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Abstract: RADES (Relic Axion Detector Exploratory Setup) is a project with the goal

of directly searching for axion dark matter above the 30µeV scale employing custom-made

microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC
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dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to

take data in the BabyIAXO magnet. In this article we report on the modelling, building and

characterisation of an optimised microwave-filter design with alternating irises that exploits

maximal coupling to axions while being scalable in length without suffering from mode-

mixing. We develop the mathematical formalism and theoretical study which justifies the

performance of the chosen design. We also point towards the applicability of this formalism

to optimise the MADMAX dielectric haloscopes.
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1 Introduction

An essential task in finding what lies beyond the Standard Model is to try to directly detect

dark matter (DM). Direct searches for dark matter above the MeV scale are performed

by looking for the rare recoil of dark matter against nuclei or electrons in different target

materials. A very different technique to search directly for dark matter is needed for ultra-

light dark matter. A candidate light dark matter particle is the QCD axion [1–4] which is

a particle that can elegantly solve both the strong CP problem and constitute all of dark

matter [5–7], if light enough in mass.

There are two ‘scenarios’ for axion dark matter production leading to axions with

different mass scales. The spontaneous breaking of the Peccei-Quinn symmetry, which

gives rise to the axion as its pseudo-Goldstone-boson, takes place only after inflation in

the so-called post-inflation scenario. On the other hand, in the so-called pre-inflation

scenario, the Peccei-Quinn phase transition happens before inflation. As it turns out the

former scenario generically predicts axions with higher masses than the latter, see e.g. [8]

for a recent review. In this article we detail on a setup that is aiming to search for post-

inflationary axions, which are typically expected above ∼ 25µeV [9–12] using the haloscope

method (which is well established at typically much lower masses).

In 1983, Pierre Sikivie suggested [13] to find axion dark matter by detecting its cou-

pling to two photons in the following way: if a ∼ µeV axion traverses a radio-frequency

cavity embedded in a magnetic field it will be converted into photons that appear as a

narrow linewidth signal if the cavity is tuned to the appropriate resonant frequency. These

experiments are commonly dubbed axion haloscopes.

The haloscope technique, so far has proven efficacious in tapping into the benchmark

axion dark matter parameter space, see e.g. [14–22].

– 1 –
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Many setups use solenoidal magnets and cylindrical cavities. The diameter of the

cylinder sets the frequency scale of the resonance of the fundamental mode and thus the

axion mass scale which the experiment is most sensitive to. Thus probing a high mass

naively means going to small diameters. Unfortunately, the signal power decreases as the

cavity’s dimension is lowered because it is both proportional to volume of the cavity and

to the cavity’s quality factor, which also decreases with frequency. Thus, to explore the

post-inflationary, high-mass window, novel techniques are explored.

One setup aiming to tackle the post-inflationary mass range of axions1 is called RADES

(‘Relic Axion dark matter Exploratory Setup’). It has been recently developed and has

taken data in the magnet of the CAST experiment at CERN. Analysis of these data will

be reported elsewhere [28]. Note that besides RADES, a second haloscope (CAST-CAPP)

is part of the CAST physics programme, see [29, 30] for more details.

The central idea of RADES (introduced in [31]) is to develop cavity structures that can

resonate at high frequencies (above ∼ 8 GHz) whilst not compromising on the volume of the

cavity. Two considerations are central for this. First, the cavities should be able to search

for axions in dipole magnetic fields. The reason being that dipole magnets should provide in

the long term a larger magnetic volume available for axion search. Particularly, the IAXO

magnet is expected to provide a B2V & 300T2m3, and, being primarily a helioscope, would

at some stage also join the haloscope searches [32].

Secondly, as described in detail in [31], a long structure composed of N rectangular sub-

cavities, interconnected by irises, can indeed have resonant modes with a large geometric

coupling to the axion at a frequency scale that is mainly determined by the dimension

of the individual cavities, see also [33–35] for related concepts. The structure developed

in [31] achieves maximum coupling to the axion on the fundamental mode. However, the

problem of this first approach is that mode mixing effects become very severe as the order

of the structure (N) increases because as N increases the modes tend to clutter at the

edges of the filter bandwidth.

The present article describes and reports on the testing of a novel concept that has

been recently developed and tested for RADES.

In this new microwave filter design, we design the central mode to couple maximally to

the axion. The resulting structure thus largely mitigates the mode mixing effect present in

the previous approach [31]. It is shown that this can be achieved by building a filter with

alternating inductive and capacitive irises. The theoretical modelling of such a filter will be

described in section 2, including an application to dielectric haloscopes such as MADMAX.

The filter production and performance will be described in section 3. We conclude and

give future prospects in section 4.

2 Analysis of the cavity filter with alternating irises

The first RADES prototype built and tested in 2017/2018 (described extensively in [31])

was a ∼ 15cm long H-plane filter consisting of N = 5 sub-cavities connected through

inductive irises. This structure was designed to fully couple its first (lowest frequency)

1Other notable efforts to search the QCD axion at ‘larger mass’ using complementary techniques are,

e.g. MADMAX [23], SIDECAR [24], BRASS [25], ORPHEUS [26] and others [27].
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resonant mode to the axion field, but it is not optimal when going to a large number

of sub-cavities because of the larger mode-mixing among adjacent resonant modes of the

filter. We have solved this problem by designing an optimal filter with minimal mode-

mixing of the resonant mode to the axion field, which consists on a cascade of cavities

connected by alternating inductive (H-plane) and capacitive (E-plane) irises. We also

show by simulations that the new design is robust to mechanical tolerances.

2.1 Theoretical model for a cavity with alternating irises

The general formalism that models the coupling of a microwave filter with N subcavities to

the dark matter axion field was introduced in the appendix of [31]. There, we demonstrated

that the frequency-domain Maxwell equations in the background of the axion DM field2

led to the matrix equation

(ω2
1−M) ~E = −gAγ BeA0 ω

2 ~G , (2.1)

where ~E is an N -dimensional column vector containing the electric field amplitudes of the

fundamental mode of each sub-cavity, Be is the static external magnetic field (here taken to

be homogeneous), gAγ is the axion-photon coupling, and 1 is the unitary matrix of order N .

The electric fields are sourced by the axion DM field A, which is taken to be homogeneous

and harmonic A = A0 e
−jωt, j being the imaginary unit j ≡

√
−1. The frequency ω is

dominated by the axion mass ma such that ω = ma +O(10−6ma). The energy density of

the DM halo is given by the harmonic oscillator result ∼ |A0|2m2
a (∼ 0.45 GeV/cm3 around

the position of the Earth). The symbol ~G represents a vector of form factors describing the

coupling of the axion to the individual cavities. Its most relevant feature is that since the

coherence of the axion field is very long, all elements of the vector are in phase. For the

case of our interest where all subcavities are (almost) the same in size,

~G = G0 (1, 1, 1, . . . , 1) . (2.2)

The most important element in eq. (2.1) for the cavity design is M, which constitutes the

N × N complex matrix encoding the properties of our filter. By connecting the cavity

sequentially by irises only to nearest-neighbours the matrix becomes tridiagonal

M =



Ω̃2
1 K12 0 0 0 0

K21 Ω̃2
2 K23 0 0 0

0 K32 Ω̃2
3 K34 0 0

0 0
. . .

. . .
. . . 0

0 0 0
. . .

. . .
. . .

0 0 0 0 KN,N−1 Ω̃2
N


. (2.3)

The diagonal entries are Ω̃2
q = Ω2

q − jωΓq, where Ωq are the eigenfrequencies of the q-th

individual cavity considered in isolation and Γq their loss rates due to the coupling-port

and ohmic losses (considered small). The off-diagonal elements, Kq+1,q,Kq,q+1 parametrise

2We use natural Units ~ = c = kB = 1 with Lorentz-Heaviside convention.
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the couplings between adjacent cavities. The characteristic modes of the filter cavity are

the eigenvectors of the matrix M, denoted as ~ei, i = 1, . . . , N , corresponding to eigenfre-

quencies3 ω̃2
i = ω2

i − jωΓi.

We read out the cavity through a port in the qr-th cavity, typically the first. The

power, expected to be tiny, is proportional to the E-field in that cavity, which itself can be

expressed as a sum over the fundamental modes of the filter,

( ~E)qr ' gAγ BeA0 ω
2
∑
i

(~ei)qr
~ei · ~G

ω2 − ω2
i + jωΓi

(2.4)

To optimally search for an axion, one should construct a cavity that has one of its eigenvec-

tors ideally aligned to the excitation (2.2), i.e. ~e1 = (1, 1, 1, . . . , 1). Having a large amount

of freedom to design M there are potentially many possible solutions, so we could in prin-

ciple add more constraints to our design, like having the largest quality factor possible,

better separation between modes, etc.

Our first prototype formed by inductive cavities [31] fulfills just the alignment with ~G
requirement for the first resonant mode, i.e. ~e1 ∝ ~G. It might seem that using the lowest

frequency mode is advantageous as it is very easy to recognise, but unfortunately it is not

easy to isolate in the large N limit. This can be easily seen in the simple model of a fully

symmetric inductive filter having all equal cavities and irises, i.e. Ω̃2
1 = . . . = Ω̃2

N = Ω̃2
q and

K12 = KN−1,N = K < 0 (note that our first prototype is just a small perturbation of this

model). The eigenvalues of the resulting Toeplitz matrix are well known,

ω̃2
i = Ω̃2

q + 2K cos

(
iπ

N + 1

)
; i = 1, . . . , N. (2.5)

The mode coupling the most with the axion for K < 0 (inductive coupling) is the

fundamental (i = 1), as in this situation its eigenvector has all positive components, i.e.

the electric fields of the cavities oscillate in phase.

One undesirable feature of using the lowest frequency mode is the fact that the distance

to the next mode decreases very fast with increasing N ,

ω1 − ω2 ∼
K

Ωq

(
cos

(
π

N + 1

)
− cos

(
2π

N + 1

))
∼ K

Ωq

3π2

2(N + 1)2
, for N � 1 (2.6)

where ohmic losses have been neglected. However, an imperfect tuning system or simply

small imperfections in the manufacturing of the cavity are going to shift the values of

the eigenfrequencies in a small but unpredictable way. The above calculation shows that

using a large number (N) of coupled cavities makes it hard to unambiguously identify the

resonant mode of the axion. In that case, when two modes are very close in frequency,

a very small perturbation (a change of the input-port coupling or a mechanical tolerance

error) can have a large impact on the mode mixing of the microwave structure. These

3Note that we use capital Ω for eigenfrequencies of individual cavities and we will use lowercase ωi’s to

denote the eigenfrequencies of the entire filter, but we use Γq or Γi to denote the loss rate in a cavity or

the whole mode, respectively.
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issues lie against the obvious observation that we would ideally use as many cavities as

possible because the total signal power scales as N .

A second undesirable aspect of the lowest frequency mode is that it is itself expected

to be more sensitive to tolerance errors in the manufacturing process than central ones. In

the zero K limit all cavities would resonate at frequency Ωq and by coupling them we split

the eigenfrequencies around this value. Errors in the manufacturing process of the cavities

dimensions and couplings add up in this mode with the same sign, while in other modes

some degree of cancellation is expected. The simplest example is an error in K to K + δK

which shifts ω1 into ∼ ω1 + 2 δK, and leaves ωN/2 almost unchanged.

Added together, these undesirable aspects of the simplest cavity-coupling concept pre-

vent us to build cavities with N much larger than 30 or so. With the goal of searching for

the ultimate sensitivity of this technique we have looked for improved technical solutions.

Our basic idea stems from the observation that mode crowding is at the root of the above

“evils”, and that the central mode of the simplest filter studied above is the best separated

from the rest in the large-N limit. Indeed, we find that the distance to its neighbours scales

only as 1/N ,

ωN/2 − ω(N/2)+1 ∼
K

Ωq

π2

2(N + 1)
, for N � 1 (2.7)

and has most likely the largest degree of cancellations under perturbations of the original

design. For these reasons, we decided to seek for a filter matrix with the axion-coupling

eigenvector as its central mode.

One such possibility is given by choosing

M = ω2
0



1− k k 0 0 0 0

k 1 −k 0 0 0

0 −k 1 k 0 0

0 0 k 1 −k 0

0 0 0
. . .

. . .
. . .

0 0 0 0 −k 1 + k


, (2.8)

where an arbitrary frequency ω2
0 has been factored out and k = K/Ω2

q is a dimensionless

coupling. It can be easily seen that indeed the matrix in (2.8) has an eigenvector ~c =

(1, 1, 1, . . . , 1) with eigenvalue ω2
0, expected to be in the centre of the modes split by the

coupling. Actually, for odd N this is exactly the central mode and has the largest distance

to the nearest neighbours. The frequencies of all the cavities are the same except the first

and last, which are corrected by 1− k or 1 + k depending on the sign of the coupling with

the adjacent cavity. Similar corrections were required in [31] to modify the eigenmode ~e1

of (2.3) to become ∝ (1, 1, 1, . . . , 1). But the new key ingredient is the introduction of

alternating signs in the coupling between adjacent cavities. A priori it is not clear that

designing a physical filter with these characteristics is possible. However, as we will see, the

trick to achieve it is to use an alternation of inductive and capacitive irises, which provide

negative and positive couplings, respectively.

– 5 –
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2.2 Some theoretical remarks

Let us motivate a little more the form of the coupling matrix with alternating irises. It

turns out to be simple to develop from the simplest tridiagonal Toeplitz case (2.3) with all

individual eigenfrequencies equal and normalised to 1 and all couplings equal and given by

k. We call this simple tridiagonal Toeplitz matrixMS . Once more, we recap the eigenvalues

of its m-th mode,

λm = 1 + 2k cosβm , βm =
πm

N + 1
. (2.9)

while the filter eigenmodes, MS ēm = λmēm, have components given by

(em)q =
sin(βmq)√
(N + 1)/2

. (2.10)

Now we want to design a new filter, given by a new matrix M, such that the mode that

couples the most to the axion, is the most separated from neighbours. The freedom is such

that we start by seeking for a solution close to our experience. We decide to keep the same

eigenvalues as that of MS and aim at coupling the axion to the central mode, which we

have already identified as the one with largest distance to neighbours. For an odd number

N of cavities the central mode is characterised by c = (N + 1)/2 and for an even number

of cavities it can be either c = N/2 or c = N/2 + 1.

Now note that if ēm is an eigenvector of MS then P ēm is an eigenvector of M =

PMSP
−1 with the same eigenvalue. Here P is any suitable matrix. Therefore we want to

identify a transformation P such that it takes the central mode (the one with furthermost

neighbours) into one that couples the most to the axion, P ēc = ē1 or ideally even ∝
(1, . . . , 1). However, doing so blindly we might end up with matrices M that are not tri-

diagonal and thus do not correspond to a linear filter where only couplings to neighbours

are allowed (and are thus suitable for long accelerator magnets). The simplest solution

to couple P ēc to the axion is to make P diagonal with entries, +1,−1 so that the signs

of P compensate any sign change of ēc, P ēc has all entries either positive or negative

and thus represents a mode with all cavities in phase. Now, the key observation is that

the central mode of MS has components that alternate sign every two cavities because

βc = π/2 +O(1/N). The case where N is even is ambiguous and forces us to choose what

we refer as the central mode, so we choose c = N/2 + 1. Thus, for the central modes a

clever and simple choice for P is4

P = diag{1,−1,−1, 1, 1,−1− 1, . . .}. (2.11)

This simple choice makes our construction very explicit. First, we can compute the new

coupling matrix, which turns out to have alternating signs in the diagonals,

M = PMSP
−1 =


1 −k 0 0 0 0

−k 1 k 0 0 0

0 k 1 −k 0 0

0 0 −k 1 k 0

0 0 0
. . .

. . .
. . .

0 0 0 0 k 1

 ≡MW , (2.12)

4If we choose c = N/2 for even-N the clever choice to couple to the axion is P = diag{1, 1,−1,−1, . . .},
i.e. also alternates signs every two cavities but the first change happens between cavities 2 and 3 and not

1 and 2.
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which is essentially equal to the proposed (2.8), the only difference being the optimisa-

tion of the [M ]11 and [M ]NN elements. Second, all the eigenvectors of MW , MW w̄m =

λmw̄m, follow from those of MS by reweighing with the alternating signs of the P

diagonal, w̄m = P ēm,

(wm)q = (−1)s(q)
sin(βmq)√
(N + 1)/2

, s(q) = floor
(q

2

)
. (2.13)

Third, by construction the eigenvalues are exactly the same than those of the base

design MS . Finally, we can compute analytically the overlap of the central mode with the

axion mode,

1√
N

(1, . . . , 1) · w̄c =
1√

N(N + 1)/2

∑
q

(−1)s sin(βcq)
N→∞−−−−→

{
1/
√

2 (N − odd)

∼ 0.900 (N − even)
,

(2.14)

which is already quite good in the N -even case where none of the components of the central

mode is zero. In the odd case, half of the cavities have zero E-field (the even-ones), which

explains the relatively small asymptotic value.

As a bonus, this simple construction inspires a straight-forward way of obtaining a

central mode which is optimised to couple to the axion, i.e. which is proportional to

(1, 1, . . . , 1). The method is to choose a diagonal matrix P such that its diagonal elements

are the inverses of the elements of the eigenvector with m = c, i.e. [P ]qq = (ec)
−1
q /
√
N .

With such a construction, w̄c = P ēc = (1, 1, . . . , 1)/
√
N , as we desire. This method has a

couple of disadvantages: it does not work for odd values of N (because ~ec has some zeros)

and produces coupling matrices M which have entries of slightly different values. Our

proposal (2.8) has the great virtue of having all equal cavities and bi-periodic couplings

(except for the 1st and last) and works for N even and odd.

2.3 Effects of finite tolerances

We can use our simple and analytical construction to calculate the sensitivity of the filter to

tolerances. We can compare the sensitivity of the simple filter with MS and the alternating

structure with MW . We will assume that the final optimisation to make the first or central

mode to couple perfectly to the axion does not affect qualitatively our results.

Consider that, due to manufacturing errors, our simple filter is described by a coupling

matrix M = MS + δM. We assume that the errors will induce deviations in the design

values of the cavities eigenfrequencies and the couplings, i.e. δΩ2
q , δKq,q+1, so the error

matrix δM will be tridiagonal, symmetric and will have N + N − 1 = 2N − 1 a priori

unknown parameters (we neglect effects of losses here because they are smaller). We will

assume for simplicity that the parameters are uncorrelated, although this will generally

not be the case because some manufacturing errors will be systematic. At first order in

the perturbation, the eigenvalues are shifted by

δλm = (ēm)T δM(ēm). (2.15)

– 7 –
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If we assume Gaussian errors in the parameters of M, the expectation value of the shift is

zero. The variance can be easily computed under the same assumptions,

〈(δλm)2〉 =
N∑
q=1

〈(δΩ2
q)

2〉(em)4
q +

N−1∑
q=1

〈(δKq,q+1)2〉(em)2
q(em)2

q+1 (2.16)

This estimate of the variance of the eigenfrequencies is exactly the same for our alter-

nating filter matrix5
MW .

Therefore we can compare the distortion of the mode m = 1 that we would use in the

simple case with the alternating structure for which m = c ' N/2 + 1. In the N → ∞
limit and assuming all diagonal and off-diagonal variances to be equal we find,

〈(δλ1)2〉 =
(
(δΩ2)2 + (2δK12)2

)
× 3

2N
(2.17)

〈(δλc)2〉 =
(
(δΩ2)2 + (2δK12)2

)
× 1

2N
, (2.18)

so the central eigenvalue is a factor 1/
√

3 less sensitive to distortions (on average) than the

most extreme. This is not a big difference per se, but the neighbouring mode is much closer

in frequency for m = 1 than for m = c and thus the possible misidentification problems on

the former are much more severe.

Also interesting is to study the mode distortion due to errors. The deviation of the

eigenvectors of the imperfect system can be computed as a sum over the other unper-

turbed modes,

δēm =
∑
m′ 6=m

(ēm′)T δM(ēm)

λm − λm′
ēm′ =

∑
m′ 6=m

(ēm′)T δM(ēm)

2k(cosβm − cosβm′)
ēm′ , (2.19)

where it is evident that modes closer in frequency will be much more severely distorted by

neighbours than isolated ones. Since we have analytical formulae for the nearest-neighbours

of the axion we can predict the hyperplane in the N-dimensional field-space in which

the modes will tend to move more and thus estimate a reduction of the coupling to the

axion mode,

δGm =
(1, . . . , 1)√

N
· δ~em. (2.20)

As a general comment, note that for our optimised setups, where already one eigen-

vector is aligned with the axion vector (1, 1, . . . , 1) the rest are orthogonal and thus δG = 0

at this linear order. Any distortion in G will enter at quadratic order, even if the mode

distortions (2.19) are non-zero.

Let us go back into our unoptimised setups to compare the purely inductive with

the alternating filter. Again the main difference stems from the fact that in one case

the axion mode is m = 1 and in the other is m = c ∼ N/2 + 1. As a further study

of the deviation of the eigenvectors (2.19) we can compute the expectation value of the

variance of the numerator for both cases and we would find something relatively similar to

5Although the results would in general differ if we take into account correlations between δΩ2’s and δK’s.
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the eigenvalue case, O(1) differences. However, here the difference in denominator scales

completely differently because as we discussed above, modes tend to group together around

m = 1, N as 1/N2 while the distance between the central and neighbours scales as 1/N .

This is where the greatest advantage of our filters lie.

As a technical aside, note that the most relevant distortion of the mode m = 1 will

happen in the direction of m = 2, while for the mode m = c the largest distortion happens

in the plane spanned by the c − 1, c + 1 modes. However, interestingly neither of these

three modes (m = 2, c−1, c+1) couple to the axion direction and thus the most important

contribution to the distortion of the geometric factor G1 will be due to m = 3 and to Gc
due to c− 2, c+ 2.

Finally, note that similar procedures can be used to design new systems for which

other eigenfrequencies of MS are the ones coupling the most to the axion. However, for us

it is very clear that the central mode is the most advantageous one.

2.4 Application to dielectric haloscopes

Besides the application to the design of our RADES filters for axion research, the same

principles should be applicable to other ideas existing in the literature. One example would

be dielectric haloscopes, such as MADMAX [23] and LAMPOST [36]. Dielectric haloscopes

consist of a sequence of plane-parallel dielectric disks, potentially forming resonant cavities

in between [37].

In particular, it was shown in reference [38] that in highly resonant configurations a

dielectric haloscope should behave like a series of coupled cavities, and similar calculations

should hold for both. To replicate the prototypical example in this paper (see section 3),

we require seven dielectric disks to form into six cavities. The only degree of freedom we

can play with is the disk thicknesses, however it seems likely that the couplings caused by

inductive and capacitive irises can be captured by alternating positive and negative phase

changes of the waves propagating across the disks. Thus we will compare all disks with a

phase thickness δ ∼ π/2 to alternating δ ∼ π/2 and δ ∼ 3π/2. As a test case, we choose a

relatively low refractive index n = 5, and plot the possible variations: all distances δ ∼ π/2,

all δ ∼ 3π/2, alternating starting with δ ∼ π/2 and alternating starting δ ∼ 3π/2. We

have defined ω0 such that for disks at distance d apart, ω0 = π/d.

In figure 1 we show the amplitude of the E-field of the outgoing wave normalised to

E0 = gAγBeA0ω, and transmissivity T vs frequency for each case. Note that in the language

of dielectric haloscopes the normalised outgoing E-field, E/E0, is often referred to as the

“boost factor”, and is calculated using the transfer matrix formalism of reference [37]. In

the limit that n→∞ the transfer matrix formalism should correspond to our linear matrix

description, as shown by the similarity in results. The bottom panels, corresponding to the

alternating cases, show that the axion couples most strongly to the third and fourth modes,

as predicted by eq. (2.14). We shall focus on the bottom right panel, in anticipation of the

cavity studied in the next section. We can study the behaviour more carefully by looking

at the mode structure that gives the bottom right panel. In general, dielectric haloscopes

do not have cavity modes per se. Instead the coupling of dielectric haloscopes to axions

can be found by solving for the reflection of a wave onto the system in the absence of the

– 9 –
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Figure 1. Normalised output E-field (gray) and scaled transmissivity (red) for a dielectric haloscope

consisting of seven dielectric disks. The refractive index is chosen to be n = 5, with each disk placed

equidistantly d apart, with ω0 = π/d. The top left corresponds to all disks having phase thicknesses

δ ∼ π/2. The top right has all δ ∼ 3π/2. The bottom left has alternating disks starting with δ ∼ π/2
and the bottom right has alternating disks starting δ ∼ 3π/2. The transmissivity of each setup is

scaled up to match the E-field (by a factor 40 in the top panels, 20 in the bottom).

axion [38]. Such a procedure is equivalent to finding the free photon wavefunctions of the

system, the so called “Garibian wavefunctions” [39]. Thus to replicate the cavity mode

studies we must look at reflectivity maps. Note that as the dielectric haloscope becomes

more and more resonant, the reflectivity simply maps out the modes of the system [38].

As shown in figure 2, the mode structure has a remarkable similarity to the analytical

description in (2.13) and the modes of the optimised filter that we will see later in figure 8,

especially considering that the system is only mildly resonant. Thus we can be confident

that a dielectric haloscope with alternating disk thicknesses captures the essential behaviour

of the RADES system of alternating couplings. As such, it will share its advantages,

particularly a smaller sensitivity to manufacturing errors. Note that this is particularly

critical in the MADMAX experiment because the distance between disks will be actively

moved and chosen at small time intervals during data taking. Thus less sensitivity to

mechanical tolerances translates into less sensitivity to positioning errors and thus the

possibility of using larger boost factors [38]. In general, the disks used in a dielectric

haloscope like MADMAX will not be a simple phase thickness like π/2. Realistic setups

also use highly optimised spacings between the disks, rather than equidistant disks. Thus

it is not initially clear that the lower sensitivity to errors can be achieved in these setups.

Because of this we now turn our attention to realistic setups, similar to those studied in [37].

Rather than disks which are simply π/2 and 3π/2 thick, we will consider alternating disks

chosen to reduce the sensitivity to error. We will consider the case of 20 dielectric disks

with a mirror on one side, as will be used in the prototype for MADMAX [23].
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Figure 2. E-field distribution excited by a reflected wave as a function of distance d from the left

hand side of the dielectric haloscope in the bottom left panel of figure 1. When integrated this

E-field gives the power generated by the axion field in the system. As labeled, the panels refer to

the frequencies of the six modes shown in the transmissivity of figure 1. In each panel the locations

of the dielectric disks are indicated respectively by the light-gray vertical bars.

In the left panel of figure 3 we show the normalised E-field as a function of frequency

for three dielectric haloscopes. As the space of disk spacings is high (20) dimensional,

optimisers generally find local, rather than global, maxima. To disentangle the effect of

carefully chosen disk thicknesses, we show the cases of 0.5 mm disks, 0.5 mm alternating

with ∼ 1.3 mm and 0.5 mm alternating with ∼ 1.7 mm. The spacings between disks are

optimised to maximise the power output in a 50 MHz bandwidth, centred on 25 GHz.

Each case is optimised four times from scratch to indicate generic behaviour. Due to the

differing disk thicknesses, we observe a range of “boost factors”. To test the sensitivity to

disk mispositioning errors, we perturbed the optimised positions 10,000 times by a top hat

error function of 5 µm. In the right panel of figure 3 we estimate the probability density

function (PDF) for the minimum achieved E-field using these perturbations, normalising

by the median value. Depending on the chosen thicknesses different error sensitivity is

achieved, unpredicted by the achieved boost factor. In particular, the case with 0.5 mm

and ∼ 1.7 mm disks actually is more sensitive to errors despite the lowest boost factor

by far. On the other hand, while the case with 0.5 mm and 1.3 mm disks has a similar

boost factor to homogeneous disks, it is approximately 30% less sensitive to errors. Thus

we see even in realistic setups alternating disk thickness can lead to significantly better

tolerance to mechanical faults. Note that we did not choose a special bandwidth or initial
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Figure 3. Left: normalised outgoing E-field as a function of frequency ν for four dielectric halo-

scopes consisting of a mirror and 20 dielectric disks. The outgoing E-field has been optimised

four seperate times for a 50 MHz bandwidth by adjusting the spacings between disks. The disk

thicknesses are given by 0.5 mm for all disks (blue), alternating 0.5 mm with ∼ 1.3 mm disks (red

dashed) and alternating 1 mm and ∼ 1.7 mm disks (green dotted). Right: probability density as a

function of minimum achieved E-field within the bandwidth for each of the three above dielectric

haloscopes (same colouration). The PDF is estimated by perturbing the disks spacings used in the

left panel by a top hat error function of width 5 µm 10,000 times. To account for the different

E-fields, we normalise by the median value, showing qualitatively different behaviours between the

different studied cases.

disk thickness for these results; once a pair of alternating thicknesses that reduce error

sensitivity are found, they appear to work for any bandwidth. Further, the existence of

such alternating thicknesses is generic, though due to the complicated nature of the setups

there does not seem to be a simple prediction for which thicknesses are optimal.

Just like RADES, dielectric haloscopes like MADMAX can benefit from optimising

the couplings between different parts of the system. Given the high number of degrees of

freedom and the relative transparency of the materials in the presently studied case, the

analogy with the RADES alternating cavity design does not hold perfectly. One potential

difficultly is that the phase relationships between different disks only hold for a given

frequency. Because of this it may be difficult to reduce the sensitivity to mechanical

errors for all frequencies. However, these results do motivate the designers of dielectric

haloscopes to optimise not only for high power, but also for robustness; it is possible that,

with optimised disk thicknesses, dielectric haloscopes can be made robust against disk

mispositioning for a wide range of frequencies. Note that existing designs for dielectric

haloscopes generally assume at least two sets of disks [38], with the exact number of

required sets not fully studied. We leave the detailed study of practical designs of dielectric

haloscopes to future work.

3 Design and performance of the cavity filter with alternating irises

3.1 Electromagnetic design

In the following we describe the design procedure of a prototype formed by the cascade

connection of N = 6 cavities using alternating inductive and capacitive irises.

The first design specification is the resonating frequency f which sets the mass of the

axion searched for. We chose to work at a frequency of f ∼ 8.5 GHz.
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Figure 4. Layout of the inductive (top) and capacitive (bottom) irises. The hatched zones indicate

the connection planes between the irises and the cavity.

Imposing a (1, 1, 1, 1, 1, 1) eigenvector, which represents the desired mode distribution,

and using the formulation discussed in section 2, we can select the resonating frequencies

in each sub-cavity. By assuming that the fundamental TE101 mode is resonating in each

elemental resonator, the dimension of the cavities can be easily calculated with the well

known expression,

f =
c

2

√
1

a2
+

1

l2
, (3.1)

where c is the speed of light in vacuum, l the length and a the width of the rectangular

waveguide sub-cavities. In this application we have used a standard WR-90 rectangular

waveguide, where a = 22.86 mm and b, the height of the elemental resonators, is b =

10.16 mm. It should be pointed out that for the alternating (inductive and capacitive

irises) design, the solution imposes equal lengths for the internal cavities, and a slightly

different length for both sub-cavities at the ends. This length variation compensates for

the fact that the internal cavities are connected to two irises while the ending cavities to a

single one (see [31] for a detailed derivation).

Figure 4 depicts the design of both inductive and capacitive irises. They are charac-

terised by the width and the length of the iris, w and tind, for the former and the height h

and the length tcap for the latter.

The minimal dimensions of tind and tcap are dictated by mechanical and manufacturing

constraints. We have chosen to use tind = 2.0 mm and tcap = 3.5 mm.
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The choice of coupling factors will impact the remaining dimensions of the irises. In

order to choose appropriate coupling factors k taking into account geometrical constraints,

we calculated the k factors following the procedure described in section 14.2 of [40], which

is based on an impedance (admitance) inverter equivalent circuit of two coupled resonators

in the case of the inductive (capacitive) iris. In both cases the resonator is represented as

the simple connection of a capacitive and an inductive lumped element. By connecting two

identical cavities through an inductive or capacitive iris, and imposing ‘Perfect Electric

Conductor Wall’ (PEC) and ‘Perfect Magnetic Conductor Wall’ (PMC) boundary condi-

tions in the central plane of the iris, which is perpendicular to the energy transmission

direction, one can compute the even (PMC) fe and odd (PEC) fo resonant frequencies.

The relationship between the coupling factor k and these two frequencies is [40]

|k| = |f
2
e − f2

o |
f2
e + f2

o

. (3.2)

We note that in the case of inductive irises, f2
e < f2

o , the coupling coefficient is thus

negative and we express it as k2 = −|k|. For capacitive irises, f2
e > f2

o and we thus note it

as k1 = |k|.
CST Microwave Studio [41] was used to carry out this electromagnetic analysis using

the eigensolver simulation module. In the electromagnetic simulation the cavity is consid-

ered to be made entirely of copper, although in fact the cavity is made of stainless steel for

mechanical resistance to magnet quench but with a copper layer of 30 µm to provide high

electrical conductivity. In the simulation we can use copper only because the skin effect

(δ300K = 0.716µm) is two orders of magnitude smaller than the thickness of the copper

layer (30 [µm]) used. Moreover,the penetration of the fields at 2 K is limited by the anoma-

lous regime, which sets in when the skin depth is equivalent to the electron mean free path

at about 0.27µm, which is also much smaller than the copper thickness, see e.g. [45].

At room temperature the electrical conductivity of copper is assumed to be σRT = 5.8×
107 S/m. However, since the final experiments will be conducted at cryogenic temperatures

we performed the simulations for a cavity at 2 K. At lower temperatures, the conductivity

goes up but is limited by the Relative Resistivity Ratio (RRR) which, for 2 K, is expected

to be between 30 and 200. We have chosen for our simulations σ2 K = 2.008 × 109 S/m

which assumes RRR∼ 30.

Figure 5 shows the coupling coefficient as a function of w and h for the inductive and

the capacitive irises, respectively.

Mechanical constraints for the production of the capacitive irises led to a modified

geometry including protrusions of width 1.1 mm, see the left plot of figure 6. Taking into

account these protrusions lead to a modified relation between k and h as shown in the right

plot of figure 6.

Based on our previous experience in the design of the fully-inductive RADES struc-

ture [31], we selected a value of k similar to that case (which had been -0.0185), which was

however slightly increased in order to ensure a reasonable value for the height (h) of the

capacitive irises.
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Figure 5. Coupling coefficients for the inductive (left) and capacitive (right) irises using tind =

2.0 mm and tcap = 3.5 mm, respectively. The square point in the left plot indicates the chosen value

for the normalized coupling k of the inductive iris.
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Figure 6. Geometry (left) and coupling coefficient (right) as a function of h of the quasi-capacitive

iris using tcap = 3.5 mm and g = 1.1 mm. The hatched zone indicates the connection plane between

the iris and the cavity. The square point indicates the chosen value for k.

The final chosen value for the coupling is indicated with square markers in figure 5 (left)

and figure 6 (right) and is ±|k| = ±0.0248, resulting in w = 8.90 mm and h = 0.93 mm.

The values of the four geometrical parameters: length of the end-cap cavities (lext),

length of the four internal cavities (lint), width of the two inductive irises (w), and height

of the three capacitive irises (h) were varied in a final optimisation stage. The optimisation

was performed with respect to the geometric form factor of the central mode G2
4 using the

optimisation module available on CST Microwave Studio.

We note that the optimisation process converged rapidly, since the initial design pro-

vided by the described procedure was very close to the desired specifications.

Two standard 50 Ω SMA coaxial connectors were inserted in the first and in the last

cavities. The first one, denoted as port 1, will be used for the extraction of the axion

signal; it has been designed for critical coupling regime at cryogenic temperatures. The

second coaxial connector (port 2) has been included for calibration purposes; the length of
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Figure 7. Scheme of the complete filter including the coaxial probes. The yellow area represents

the thickness of the structure’s body made of copper-coated stainless steel.

Parameter T = 2 K T = 300 K T = 300 K

(design) (thermally expanded from 2 K) (manufactured)

cavity width (a) 22.860 22.929 22.860

cavity height (b) 10.160 10.191 10.272

length external cavities (lext) 29.400 29.489 29.567

length internal cavities (lint) 27.000 27.081 27.167

inductive iris width (w) 8.900 8.987 8.986

inductive iris thickness (tind) 2.000 2.006 1.939

capacitive iris height (h) 1.000 1.063 1.019

capacitive iris thickness (tcap) 3.500 3.511 3.436

capacitive iris gap (g) 1.100 1.104 1.192

Table 1. Design physical dimensions (in mm) of the filter at 2 K (first column), room temperature

dimensions calculated taking into account thermal expansion (second column). The third column

indicates the physical dimensions at room temperature of the manufactured cavity (see section 3.3)

measured with an uncertainy of 3µm.

its internal pin has been reduced to its minimum physical value (undercoupled regime) in

cryogenic operation mode.

In figure 7 we show the final design of the complete filter including the coaxial connec-

tors. The geometrical dimensions at cryogenic and room temperatures, taking into account

thermal expansion, are given in table 1.

The electric field patterns of the six cavity modes and their corresponding electromag-

netic properties are depicted in figure 8 and table 2, respectively. We see that the fourth

mode exhibits a good alignment of the electric fields in all sub-cavities, while the field is

inversely aligned only in the three small capacitive irises. Thus, mode 4 constitutes the

suitable mode for axion dark matter search, as it can also be seen numerically by computing

the geometric form factor, shown in the third column of table 2 (following the procedure

discussed in [31]).

In figure 9 we have represented the ideal network used for the synthesis of the filter [40],

which replicates the theoretical model introduced in subsection 3.1. In this figure Lq and
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Figure 8. Electric field distribution of the six modes of the filter. As visible, mode 4 resonates in

phase inside the cavities, and thus couples maximally to the axion field.

Mode (m) Resonant frequency (GHz) G2m Q0 (at 2 K) Q0 (at 300 K)

1 8.298 1.820 ×10−9 42878 7300

2 8.319 1.257 ×10−3 43758 7448

3 8.395 1.007 ×10−8 43626 7426

4 8.508 0.534 40657 6957

5 8.613 1.511 ×10−8 44168 7563

6 8.698 3.418 ×10−5 44454 7597

Table 2. Electromagnetic properties of the cavity modes of at cryogenic temperature. The Q0 was

also computed for room temperature using the dimensions calculated taking into account thermal

expansion.

Cq represent the resonators of the structure and determine the Ωq of the M-matrix (2.8);

the elements kq represent the coupling between adjacent resonators. In this ideal circuit

ohmic losses have not been included, and small couplings are used at the input/output

cavities following the procedure in [40] in order to model the small couplings introduced by

the real coaxial connectors. In table 3 we present the values of the lumped elements of this

network. The electrical response (transmission coefficient as a function of frequency) of this

ideal network is shown in figure 10 together with the result of a CST simulation. In that

simulation ohmic losses have been including using a value of the electrical conductivity6

σ2 K = 2.008× 109 S/m. This figure enables the comparison of the ideal electrical response

(from the mathematical model) with that of the cavity model. We can see that the agree-

ment between the response of the circuit and the full wave simulations is very good. The

fourth resonance shown in this plot corresponds to the working frequency selected for dark

matter axion detection.

6In this simulation the anomalous skin effect has been neglected which should lead to a slight decrease

of Q0 at cryogenic temperatures. With cavities coated with the same procedure we have inferred values

closer to σ2K ' 1× 109 S/m.
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Component Value

L1 45.89 nH

C1 7.82 fF

k1 +0.0248

L2 42.84 nH

C2 8.17 fF

k2 −0.0248

Table 3. Values of the lumped elements of the ideal circuit used for the synthesis of the filter.

Figure 9. Ideal equivalent circuit used for the synthesis of the six cavities filter.
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Figure 10. Transmission coefficient as a function of frequency under cryogenic conditions for a

cavity structure simulated with CST Microwave Studio (solid line) compared to the ideal electrical

response of the filter (dotted line).

3.2 Tolerances study

As seen in section 2 the alternating design allows the axion signal to be coupled to the

central mode. As discussed in section 2.2, the resonant frequency and geometrical factor

for this mode are less sensitive to small variations of the geometrical dimensions.

To validate the stability of the alternating structure and estimate the performance of

a manufactured prototype, a tolerance study was made. For this study, the dimensions of
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Figure 11. Histogram of the result of the tolerance study for the alternating structure. The

geometric form factor has been computed 800 times varying randomly all geometrical dimensions in

the range of ±30µm. The nominal and distribution mean values are 0.5340 and 0.5383, respectively.

Figure 12. Photo of the opened copper-coated 6-cavities alternating prototype. The larger holes

at the outermost edges of the top-plate are used for the placement of the RF antennas.

all geometrical parameters (e.g. a, b, l, g, h, w, t) for the different cavities and irises were

changed randomly, according to a normal distribution, in the range of ±30µm. With these

specifications, we performed 800 simulations using CST Microwave Studio and calculated

for each of them the geometric form factor. The results are summarised in a histogram in

figure 11 from which we can conclude that the structure is rather robust against mechanical

tolerances since, even in the worst case scenario, the geometric form factor drops by less

than 10% with respect to its nominal value.

3.3 Fabrication of a prototype and characterization

We manufactured our prototype from 316 LN stainless steel, which is one of the highest

quality austenitic steel. The filter was manufactured at Institute Itaca of the Technical

University of Valencia [44], and the 30µm coating copper layer was applied at CERN. A

picture of the coated filter is shown in figure 12.

The measured transmission coefficient of the constructed filter at room temperature

has been plotted in figure 13 together with the results of the CST simulation using the
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Figure 13. Electrical response at ambient temperature of the six cavities filter. Measurement

performed with a standard Vector Network Analyzer (dotted line) are compared to CST simulations

(solid line).

measured geometrical dimensions (last column of table 1) and electrical conductivity of

copper at room temperature. The discrepancies observed are, we believe, mainly due to

the poor contact between the cover and the filter body (see figure 12) caused by the stiffness

of the stainless steel employed for manufacturing the filter. Thus, for forthcoming cavities

we are planning to investigate different manufacturing cuts or the possibility of brazing

the cavity.

The determination of the quality factor of the cavity is fundamental to estimate the

sensitivity for dark matter axion detection. The well known −3 dB method [42] allows a

simple calculation of the loaded quality factor QL using this expression,

QL =
f0

∆f
, (3.3)

where f0 is the resonant frequency, and ∆f is the frequency bandwidth at −3 dB from

the peak. This method has been applied to the calculation of QL at room temperature of

the fourth resonance as depicted in figure 13 (measurement), obtaining QL = 1625. The

unloaded Q0 and external Qext quality factors are related to QL as follows

1

QL
=

1

Q0
+

1

Qext
. (3.4)

The external quality factor Qext can be obtained using a procedure detailed in [43] and [46]

from the measurement of the loaded quality factor QL and the input coupling coefficient

yielding Qext = 5318 and thus, using eq. 3.4, Q0 = 2340. This value has to be compared to

the simulated one using room-temperature dimensions and electrical conductivity given in
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Figure 14. Electrical response of the six cavities filter for a different number of screws connecting

filter and cover. Comparison of the response with 14 screws (dotted line) and 50 screws (solid line).

Measurement performed with a standard Vector Network Analyzer at ambient temperature.

table 2. As mentioned before, we consider the factor ∼ 3 difference to be caused by a poor

contact between the two parts of the cavity structure. Indeed, in a first set of measurements

of the filter the discrepancy was even larger (Q0 = 1620 at ambient temperature). However,

adding more screws to improve the mechanical contact between cover and filter showed an

increase of the quality factor to Q0 = 2340 and a frequency shift to higher frequencies

of the first four peaks (see figure 14), a similar shift as observed between measured and

simulated cavity response in figure 13. Hence, the measurements showed that improving the

mechanical contact reduces the discrepancies between theoretical and measured results. In

the present setup, the contact could not be made better but we are investigating measures

to mitigate this issue in the future.

4 Future directions, prospects and conclusions

In this article we have discussed the concept and realisation of a new cavity design useful

in the search for > 30µeV axions with microwave filters. As such filters can be used in

any dipole magnetic field, this is of general interest for ‘axion hunters’ all over the world

and a prime example of a ‘physics beyond colliders’ initiative [47], combining accelerator

technology (microwave filters and dipole magnets) at CERN for particle search outside

colliders. Our developments constitute a particularly important step towards searching

axions at relatively large masses with the future International Axion Observatory (IAXO).

We have theoretically shown that a structure of alternating capacitive and inductive irises

couples to the axion at a higher order resonance, alleviating the problem of mode-mixing

of previous designs. We have also built and experimentally characterised a prototype that
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demonstrated the expected good behaviour of this structure in practice. The proposed

improvements potentially allow to produce much longer cavities for axion search than

previously reported prototypes. In fact, at the time of writing, a ∼ 1 meter long cavity of

this type is installed in the CAST magnet and is foreseen to take physics data in 2020. A

photograph of this longer manufactured prototype is presented in figure 16, together with a

smaller-sized cavity with similar dimensions as the one described in this paper. The longer

prototype was also produced with the top plate technique, and thus we observed similar

issues with the quality factor as discussed in the end of the previous section. Despite this

shortcoming on which we are working, we briefly discuss here the prospects to search for

axions within the CAST magnet with this alternating-type structure of greater volume. We

find that we can explore axion couplings down to gAγ ∼ 10−14 GeV−1 at m ' 35µeV within

a few months of data in the CAST magnet, see figure 15. Expressing the coupling as [8]

gAγ ≡ 2.0× 10−16CAγ
ma

µeV
GeV−1 , (4.1)

we can compute our sensitivity through7

CAγ |reach ' 26.1

(
S
N

3

) 1
2 9 T

Be

(
1 l

V

) 1
2
(

104
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) 1
2
(
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Gi

)

×
(
Teff

10 K

) 1
2
(

0.5

κ

) 1
2
(

30µeV

ma

hour

t

) 1
4

. (4.2)

In figure 15 we set Q = 1200 and coupling κ= 0.43 (as measured in situ), a central frequency

of ∼8.4 GHz and thus a mass of m = 34.74 µeV, a geometrical factor of G = 0.55, a noise

temperature of 10K as well as a data taking time of around 6 months. To put into context

the relevance of this measurement, we also include existing limits from the literature. It

is visible that RADES can compete with the major players in axion search, such as the

‘high-mass ADMX’-project ‘SIDECAR’ whilst tapping into a completely unexplored mass

reach in between SIDECAR and QUAX.

An important aspect for future study will be how to tune this type of cavity structures.

While tuning is solved in principle for the inductive-cavity type, see [48], a mechanical

tuning for the alternating structure still has to be developed. For this reason, we are

investigating possibilities to achieve tuning with ferroelectric materials [49]. Physics results

using either technique will be described in forthcoming articles.
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Figure 16. Comparison of the fully inductive cavity reported in [31] (left) with the ∼ 1 meter long

cavity (right) based on the new concept put forward in this paper.
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