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A measurement of the branching fraction of the decay B? — K2KQ is performed using proton—

proton collision data corresponding to an integrated luminosity of 5 fb=! collected by the LHCb
experiment between 2011 and 2016. The branching fraction is determined to be B(B? — KJK3) =
[8.3 4 1.6(stat) 4= 0.9(syst) + 0.8(norm) + 0.3(f,/f,)] x 107, where the first uncertainty is statistical,
the second is systematic, and the third and fourth are due to uncertainties on the branching fraction of the
normalization mode B® — ¢K8 and the ratio of hadronization fractions f/f,. This is the most precise
measurement of this branching fraction to date. Furthermore, a measurement of the branching fraction of
the decay B’ — K3KY is performed relative to that of the B — K3K? channel, and is found to be

B(B"—~K3KY)
B(BY)—KJKY)
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I. INTRODUCTION

Flavor-changing neutral current processes, especially
neutral B meson decays to kaons and excited kaons, can be
used as probes of the Standard Model and of the Cabibbo-
Kobayashi-Maskawa (CKM) unitarity triangle angle f ).

While decays such as B?S)—>K*OI_(*O, BY— K*°K", and

B’ - K*K~ have already been measured at the LHC
[1-4], decays of b hadrons to final states containing only
long-lived particles, such as K(S) mesons or A baryons, have
never before been reported in a hadronic production
environment. A measurement of the branching fraction
of BY — K%K decays can be used as input to future SM
predictions, and is a first step toward a time-dependent
measurement of CP violation in this channel using future
LHC data.

In the Standard Model, the decay amplitude of BY —
K°K? is dominated by b — sdd loop transitions with gluon
radiation, while other contributions, including color singlet
exchange, are suppressed to the level of 5% [5] in the decay
amplitude. Predictions of this branching fraction within the
SM lie in the range (15-25) x 1076 [6-9], with calculations
relying on a variety of theoretical approaches such as soft
collinear effective theory, QCD factorization, and pertur-
bative leading-order and next-to-leading-order QCD.
Beyond the Standard Model, possible contributions from
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= [7.5 & 3.1(stat) & 0.5(syst) = 0.3(f,/f4)] x 1072.

new particles or couplings [5,10-13] can be probed by
improved experimental precision on the branching fraction
measurement.

The decay B — K°K® was first observed by the Belle
collaboration in 2016 [14]. The branching fraction was
determined to be B(BY — K°K)=(19.6"38+£1.04£2.0) x
107°, where the first uncertainty is statistical, the second
systematic and the third due to the uncertainty of the total
number of produced B? — BY pairs. The related decay B® —
K°K® has a branching fraction of (1.21 40.16) x 107°
[15-17] in the world average.

This paper presents measurements of the branching
fraction of BOS - K 8 K (s) decays using proton-proton colli-
sion data col&ected by the LHCb experiment at center-of-
mass energies /s =7, 8, or 13 TeV. The B},) - K3K3
branching fraction is assumed to be half of the BY, — K°K°
branching fraction, as the K° K final state is CP even. These
B?X) branching fractions are determined relative to the

B® — ¢K? branching fraction, where the notation ¢ is used
for the ¢(1020) meson throughout. This normalization
mode has a corresponding branching fraction equal to half
of B(B® - ¢K®)=(7.340.7) x 1076 [18,19], and is chosen
for its similarity to the signal mode. Despite the smaller
branching fraction, the yield of the normalization mode is
much larger than that of the signal mode, because the near-
instantaneous ¢ decay can be reconstructed more efficiently
than a long-lived K, and because for LHCb the production
fraction of B mesons is approximately four times that of BY

mesons. [20,21]. Throughout this paper, the decays B(()S)

K2KY and B® — ¢K? are reconstructed using the decays
K> atn and ¢ > KTK~.

—
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The paper is structured as follows. A brief description
of the LHCb detector as well as the simulation and
reconstruction software is given in Sec. II. Signal selection
and strategies to suppress background contributions are
outlined in Sec. III. The models to describe the invariant-
mass components, the fitting and the normalization pro-
cedure are introduced in Sec. IV. Systematic uncertainties
are discussed in Sec. V. Finally, the results are summarized
in Sec. VL

II. LHCb DETECTOR

The LHCb detector [22,23] is a single-arm forward
spectrometer covering the pseudorapidity range 2 <5 < 5,
designed for the study of particles containing b or ¢ quarks.
The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector (VELO) sur-
rounding the pp interaction region [24], a large-area
silicon-strip detector located upstream of a dipole magnet
with a bending power of about 4Tm, and three stations of
silicon-strip detectors and straw drift tubes [25,26] placed
downstream of the magnet. The tracking system provides a
measurement of momentum, p, of charged particles with a
relative uncertainty that varies from 0.5% at low momen-
tum to 1.0% at 200 GeV/c. The minimum distance of a
track to a primary vertex (PV), the impact parameter (IP), is
measured with a resolution of (15 + 29/ pr) um, where pr
is the component of the momentum transverse to the
beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging
Cherenkov detectors [27]. Photons, electrons and hadrons
are identified by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromag-
netic calorimeter and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of
iron and multiwire proportional chambers.

The online event selection is performed by a trigger [28],
which consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a
software stage, which applies a full event reconstruction. At
the hardware trigger stage, events are required to contain a
muon with high pr or a hadron, photon or electron with
high transverse energy in the calorimeters. In the software
trigger, events are selected by a topological b-hadron
trigger. At least one charged particle must have a large
transverse momentum and be inconsistent with originating
from any PV. A two- or three-track secondary vertex is
constructed, which must have a large sum of the py of the
charged particles and a significant displacement from any
PV. A multivariate algorithm [29] is used for the identi-
fication of secondary vertices consistent with the decay of a

b-hadron. This is used to collect both Bf,) — K3K§ and

B’ — ¢K(s) decays. In addition to this topological trigger
and algorithm, some B° — ¢K(S) decays are also collected
using dedicated ¢ trigger requirements that exploit the

topology of the ¢ - KTK~ decay and apply additional
particle identification requirements to the charged kaons.

Simulation is required to model the effects of the detector
acceptance and the imposed selection requirements. In
simulation, pp collisions are generated using PYTHIA [30]
with a specific LHCb configuration [31]. Decays of
hadronic particles are described by EvtGen [32], in which
final-state radiation is generated using PHOTOS [33]. The
interaction of the generated particles with the detector, and
its response, are implemented using the GEANT4 toolkit [34]
as described in Ref. [35].

III. EVENT SELECTION

The decays B, — K3K§ and B’ — $Kg are recon-
structed using the decay modes K(S) -7tz and ¢ —
K*K=." The long-lived K(S) mesons are reconstructed in
two different categories, depending on whether the K
meson decays early enough that the pions can be tracked
inside the VELO, or whether the K g meson decays later and
its products can only be tracked downstream. These are
referred to as long and downstream track categories, and
are abbreviated as L and D, respectively. The Kg mesons
reconstructed in the long track category have better mass,
momentum and vertex resolution than the downstream
track category. However, due to the boost of the B meson,
the lifetime of the K9 meson, and the geometry of the
detector, there are approximately twice as many K2
candidates reconstructed in the downstream category than
in the long category, before any selections are applied.

This analysis is based on pp collision data collected by
the LHCb experiment. Data collected in 2011 (2012) were
recorded at a center-of-mass energy of 7 TeV (8 TeV),
while in 2015 and 2016 the center-of-mass energy was
increased to 13 TeV. Data recorded at center-of-mass
energies of 7 and 8 TeV (Run 1) are combined and then
treated separately from data recorded at 13 TeV (Run 2).
Due to low trigger efficiency for BY mesons decaying into
two downstream K (s) mesons, these are discarded from the
analysis. Consequently, there are four data categories that
are considered in the following—Run 1 LL, Run 1 LD, Run
2 LL and Run 2 LD—and measurements are performed
separately in each of these data categories before being
combined in the final fit.

Signal B or B® candidates are built in successive steps,
with individual K9 candidates reconstructed first and then
combined. The K(S) candidates are constructed by combin-
ing two oppositely charged pions that meet certain require-
ments on the minimum total momentum and transverse
momentum; on the minimum y7% of the K9 candidate with
respect to the associated PV (where y% is defined as the

'"The inclusion of charge-conjugate processes is implied
throughout the paper.

012011-2



MEASUREMENT OF THE BRANCHING FRACTION OF THE ...

PHYS. REV. D 102, 012011 (2020)

difference in the impact parameter y> of a given PV
reconstructed with and without the considered particle);
on the maximum distance of closest approach (DOCA)
between the two particles; and on the quality of the vertex
fit. An event can have more than one PV, in which case the
associated PV is defined as that with which the B candidate
forms the smallest value of y7,. The invariant mass of K9
candidates constructed from long (downstream) tracks must
be within 35 MeV/c? (64 MeV/c?) of the known K mass
[15]. The DOCA between the two K g candidates is required
to be smaller than 1 mm for the LL category and 4 mm for
the LD category. Signal B? or B° candidates are then
formed by combining two K9 candidates that result in an

invariant mass close to the known B?y) masses, discussed

further below and in Sec. IV.

The normalization decay B? — ¢K‘S) is constructed in a
similar way. The ¢ meson is constructed by combining two
oppositely charged kaon candidates that result in an
invariant mass within 50 MeV/c? of the nominal ¢ mass,
as a first loose selection. Due to the vanishing lifetime of
the ¢ meson, the charged kaon candidates are only
reconstructed from long tracks, and thus all ¢ are recon-
structed in the L category. The K2 meson of the normali-
zation decay can be either L or D, so that the B — ¢K(§
decay has both LL and LD reconstructions.

The rest of the candidate selection process consists
of a preselection followed by the application of a multi-
variate classifier, and then some additional selections are
applied to further reduce combinatorial background. In the
preselection, loose selection requirements are applied to
remove specific backgrounds from other b-hadron decays
and suppress combinatorial background. These back-
grounds for the signal and normalization modes are
discussed further below. Additional suppression of the
combinatorial background is included using a final selec-
tion after the multivariate classifier is applied, where
particle identification (PID) requirements are added such
that all final-state particles must be inconsistent with the
muon hypothesis based on the association of hits in the
muon stations.

Possible background decays are studied wusing
simulated samples. For the signal channel, these include:
B?s> - Kintn; B?S> — K3z"K~ with kaon—pion misi-

dentification; B?S) — KYK"K~ with double kaon-pion

misidentification; and A9 — pK%z~ with proton—pion
misidentification. Backgrounds from K? — 7z~ decays
are negligible. Applying the K% mass window requirement
to the two-hadron system originating directly from a
b-hadron decay reduces the background yields by a factor
of 10 to 100, depending on the decay channel. To further
suppress the contribution of these modes, a requirement on
the distance along the beam axis direction (the z-direction)
between the decay vertices of the K3 and BY candidates,

Az > 15 mm, is applied to K candidates reconstructed
from long tracks for both decay channels.

An additional background comes from the requirements
used to identify Kg candidates, which may also select A
baryons due to their long flight distance. The A — pz~
decays are excluded by changing the mass hypothesis of
one pion candidate to the proton hypothesis, reconstructing
the invariant mass, m(pz~), and tightening the pion PID
requirement in an 8 MeV/c? mass window around the
known A mass. This procedure is carried out for each pion
from each Kg candidate, in both the signal and normali-
zation channels.

For the normalization channel B® — ¢K?, the decays
B?S) — K3nO+ ()~ with hO* = 7%, K* are suppressed by
requiring the invariant mass of the combination of the two
final-state kaons to be close to the ¢ mass. The largest
contributions are expected from the decay channel BY —
K3z K~ with a fraction of about 1% compared to B® —
¢pK g decays. Thisis reduced to a negligible level by applying
PID requirements to the kaon candidates. The partially
reconstructed decays B — ¢K** and B — ¢pK*T, with
K — K%7° and K*" — Kz", share the same decay
topology as the normalization channel when omitting the
pion that originates from decay of the K* resonance and
have a higher branching fraction than the normalization
decay. Due to the missing particle, the B candidates have a
kinematic upper limit on their masses of about
5140 MeV/c?. Therefore, the mass window to determine
the yield of the normalization channel is set to 5150 <
m(KJKTK™) <5600 MeV/c? to fully exclude these
contributions.

Further separation of signal from combinatorial back-
ground is achieved using the XGBoost implementation [36]
of the boosted decision tree (BDT) algorithm [37]. For
the training, simulated signal (normalization) decays are
used as signal proxy, while the upper mass sideband
m(K3K2) > 5600 MeV/c*  (m(¢K2) > 5600 MeV/c?)
in data is utilized as background proxy. To account for
differences in data and simulation, the simulated decays are
weighted in the B meson production kinematics and
detector occupancy (represented by the number of tracks
in the event) to match data distributions.

The BDT exploits the following observables: the flight
distance, IP and y, of the B and K candidates with respect
to all primary vertices, as well as the decay time, the
momentum, transverse momentum and pseudorapidity of
the B candidate. This set of quantities is chosen such that
they have a high separation power between signal and
background and are not directly correlated to the invariant
mass. The same procedure is applied to the B — ¢K3 data
samples.

In order to choose the optimal threshold on the BDT
response, the figure of merit e4,/(3/2 + |/Npie) [38] is
used for the signal mode, where the value 3/2 corresponds
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to a target 3 sigma significance and &4, is the signal
efficiency of the selection, determined from simulation.

The figure of merit N,/ /N + Ny is used for the
normalization channel to minimize the uncertainty on the

yield. So as not to bias the determination of the signal yield,
the candidates in the signal region were not inspected until
the selection was finalized. Consequently, the expected
background yield Ny, is calculated by interpolating the
result of an exponential fit to data sidebands, 5000 <
m(K3K?) < 5230 MeV/c?, and 5420 < m(K3K?) <
5600 MeV/c? into the signal region. For the normalization
channel, the variation of the expected signal yield N, as a
function of the BDT response threshold is determined from
simulation, while the absolute normalization is set from a
single fit to the data.

The figure of merit optimization is performed simul-
taneously with respect to the BDT classifier output and
an observable based on PID information for long track
candidates, where the latter observable is corrected
using a resampling from data calibration samples [39]
to minimize differences in data and simulation. As a last
selection step, the invariant-mass windows of m(z"z™)
and m(K*TK™) are tightened to further suppress combi-
natorial background. Finally, multiple candidates, which
occur in about 1 in 10000 of all events, are removed
randomly so that each event contains only one signal
candidate.

IV. FIT STRATEGY AND RESULTS

For the normalization channel, the total B® — ¢K? yield
is obtained from extended unbinned maximum likelihood
fits to the reconstructed B® mass in the range 5150 MeV/c?
to 5600 MeV/c?, separately for each data sample and
reconstruction category. The signal component is modeled
by a Hypatia function with power-law tails on both sides
[40], where the tail parameters are fixed to values obtained
from fits to simulated samples. The mean, width and
signal yield parameters are free to vary in the fit. An
exponential function with a free slope parameter models
the combinatorial background. To account for non-¢

contributions to the BY — ¢K? yield, a subsequent fit is
performed to the m(K*K~) distribution, which is back-
ground-subtracted using the Plot technique [41] and
where the m(K*K~KJ) distribution is used as the dis-
criminating variable. The signal ¢ component of the
m(K*K™) fit is modeled by a relativistic Breit-Wigner
function [42] convolved with a Gaussian function to take
into account the resolution of the detector, while the non-¢
contributions are described by an exponential function. The
slope parameter of the latter model is Gaussian-constrained
to the results obtained from fits to the simulation of
f0(980) — KK~ decays, which is found to better describe
the observed distribution than a phase-space model. The
measured yields for the normalization channel are shown in
the last row of Table L. Plots of the m(K*K~K2) distri-
butions for the Run 2 LL and LD samples are shown in
Fig. 1. The remaining m(K*K~K?) distributions and the
m(K*K™) distributions are shown in the Appendix.

A Hypatia function is used to model the m(K3K?)
distribution of signal B — K2K? decays. All shape param-
eters are fixed to values obtained from fits to simulated
samples. To account for resolution differences between
simulation and data, the width is scaled by a factor—
determined from the normalization channel—which takes
values in the range 1.05 to 1.20 depending on the data
sample. To model the B — K2K? signal component, the
same signal shape is duplicated and shifted by the BY —
B® mass difference [43]. The background component is
modeled by an exponential function with a free slope
parameter.

In contrast to the normalization channel, where each
data category is fitted individually, a simultaneous fit to
the m(K3K?) distribution of the four data categories (Run
1 LL, Run 1 LD, Run 2 LL, Run 2 LD) is performed in
the range 5000 MeV/c? to 5600 MeV/c?. Two param-
eters are shared across all categories in the simultaneous
fit, the ratio of the B® — K3KJ and BY — K3K3 yields
f /g and the branching fraction B(BY - K¢KY), which
is itself related to the signal yield of each data category
via the relation

TABLE L Results of the simultaneous fit to the invariant mass of the K3K? system. The fit results for B and f /g0 are shared among
all data categories. The given uncertainties are statistical only. The normalization constant « and the corresponding normalization
channel yields N, are shown for reference.

Parameter Run 1 LL Run 1 LD Run 2 LL Run 2 LD Status

B (x107%) 8.3+ 1.6 Free

SBosp0 0.30+0.13 Free

N 43+10 21+0.5 12.8 £2.7 124 +2.7 B/a

NBA 1.3+0.5 0.63 +0.26 38+1.5 3.7+1.5 frop X BJa
Nikg 104 +£3.5 35+22 7.2+£3.0 13+4 Free

a (x107%) 1.90 £ 0.21 39+£0.5 0.65 +£0.05 0.66 + 0.05 Gaussian constrained
N norm 179 +£ 18 178 £22 316 £25 400 + 31 Included in «
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FIG. 1. Fits to the invariant-mass distribution m(K3K*K~) of the normalization decay channel. The black curve represents the
complete model, the B® — ¢Kg component is given in green (dashed), while the background component in shown in red (dotted).

B(B? - KJK?) =

EpKY.i &B(¢ — K+K_) B(BO — (ng)

where the normalization constant ¢; is introduced for each
data category sample i. While the selection efficiencies &
and signal yields N are determined in the present analysis,
external sources are used for the ratio of fragmentation
fractions f,;/fs [20,21], and the branching fractions
B(B® - ¢K2), B(KS —» zntzx~) and B(¢p - K*K~) [15].
To increase the robustness of the fit, the a; constants are
Gaussian constrained within their uncertainties, excluding
the uncertainties from the external constants. These exter-
nal uncertainties are instead applied directly to the final
branching ratio measurement.

. The .efficiency ratio, EpK? / ERIKD> is determined frorp
simulation and corrected using data control samples. This
ratio is found to be approximately equal to 30 in all data
samples except the Run 1 LD sample, where it is twice as
large due to lower trigger efficiency for downstream tracks
in this sample.

The fit results are shown in Fig. 2. The results of the
simultaneous mass fit are given in Table I, yielding a
branching fraction of B(BY—K2K?%)=(8.34+1.6)x107°,
where the uncertainty is statistical only. The B — K2K?
yield is around 32. The ratio of the branching fractions
of the signal and normalization modes B(B? — K2K?2)/
B(B® - ¢K2) can also be calculated by removing the
contribution of the world-average value of B(B® — ¢K?)
from the fit result. This yields a combined branching
fraction ratio B(BY— K3K2)/B(B’—¢K2)=2.3+0.4,
where the uncertainty is statistical only.

From the same fit, the relative fraction of B — K9K?
decays, f /g0 = 0.3 £0.13 is also determined. Given that
the final-state particles and selections applied to the K9
candidates are the same for both modes, the ratio of

EKgKg-i fs B(K(S) - 7[+7T_> N[(BO g ¢K(S))
=a; - N;(B) — K3K3),

'Ni(B(s) - K(S)Kg)

(1)

selection efficiencies is equal to one, so that fp /g0 can
be converted to a ratio of branching fractions by multiply-
ing by f,/f4 The calculated value of B(B® — K2K?)/
B(BY - KJK?) is (7.5+3.1) x 1072, where the uncer-
tainty is statistical only.

The significances of the BY — K3K9 and B® — KJK?
signal yields are estimated relative to a background-only
hypothesis using Wilks’ theorem [44]. The observed signal
yield of 32 BY — K2K? decays has a large significance of
8.60 (6.50 including the effect of systematic uncertainties),
while the smaller B® — K2K? signal yield has a signifi-
cance of 3.5¢ including systematic uncertainties.

LHCb
2011-2016

[N}
(=)

OI |§
i !

—_ —
(=} 9

9]

Candidates / ( 20 MeV/c?)

P by b b 1

VA

! . 107 ) Il"-L Jups
5200 5400

m(KJK ) [MeV/c?]

-

5000 5600

FIG. 2. Combined invariant-mass distribution m(K2K3) of the
signal decay channel. The black (solid) curve represents the
complete model, the BY signal component is given in green
(dashed), the smaller B signal is given in blue (dash-dotted) and
the background component in red (dotted).
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V. SYSTEMATIC UNCERTAINTIES

Each source of systematic uncertainty is evaluated
independently and expressed as a relative uncertainty on
the branching fraction of BY — KJK? decays. A complete
list is given in Table II. The uncertainties are grouped into
three general categories: fit and weighting uncertainties,
PID uncertainties, and detector and trigger uncertainties.

Multiple different fit uncertainties are considered.
Uncertainty from possible bias in the combined fit to all
four data samples can be estimated using pseudoexperi-
ments generated and fitted according to the default fit
model. In each pseudoexperiment, the number of signal
candidates is drawn from a Poisson distribution with a
mean determined from the baseline fit result. A relative
average difference between the generated and fitted branch-
ing fraction of 5.9% is determined and conservatively
assigned as a systematic uncertainty. The same procedure
is performed for the B - K2K?% component, yielding a
possible bias of 1.6%. To ensure a conservative approach,
the 5.9% value from B? — KJK? is also applied as the
systematic for B® — K2K?.

Another systematic uncertainty in the fitting process
arises from the specific fit model choice, which is quanti-
fied by the use of alternative probability density functions
to describe the invariant-mass distributions. The recon-
structed-mass shapes for B and BY mesons are modeled by
the sum of two Crystal Ball functions [45]. For the fit to the
m(KTK™) distribution, the ¢ meson is modelled by a
nonrelativistic Breit—-Wigner function. For the normaliza-
tion channel, the relative yield difference when refitting the
data is taken as the systematic uncertainty, while for the
B? — K2K? decay pseudoexperiments are used to estimate
the impact of mismodeling the shape of the signal compo-
nent. The systematic uncertainty due to the choice of fit
model is then the sum in quadrature of these variations,
yielding values of 1.3% to 3.3% depending on the
data category. Another systematic uncertainty of 2.6%,

evaluated with a similar procedure, is assigned due to fixing
certain shape parameters to values obtained in fits to
simulated samples.

Additionally, not all differences between data and
simulation can be accounted for using weights in the
BDT training. As a conservative upper limit of this effect,
the signal efficiency is calculated with and without weights,
and the differences between these efficiencies are treated as
a systematic uncertainty. This systematic uncertainty is
larger by a factor of about 2 for data categories containing a
downstream K3 candidate than in those that contain only
long K2 candidates, indicating a stronger dependence of the
LD channel efficiencies on the weighting.

Three sources of systematic uncertainties from PID
efficiencies are considered. The effect of the finite size
of the signal simulation samples is evaluated using the
bootstrap method [46] for each simulation category and
calculating the variance of the signal efficiency. A second
systematic uncertainty is calculated by varying the model
used to resample PID calibration data, and the relative
difference in the signal efficiency is taken as a systematic
uncertainty, though this effect is small compared to the
previous source. Finally, the flight distance of the K
candidate is not considered in the resampling process,
while the PID efficiency does exhibit some correlation with
this variable. A systematic uncertainty is calculated by
reweighting the PID distributions in bins of the K} flight
distance, and calculating the relative signal efficiency on
resampled simulation and resampled and reweighted sim-
ulation. The combined PID systematic uncertainty is given
by summing over the three effects in quadrature, which is
below 1% for the Run 1 samples and below 3% for the Run
2 samples.

Systematic uncertainties in the trigger system are divided
into hardware and software trigger uncertainties. For the
hardware trigger stage, the efficiency taken from simulation
is compared with data calibration samples. The calibration
data is used to correct the simulated efficiencies, and the

TABLE II.  All systematic uncertainties on the B — K3K? branching fraction, presented as relative measure-
ments. The last row shows the combined systematic uncertainty for each data sample.

Systematic uncertainties Run 1, LL Run 1, LD Run 2, LL Run 2, LD
Fit bias 0.059 0.059 0.059 0.059
Fit model choice 0.022 0.033 0.015 0.013
Fit model parameters 0.026 0.026 0.026 0.026
BDT 0.023 0.040 0.014 0.031
PID 0.007 0.008 0.026 0.026
Hardware trigger 0.063 0.062 0.063 0.062
Software trigger 0.065 0.106 0.008 0.026
Trigger misconfiguration e e 0.007 0.004
7% /K* hadronic interaction 0.005 0.005 0.005 0.005
VELO misalignment 0.008 0.008 0.008 0.008
Total 0.116 0.149 0.097 0.103
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resulting 6% relative difference in efficiency between the
signal and normalization modes is treated as a systematic
uncertainty. For the inclusive B software trigger, possible
differences in efficiency between the signal and normali-
zation channels are obtained by reweighting the B® — ¢K?
simulation to match the B - K3K? simulation and cal-
culating the relative efficiency difference between the raw
and reweighted distributions, yielding a systematic uncer-
tainty of about 2%. An additional, larger systematic
uncertainty is also included to account for the dedicated
¢ trigger requirements, which are only used for the
normalization channel. Again, weighted B — qﬁK(s) data
are used to evaluate a relative efficiency difference between
simulation and data, multiplied by the fraction of events
solely triggered by the dedicated ¢ trigger requirements.
The systematic uncertainty is about 5% to 10% in Run 1,
but about 5 times smaller for Run 2. This is because the
topological b-hadron trigger is more efficient in Run 2 so
that there are far fewer events triggered only by the
dedicated ¢ trigger. An additional systematic uncertainty
less than 1% is assigned to account for a small known
misconfiguration of the trigger during Run 2 data taking.

Two additional detector-related uncertainties are consid-
ered. A relative uncertainty of 0.5% is assigned due to the
different hadronic interaction probabilities between pions
and kaons in data and simulation, and a relative uncertainty
of 0.8% 1is also introduced to account for a possible
misalignment in the downstream positions of the vertex
detector.

The combined systematic uncertainty is determined by
using a weighted average of the total systematic uncertainty
for each data category, where the weighting is based on the
BY signal yield for each category, obtained from the
nominal combined fit for the branching fraction. This
value is then combined with the systematic uncertainties
due to the ¢ —» K*K~ and K — z*z~ branching frac-
tions, to produce an overall systematic uncertainty of
10.7%. The systematic uncertainties due to B(B° —
¢K(S)) or f;/f4 are provided separately when necessary.
The total systematic uncertainty in the measurement of the
BY branching fraction is also 10.7%.

These measurements of the branching ratio are calcu-
lated using the time-integrated event yield, without taking
into account B’-B? mixing effects. The conversion into a
branching ratio that is independent of B’—B? mixing can be
performed according to the computation given in Ref. [47],
where .AQF is calculated from the decay amplitudes of the
B and B! states. In this work, the simulation is generated
using the average BY lifetime, corresponding to the
A‘Zr = 0 scenario. For this scenario the mixing-corrected
SM prediction of the branching ratio is equivalent to
the quoted time-integrated branching ratio within uncer-
tainties, because the impact of the scaling from AI'y /T, =
0.135 £ 0.008 [15] is small.

Considering that the final state of the decay is CP -even,
the relevant decay lifetime of the BY is expected to be closer
to that of the BY state, corresponding to a SM prediction of
.AQF close to —1. This change in lifetime corresponds to a
change in the expected efficiency of the BY — K3K?
reconstruction of approximately —4.5% for Aﬁr =—1,
or +4.5% for the less-likely A‘ZF = 1. These scaling factors

are not included in the systematic uncertainty for the time-
integrated branching ratios presented below.

VI. CONCLUSION

Data collected by the LHCb experiment in 2011-2012
and 2015-2016 was used to measure the B — K2K?
branching fraction. The measured ratio of this branching
fraction relative to that of the normalization channel is

B(BY — K§KY)
——————>-=23+0.4(stat) £0.2(syst) £ 0.1 ,
B(BO—)¢K(S)) (Sa) (Sys) (fs/fd)
where the first uncertainty is statistical, the second is
systematic, and the third is due to the ratio of hadronization
fractions. This is compatible with the ratio B(B? —
KKY)/B(B® - ¢K?) =2.7+0.9 calculated from the
current world average values [15].

From this measurement, the BY — KJK3 branching
fraction is determined to be

B(BY - KJK?) = [8.3 & 1.6(stat) & 0.9(syst)
+ 0.8(norm) 4 0.3(f,/f4)] x 1076,

where the first uncertainty is statistical, the second is
systematic, and the third and fourth are due to the normali-
zation channel branching fraction and the ratio of hadroni-
zation fractions f,/ f ;. This result is the most precise to date
and is compatible with SM predictions [6-9] and the
previous measurement from the Belle collaboration [14].

In the same combined fit used for the B — K2K?
measurement, the fraction of B® — K2K2 decays is also
determined. Using this measured fraction of yields, the
branching fraction of B® — K2K? decays measured relative
to BY — K2K? decays is found to be

B(BO — KOKO)
B(B?—>—K§K°z): [7.543.1(stat) +0.5(syst) £0.3(f,/f4)]
x 1072,

where the first uncertainty is statistical, the second is
systematic, and the third is due to the ratio of hadronization
fractions. For comparison, calculating B(B® — K2K?)/
B(B? - K?K?) based on world average-values [15] yields
(6.0 £2.0)%, which is compatible with the obtained
result.
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The B - KK branching fraction relative to the B® —
K normalization mode is determined to be

B(B® — K2KY)
m =0.17 008(Stat) + 0.0Z(SySt),
where the first uncertainty is statistical, and the second is
systematic.
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APPENDIX: NORMALIZATION CHANNEL FITS

Figure 3 shows the m(K"K~K?Y) distributions for the Run 1 LL and LD categories. The m(K + K—) distributions for all

four data categories are shown in Fig. 4.
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FIG. 3. Fits to the invariant-mass distribution m(K3K*K~) of the normalization decay channel. The black curve represents the
complete model, the B® — (/)Kg component is given in green (dashed), while the background component in shown in red (dotted).
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shown in black (dotted).
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