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Abstract. AEg̅IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is a CERN 

based experiment aiming to probe the Weak Equivalence Principle of General Relativity with 

antimatter by studying free fall of antihydrogen in the Earth’s gravitational field. A pulsed cold 

beam of antihydrogen produced by charge exchange between Rydberg positronium and cold 

antiprotons will be horizontally accelerated by an electric field gradient. The free fall of 

antihydrogen will then be measured by a classical moiré deflectometer. An overview of the 

experimental setup, present status of the experiment along with current achievements and 

results is presented.  

1.  Introduction 

The reason for the observable universe appearing to consist of practically only matter with an 

unexplained absence of antimatter is still unknown. Experiments based at CERN’s Antiproton 

Decelerator (AD) [1] are attempting to tackle this puzzle by chasing asymmetrical properties between 

hydrogen and antihydrogen (�̅�), its antimatter counterpart. The Weak Equivalence Principle (WEP), 

which postulates that the effect of a gravitational field on a system does not depend on its composition 

or structure [2] has been extensively tested to a precision of 1.810-15 with ordinary matter [3], but not 

with antimatter so far. In 2002, the ATHENA experiment created cold antihydrogen [4] via a three-

body recombination by mixing trapped antiprotons with positrons at low energies. This achievement 

opened the possibility to test WEP on neutral antimatter since it is not sensitive to stray electric and 

magnetic fields. 

The AEg̅IS experiment primary scientific goal is the direct measurement of the Earth’s 

gravitational acceleration on antihydrogen [5] by observing the vertical displacement of the shadow 

image produced by the passage of an �̅� beam through a moiré deflectometer [6]. In order to measure 

the time of flight of each atom, pulsed production of �̅� atoms is required. The antihydrogen formation 

scheme chosen by AEg̅IS is based on a charge-exchange reaction between cold trapped antiprotons (p̅) 

and laser excited Rydberg Positronium (Ps) atoms: 

𝑃𝑠∗ + 𝑝 ̅  → �̅�∗ + 𝑒−                                                           (1) 

which feasibility was initially demonstrated by the ATRAP collaboration [7]. This production scheme 

is likely to be more efficient than the traditional mixing one (e.g. [4]) since the charge-exchange 

reaction cross section scales with the fourth power of the Ps principal quantum number. Moreover, it 

presents the additional advantage of the final antihydrogen quantum states being fully determined by 

the initial Ps∗ ones with relatively narrow distribution, allowing them to be accelerated by electric 

field gradients.  

In this paper, the current progress towards cold antihydrogen formation will be reported. 

2.  The AE�̅�IS experimental apparatus 

The AEg̅IS apparatus implements two cylindrical cryostats containing 5T and a 1T superconducting 

magnets, which surround the initial antiproton trapping and the H̅ formation region, respectively. A 
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series of cylindrical electrodes inside each magnet forms a Malmberg-Penning trap arrangement and 

allows radial and axial confinement of the charged particles. A bunch of 3107 p̅ with 5.3 MeV initial 

kinetic energies is delivered from the AD every 110 s. After being slowed down to a few keV by 

passing through a set of aluminum foils (degraders) p̅ are trapped within the 75 cm long set of 

Malmberg-Penning traps in the 5 T magnet. Trapped p̅ are cooled to a few K by sympathetic cooling 

with electron cloud previously stored inside the trap. The antiprotons are then ballistically transferred 

from the 5 T trap system to the 1 T antihydrogen production region, where they are re-caught in flight 

with an efficiency around 80%. The ballistic transfer combines the advantages of the efficient p̅ 

compression in the 5 T region with low expansion during the multistep procedure. Given that the H̅ 

formation region sited in the 1 T magnetic field must be in close proximity to the Ps source to 

maximize the solid angle of useful Rydberg Ps, the production trap electrodes radius is only 5mm with 

an entrance grid on top to allow the passage of Ps∗ inside the trap. Thus, minimizing the p̅ radial 

dimensions prior to the production trap transfer is of paramount importance. AEg̅IS recent advances of 

the mixed p̅ and e− plasma compression to sub-millimetre radii [8] allowed high p̅ densities 

𝑛�̅� ~1013 m−3 to be achieved. 

Significant progress regarding positrons (e+) and Positronium handling was carried out during the 

last two years. Positrons are produced from a Na 
22  radioactive source coupled to a Ne moderator, 

cooled in a two stage Surko buffer trap and stored in a Penning-Malmberg accumulator up to several 

minutes [9]. The positron cloud (~ 107 e+ ) is extracted from the accumulator with around 300 eV 

energy and 20 ns time duration, then guided through a transfer line towards the positronium 

production target following off-axis trajectories without being re-caught in the 5T traps. The formation 

of low energy Ps requires to implant e+ in the Ps converter made of nano-channeled mesoporous 

silicon [10] deeply enough to allow the formed Ps to have time to cool down by collisions with the 

channel walls. This highly efficient ground state Ps atoms production [11] is achieved by implanting 

e+ in the converter with few keV energy. In the AEg̅IS framework the acceleration is performed 

during the e+ passage through the transfer line by the “kicker”: a single cylindrical electrode mounted 

along the transfer line, which could be quickly (few nanoseconds risetime) pulsed up to 5 kV. 

The final important step towards pulsed H̅ beam formation is the excitation of Ps atoms into 

Rydberg states by using the two-photon excitation scheme developed in the AEg̅IS collaboration [12]. 

An UV (205.045 nm) laser pulse excites Ps to n=3, while an infrared (1680-1720 nm) laser pulse 

brings the atoms to Rydberg states varying from n=15 to n=20 [13]. Rydberg Ps∗ lifetime being much 

higher than in the ground state (tens of s/ms instead of 142 ns) allows the Ps∗ atoms to reach the p̅  

production trap without annihilating in flight. The two laser pulses are sent at grazing angle on the Ps 

converter (see figure 1, laser is shining perpendicularly to the figure plane) synchronously and with 

tunable delay with respect to the e+ implantation moment.  

 

 

Figure 1. Antihydrogen production region. 

The commonly used technique to study Ps formation and its excitation is the Single-Shot Positron 

Annihilation Lifetime Spectroscopy (SSPALS) [13], [14] which consists in collecting the gamma rays 

emitted by annihilation of positrons with nanosecond time resolution. This technique has some 



4th International Conference on Particle Physics and Astrophysics (ICPPA-2018)

Journal of Physics: Conference Series 1390 (2019) 012104

IOP Publishing

doi:10.1088/1742-6596/1390/1/012104

4

 

 

 

 

 

 

limitations in application to Ps laser excitation in the AEg̅IS experimental apparatus geometry, which 

is not allowing for an efficient collection of the gamma rays produced by positron annihilation. The 

free space in Ps converter vicinity being limited prevents long life time states to be revealed in the 

SSPALS spectrum. This challenge became a driving force for the development of an alternative 

diagnostic for the Ps laser excitation, based on a MCP detector imaging the charged e+ produced from 

the Ps photo or self-ionization and being guided by 1 T magnetic field. The dissociated e+ and e− 

being confined to their magnetic field lines are guided to the front face of the MCP polarized 

accordingly. The most significant advantage is that this technique, when used to image photopositrons, 

is background free due to absence of any other source of positively charged particles. 

3.  Conclusion 

The recent advances achieved regarding Positronium formation in cryogenic environment, its Rydberg 

laser excitation and antiproton manipulation have been reported. A new diagnostic technique of Ps 

Rydberg excitation for pulsed antihydrogen production based on MCP detector developed recently has 

been highlighted. 
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