the time each 
Module  ran  for  each  Event  matched  the  time  spent  by  the  equivalent  Module  in  the 



reconstruction process. Timings for 100 different Events were used in the test in order to 
simulate the effect of varying Event processing times.

In each experiment the number of cores used was varied and the total Event throughput 
(in  Events  per  second)  was  measured.  For  OpenMP and  TBB this  meant  varying  the 
number  of  threads  used.  For  the  single-threaded  framework,  the  total  number  of 
simultaneously running jobs was varied.  For  the OpenMP and TBB measurements,  the 
number of concurrently processing Events was set to be equal to the total number of threads 
used in the job. In addition, the total number of Events processed per job was equal to 100 
times the number of threads used in the job. This guaranteed that each Event time was 
reused exactly the same number of times for all jobs. Across experiments, the amount of 
internal parallelism within a Module was changed to see the effect of nested parallelism. 
All the experiments were done using an Intel Xeon Phi (a.k.a Knights Landing) CPU [7] 
with 64 physical cores with each core supporting 4 hardware threads.
 Figure 3 shows the Event throughput versus core utilization for the case where all 
Modules used in the threaded frameworks are configured to be concurrent capable. That is 
each Module can handle concurrent processing of different Events. For this case of perfect 
parallelism, both implementations of OpenMP and TBB show equivalent performance. The 
slope changes at 64 and 128 threads is caused by the use of additional hardware threads per 
core of the Xeon Phi device.

Fig. 3. Event throughput as a function of utilized cores where all Modules are able to run 
concurrently.

A more realistic configuration is to change the Module used to simulate the behavior of 
the OutputModule, which writes the resultant processed Events out to a file, such that the 
simulated OutputModule only be able to process one Event at a time. This serialization was 
accomplished in a non-blocking manner so that other Modules do run while an Event waits 
for the OutputModule to become available. Even with the ability to schedule around the 
OutputModule, all the threaded frameworks still hit the serialization limit of 0.9 Events/
second at around 16 threads. 
 One way to minimize the serialization limit is to allow internal parallelism within the 
OutputModule. For this paper we had the OutputModule execute a loop for 100 iterations 
and then used OpenMP and TBB constructs to allow the iterations to be run concurrently. 
Figure 4 shows the results using different techniques.

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

ec
)

0

3

6

9

12

Number of Threads & Concurrent Events
0 32 64 96 128 160 192 224 256

TBB
OpenMP clang
OpenMP gcc
N Single Threaded



 Figure 4a shows the case where the TBB based framework used tbb::parallel_for and 
the OpenMP framework used the taskloop construct. In this case, both TBB and the clang 
version of OpenMP employ task stealing while the gcc implementation just does a wait. In 
task stealing, if the master thread that is running the concurrent for loop finishes its allotted 
work before all the other threads working on the for loop finish, that thread can run another 
scheduled task which is unrelated to the for loop. Only once the unrelated task finishes can 
the master thread proceed with work following the completion of all iterations of the for 
loop. In this experiment, task stealing is shown to be detrimental as the extra work done 
while in the OutputModule keeps the OutputModule from finishing its work as soon as 
possible and therefore delaying the time before another Event can use the OutputModule. 

Fig. 4. Event throughput as a function of utilized cores where a) the OutputModule is serialized and 
uses internal parallelism with the possibility of task stealing and b) it is serialized and uses internal 
parallelism with task stealing prohibited. Both plots share the same Y axis. 

Figure 4b shows the case where task stealing is prevented. For TBB it was a simple 
case of putting the tbb::parallel_for within a TBB task arena. The only way the OpenMP 
standard guarantees no task stealing is with the use of the omp for construct. As explained 
earlier, when using omp for one must specify the number of threads to use for the loop via 
the call to omp_set_num_threads. In order to make Figure 4b, for each point on the x axis 
we ran 8 to 10 jobs where the total number of threads was fixed while each job used a 
different  value  in  the  omp_set_num_threads  call.  The  throughput  of  the  jobs  varied 
routinely by over a factor of 2. Only the result giving the highest Event throughput was 
added to Figure 4b. Even doing our best to hand tune each OpenMP point, the automatic 
behavior of TBB gives the best throughput.

5 Conclusion

In  this  paper  we  have  shown  that  it  is  possible  to  create  a  multi-threaded  HEP data 
processing  framework  using  OpenMP.  However,  it  is  also  shown  that  using  TBB’s 
automatic  scheduling  provides  a  better  throughput  than  a  hand  tuned  OpenMP.  Such 
automatic scheduling is extremely important as HEP processing vary widely in time per 

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

)

0

3

6

9

12

Number of Threads & Concurrent 
Events

0 64 128 192 256

TBB
OpenMP clang
OpenMP gcc 
N Single Threaded

Number of Threads & Concurrent 
Events

0 64 128 192 256

TBB
OpenMP clang & gcc
N Single Threaded

a) b)



Module as well as the mixture of Module types (re-entrant and non-reentrant) as well as the 
number of threads used to run a job. 

We have also seen that compiler variations in the implementation of OpenMP make 
portable performance hard. In particular gcc taskloop does not do task stealing while the 
clang implementation of taskloop does do task stealing with no way to disable that feature.

The major takeaway from the paper is OpenMP 4.5 has composability difficulties. In 
particular, OpenMP parallel blocks do not share threads which leads to nested parallelism 
using fixed allocation of threads. The fixed allocation makes it very hard to tune how many 
threads to use at each nested parallel  level, particularly if the optimal number can vary 
during the execution of the program.

Acknowledgements:  operated  by  Fermi  Research  Alliance,  LLC  under  Contract  No.  DE-
AC02-07CH11359 with the United States Department of Energy. 

References 

1. C.D. Jones and E. Sexton-Kennedy J. Phys.: Conf. Ser. 513 022034 (2014)  
2. https://www.threadingbuildingblocks.org  
3. https://www.openmp.org 
4. http://github.com/Dr15Jones/toy-mt-framework 
5. https://gcc.gnu.org 
6. https://clang.llvm.org 
7. https://ark.intel.com/content/www/us/en/ark/products/codename/48999/knights-

landing.html

http://github.com/Dr15Jones/toy-mt-framework
https://gcc.gnu.org
https://clang.llvm.org

