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Abstract: The accumulation of positive ions, produced by ionizing particles crossing Liquid Argon
Time Projection Chambers (LAr-TPCs), may generate distortions of the electric drift field affecting
the track reconstruction of the ionizing events. These effects could become relevant for large LAr-
TPCs operating at surface or at shallow depth, where the detectors are exposed to a copious flux
of cosmic rays. A detailed study of such possible field distortions in the ICARUS T600 LAr-TPC
has been performed analyzing a sample of cosmic muon tracks recorded with one T600 module
operated at surface in 2001. The maximum track distortion turns out to be of few mm in good
agreement with the prediction by a numerical calculation. As a cross-check, the same analysis has
been performed on a cosmic muon sample recorded during the ICARUS T600 run at the LNGS
underground laboratory, where the cosmic ray flux was suppressed by a factor ~106 by 3400m
water equivalent shielding. No appreciable distortion has been observed, confirming that the effects
measured on surface are actually due to ion space charge.

Keywords: Charge transport and multiplication in liquid media; Neutrino detectors; Noble liquid
detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
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1 Introduction

The Liquid Argon Time Projection Chamber (LAr-TPC) detection technique proposed in 1977 [1] as
a modern large electronic “bubble chamber” has been taken to full maturity with the large LAr mass
ICARUS T600 detector, successfully operated in 2010–2013 at the LNGS underground laboratories
exposed to the CNGS beam and cosmic rays [2, 3].

The ICARUS T600 detector consists of two identical modules filled with 760 t of ultra-pure
liquid argon, each one housing two 1.5m drift length TPC chambers separated by a central common
cathode. A cross section of one ICARUS TPC is shown in figure 1. A 500V/cm uniform electric
field allows for drifting without distortions the ionization electrons produced by charged particles
along their path to three parallel readout wire planes facing the drift volume and oriented at 0◦ and
±60◦ with respect to the horizontal direction. About 54000 wires in total with 3mm pitch and plane
spacing are deployed. Induced signals in the first two wire planes and the electron charge signals on
the last (Collection) plane allow for measuring three independent event projections of any ionizing
event with a ~1mm space resolution. A Photo-Multiplier Tube (PMT) system, installed behind
the wire planes to detect the scintillation light emitted by charged particles, is used for trigger and
timing purposes [4]. Measurement of the absolute time of an ionizing event combined with the
1.55mm/µs electron drift velocity [5] provides the position of the track along the drift coordinate.
Moreover, the charge signal detected in the Collection view, which is proportional to the deposited
energy, allows for the calorimetric measurement of the particle energy. The absorption of the
drifting electrons by electronegative impurities is minimized by continuously filtering both liquid
and gaseous argon [3, 6]. Free electron lifetime in excess of τe = 7ms has been routinely reached in
ICARUS at LNGS, corresponding to an impurity concentration < 50 O2 ppt. A detailed description
of the ICARUS detector can be found elsewhere [7].

ICARUS T600 will be operated at shallow depth at the Fermi National Accelerator Laboratory
in the U.S.A. to search for sterile neutrinos at the Booster beam within the Short Baseline Neutrino
(SBN) program [8].

– 1 –
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Figure 1. Cross section of ICARUS detector TPC during the assembling in Pavia, showing the field shaping
electrodes, the cathode, the anodic wire planes and the PMT system.

In these operating conditions, space charge effects, i.e. the accumulation in the drift region of
positive argon ions (Ar+2 ) [9, 10] produced by the cosmic ray flux crossing the detector, could generate
significant electric field distortions affecting the event reconstruction. In fact, due to their mobility
(µi ∼ 10−3 cm2V−1s−1) [9] much smaller than the free electrons one (µe ∼ 500 cm2V−1s−1) [11],
positive ions survive in the drift region of the TPC for several minutes before being neutralized
on the cathode or on the field shaping electrodes. This topic has been recently addressed by the
MicroBooNECollaboration, using aUVLaser System tomeasure possible space charge effects [12].

A study of space charge effects in the T600 has been performed analyzing cosmic ray induced
events, collected on surface with several trigger configurations during a first technical run with one
of the two ICARUS T600 modules in Pavia (Italy) [7]. The results have been compared to the
ones obtained with a similar analysis carried out on a sample of cosmic muons collected during the
underground operation at LNGS laboratory, where negligible space charge effects were expected
due to the extremely reduced cosmic ray flux.

2 Modeling of space charge effects in ICARUS T600 LAr-TPC

Electrons and positive ions, created by ionizing particles in a LAr-TPC, drift along the same electric
field lines toward the anodic wire plane and the cathode, respectively. However, due to their reduced
mobility, at E = 500V/cm argon ions drift with a velocity vi = µE ∼ 5 · 10−6 mm/µs, more than
five orders of magnitude lower than the electron velocity, ve = 1.55mm/µs [5]. This means that
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argon ions may take up to ~300 s to drift the entire ICARUS T600 anode to cathode distance,
D = 1.5m. As a consequence, a not negligible distortion in the drift field could arise because of
the accumulation of positive charge in the active detector volume due to ionizing events, mainly
cosmic rays.

High energy cosmic muons (>1GeV) are the dominant ionizing radiation at Earth’s surface
with a flux of about 170 muons m−2s−1 [13]. They represent the main contribution to positive
space charge accumulation in a LAr-TPC operated at shallow depth with an average injected charge
estimated1 to be J = 1.7·10−10 Cm−3s−1. An additional contribution from the electromagnetic
cosmic ray radiation is expected. However this soft component is mostly absorbed in the cryostat
vessel and in the first 30 cm LAr thickness surrounding the 170m3 detector active volume, hence
this contribution is expected to be small with respect to the crossing muon one. This is confirmed
by the small rate of electromagnetic events observed in the data collected by ICARUS during the
technical run on the surface in Pavia.

The rate of positive ions injected by cosmic rays has been directly estimated by measuring the
total free electron charge on Collection wires for a sample of 92 triggered events. The hit finding
and reconstruction procedures developed for the ICARUS experiment [14] have been adopted. As
a result, a value of J = (1.9 ± 0.1)·10−10 Cm−3s−1 has been obtained, roughly in agreement with
the expectations, after applying corrections due to the hit finding efficiency (about 85%) and argon
purity. This corresponds to a total energy of (3.30 ± 0.17) GeV deposited by cosmic rays within
a full drift time window t = 0.953ms in one ICARUS T600 TPC (85m3 active volume). The
~5% uncertainty on J is mostly related to the fluctuations in the limited event sample with similar
argon purity.

As an initial evaluation, the space charge effect distortions on ionizing tracks can be derived
analytically in a simple parallel plate approximation of the TPC, where the distortions at the
boundaries are neglected. The space charge ρ+ due to the positive ions and the electric field E in
the approximation of very large parallel planar anode and cathode are determined by the Maxwell
and charge continuity equations:

dE
dx
=
ρ+

ε
(2.1)

dρ+

dt
+

d(ρ+vi)

dx
= J (2.2)

where ε = 1.5 pF/m is the liquid argon dielectric constant at 87K, vi is the ion drift velocity and x
is the drift coordinate (x = 0 and x = D define the anode and the cathode positions, respectively).
Introducing the dimensionless variable α [15]:

α =
D
E0

√
J
εµi

(2.3)

where E0 = V/D is the nominal electric field in absence of space charge, eq. (2.1) and eq. (2.2) can
be solved in the stationary case to derive the electric field and the space charge as a function of the

1The conversion factor between the cosmic muon flux F and the injected charge density J in LAr is: J[C m−3s−1] =
F[m−2s−1] · dE/dx[MeV/m] · R · e[C]/W[eV] where dE/dx is the average energy loss in LAr for a mip (~210MeV/m),
W is the energy required to produce an electron-ion pair in LAr (23.6 eV), R is the electron-ion recombination rate (~0.69
at a drift field of 500V/cm) and e is the electron charge (1.6 · 10−19 C).
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drift coordinate x:

E (x) = E0

√(
EA
E0

)2
+ α2 x2

D2 (2.4)

ρ+ (x) =
Jx

µiE(x)
(2.5)

where EA denotes the field at the anode. As expected, the steady state positive ion density is
approximately linearly increasing from anode to cathode.

In the ICARUS technical run in Pavia, assuming the measured J = 1.9 · 10−10 Cm−3s−1 and
the nominal electric field E0 = 500V/cm, a ~4% maximum electric field distortion due to space
charge is expected, corresponding to a maximum distortion on the electron drift velocity of about
2%.2 This effect scales approximately as D2, hence it would be more relevant in case of longer drift
detectors: a ~7% variation is expected on the electric field for a 3m drift length.

To estimate the actual space charge effects, the 3D extension of eq. (2.1) and (2.2) has been
numerically solved with the COMSOL® finite element package [16] to include the boundary effects
of the LAr-TPC field cage. The geometrical TPC layout, the voltage applied to the cathode and
to the field shaping electrodes of ICARUS T600 have been included into the computation. The
uniformity of the electric field inside the TPC drift volumes when J is null, i.e. in absence of space
charge, is shown in figure 2.

Figure 2. Voltage contours, in 5 kV steps, in the lower-right region of the transverse cross-section of one
ICARUS T600 half-module. The blue contour corresponds to -75 kV, the red one to -5 kV.

The impact of space charge on the drift electric field is twofold with distortions along both
the drift (∆Ex/E0) and the vertical (∆Ey/E0) directions (see figure 3). At the nominal drift field
E0 = 500V/cm and assuming J = 1.9 ·10−10 Cm−3s−1 and µ = 0.9 ·10−3 cm2V−1s−1, the maximum
calculated distortions are +4% (cathode) and -2% (anode) in x direction, and +2% (top) and -2%
(bottom) in y direction.

As shown in figure 3-top, the field shaping electrodes at the top and at the bottom of the
TPC volume limit the distortions of the electric field ∆Ex/E0 along the drift direction. Therefore,
∆Ex/E0 in the whole volume is smaller than in the case of the analytical approximation with infinite
parallel plates presented above. In particular ∆Ex/E0 is negligible in the proximity of the top and
bottom electrodes, differing from the analytical approximation by ~10% in the region far from the
field cage.

2The electron drift velocity is proportional to E
1
2 for electric field values close to E0 = 500V/cm.

– 4 –
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The distortion along the vertical direction has the effect of focusing the drift electrons towards
the center of the TPC, as expected from the accumulation of a positive space charge in the bulk of
the liquid argon, and it is relevant close to the field shaping electrodes (figure 3-bottom). Distortions
along the longitudinal direction have not been considered in this study, because they are expected
to be negligible due to the 18m length of the TPC.

The analysis presented here after focuses on the local distortion of the electric field along the
drift direction (figure 3-top). These distortions are mainly parallel to the drift direction (hence they
mostly involve only a change of the electric field strength) in an inner fiducial volume far from the
field cage boundaries, i.e. the region in green in figure 3-bottom. In this region the electric field
changes can introduce a delay on the arrival time of ionization electrons at the anode, depending
on the starting point of the electron cloud along the drift. The maximal delay is obtained at about
80 ÷ 90 cm of distance from the anode, as expected from the roughly linear increase of the ion
density along the drift coordinate. As a result, for tracks inclined with respect to the drift direction,
an apparent bending is expected in their reconstruction.

Figure 3. Electric field distortions ∆Ex/E0 (top) and ∆Ey/E0 (bottom) in the ICARUS TPCs as determined
from an electrostatic simulation including the space charge effect from positive ions. Distortions, normalized
to the nominal drift electric field magnitude (E0) of 500V/cm, are presented in a color scale in the ranges
(-2%,+4%) for x and (-2%,+2%) for y. J = 1.9·10−10 Cm−3s−1 and µ = 0.9 · 10−3 cm2V−1s−1 have been
used as an input for the simulation.

Furthermore, the presence of electro-negative impurities (mainly O2, CO2 and H2O) in the
LAr can introduce a limited negative space charge through the attachment of the drifting ionization
electrons before they reach the anodic plane. This effect becomes relevant when the associated

– 5 –
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electron lifetime τe is comparable to the maximum drift time (1ms). In the ICARUS run in
Pavia a lifetime τe = 1.7ms (±8%) was measured [5], hence on average ~25% of the ionization
electrons were captured before reaching the wire planes. The resulting distribution of negative ions,
increasing from cathode to anode, significantly impacts the overall space charge effect. Therefore,
the contribution of negative ions has also been taken into account in the simulation, assuming similar
mobility for negative and positive ions [10, 17, 18]. The space charge density due to negative ions
injection rate then takes the following functional behavior:

ρ− (x) = −
J

µiE (x)

[
(D − x) − vdτe

(
1 − e−

D−x
vdτe

)]
(2.6)

Note that the electric field distortion shown in figure 3 has been simulated in the ideal case of
infinite drift electron lifetime as a matter of example, but for the analysis presented in the following
both the positive and negative ion densities have been included in the simulation.

Finally, thermal-induced convective motions of liquid argon, with speeds similar to that of the
ions, could also affect the ion density and the bending shape of the ionizing tracks. They are not
included in the simulation, but their effect could emerge in the data as deviations in the bending
shape of the ionizing tracks with respect to the calculated one.

3 Space charge effect measurements in ICARUS T600

During the forthcoming ICARUST600 operation at FNAL in the framework of the SBNprogramme,
the detector could be affected by space charge distortions, being operated at shallow depth. ICARUS
T600 experienced similar experimental conditions during an initial test run in Pavia, where one of
the two modules was operated at surface. The cosmic muons collected during this run can be used
to estimate the expected charge effects before the ICARUS data taking at FNAL [19].

For this purpose, a sample of cosmic muon bundles has been selected (see figure 4) for the
present analysis. The high energy of muons mitigates deviations from a straight line due to Multiple
Coulomb Scattering. In addition, all the muons being parallel, it has been possible to analyze the
tracks together to enhance coherent deviations from straight lines due to global effects, such as
ion space charge. These events also contain a large number of easily identified tracks crossing the
full drift region, allowing to select the tracks spanning the fiducial volume far from the field cage
boundaries, where the electric field distortions are essentially along the drift direction.

3.1 Analysis of a surface cosmic rays sample

The whole event sample used in this analysis consists of 67 muons recorded in a data taking
period when the drift electron life-time was 1.7ms. Tracks crossing the entire drift distance have
been selected by visual scanning in order to cover uniformly the whole active volume. The standard
ICARUS hit finding, fitting and clustering procedures [14] have been applied, as depicted in figure 5,
with the assumption of an ideal uniform electric drift field corresponding to a constant drift velocity
throughout the full volume. Delta rays have been removed to provide a pure muon track sample.
The initial and final 1.5 cm of each track have been also excluded from the muon cluster, to mitigate
possible boundary non-uniformities in the proximity of the wires and of the cathode plane.

– 6 –
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Figure 4. Example of a muon bundle recorded at surface with the ICARUS T600 detector. Anode and
cathode are evidenced, as well as wire and drift coordinates.

Figure 5. Enlarged view of a muon bundle event recorded in one chamber. Top: hits identified for all tracks
are shown. Bottom: green points correspond to muon tracks that crossed both cathode and wire planes.
Muon tracks do not include the first and last 1.5 cm in order to avoid boundary non-uniformities.

An apparent bending of reconstructed muon tracks could suggest the presence of ion accumu-
lation in the liquid argon. In fact, due to the dependence of the electron drift velocity on the electric
field, the ionization electron arrival time on the anode will be delayed with respect to the time
observed in case of uniform electric field, as described in section 2. Then, the apparent bending of
muon tracks along the drift coordinate can be estimated through the time delay ∆T defined as:

∆T = Tsc − Tu (3.1)

where Tsc is the actual electron arrival time at the anode and Tu is the corresponding drift time with
respect to the time expected in case of a uniform electric field (see figure 6 left). The time delay ∆T
as a function of the drift distance is shown in figure 6 right, for the analytical case and with positive
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ions, only for sake of illustration. It has to be noted that the time delay at the cathode is expected to
be small but not zero because of the presence of non linear effects due to space charge.3

A linear fit of the initial and final 5 cm of each muon track, which are roughly insensitive
to the presence of space charge, is performed to determine an undistorted ionizing track and the
corresponding electron arrival times Tu on the interested TPC wires. The bending parameter ∆T is
calculated hit by hit for the full track and converted to a spatial deviation ∆X through:

∆X = ve · ∆T (3.2)

where ve = 0.155 cm/µs is the electron drift velocity for an electric field of 500V/cm measured in
ICARUS during its operation on surface [5].

Figure 6. Left: schematic view of the bending parameter ∆T . Right: delay in arrival time for drift electrons
along the full drift, evaluated in the analytical case and with positive ions only for J = 1.9 · 10−10 Cm−3s−1

and µ = 0.9 · 10−3 cm2V−1s−1. The anode position corresponds to the 0 cm in drift coordinate, while the
cathode position is at 150 cm.

The predicted distortion ∆X in eq. (3.2) is obtained from the Electric field map by integrating
the time delay of the electrons drifting along the field lines from the production point to the anode
(figure 7 top). Similarly the corresponding ∆Y distortion is evaluated as the vertical displacement
of the electric field lines from the production point to the anode (figure 7 bottom). The values
J = 1.9 ·10−10 Cm−3s−1 and µ = 0.9 ·10−3 cm2V−1s−1 have been used as an input to the simulations.

To minimize the bowing introduced by the vertical component Ey of the electric field, tracks
have been selected to be fully contained in a region where the vertical distortions (∆Ey/E) along
the whole ionization electron trajectory are expected to be <0.5%. The resulting subsample of 40
tracks characterized by similar directions and affected by homogeneous electric field distortions is
shown in figure 7 overlapped with the calculated map of the longitudinal spatial distortions along
the drift (top) and vertical (bottom) directions.

The various simulations of the electric field distortions have been used to evaluate the apparent
track bending with increased accuracy, starting from the ideal case of infinite parallel plates to
the real case of the selected track sample. To this purpose, the initial and final coordinates of the

3Around the nominal electric field value E0 = 500V/cm, the electron drift velocity scales approximately as E
1
2 . In

the approximation of ε(x) = ∆Ex
Ex
� 1, the actual electron arrival time at the anode can be evaluated as Tsc =

∫ D
0

dX
v(x)
=∫ D

0
dX

µE0
√

1+ε(x)
=

∫ D

0
dX
µE0
(1 − 1

2ε + o(ε2)) = Tu +
∫ D
0

dX
µE0

o(ε2). In fact, the linear term
∫ D
0 ε(x)dx = 0 because of the

boundary condition on the voltage V applied on the cathode which is fixed independently from the local electric field
values in the drift volume: V =

∫ D
0 E(x)dx =

∫ D
0 E0(1 + ε(x))dx =

∫ D
0 E0dx +

∫ D
0 ε(x)dx = V +

∫ D
0 ε(x)dx.
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Figure 7. The 40 tracks selected for the analysis overlapped with the map of the longitudinal distortions
along the drift (top) and vertical (bottom) directions, both expressed in cm in the color scale. Tracks crossing
the regions where the transverse distortion of the electric field was larger than 0.5% have been discarded
from the analysis. J = 1.9 · 10−10 Cm−3s−1, µ = 0.9 · 10−3 cm2V−1s−1 and τ = 1.7ms as in the real data,
corresponding to 0.18 ppb O2 equivalent, have been used as an input for the simulation.

40 tracks have been measured to build the corresponding straight tracks used as an input for the
calculation, relying on the fact that the signal at the anode does not undergo any distortion, while at
the cathode the distortions are small but not null, as visualized in figure 8.

In the actual ICARUS detector configuration and for the analysed event sample the maximum
measured distortion∆X differs from the ideal case of infinite parallel plates by ~40%due to a number
of effects, as illustrated in figure 8 for J = 1.9 · 10−10 Cm−3s−1 and µ = 0.9 · 10−3 cm2V−1s−1.

First of all, a ∆X reduction of ~6% is introduced by the ICARUS detector structure taking
into account the geometry of the field shaping electrodes. The contribution to space charge from
negative ions mitigates the maximum track distortion by ~12%, with a ~1% uncertainty coming
from the 8% measurement error on the free electron lifetime. As a result, a maximum distortion
∆X = 6.7mm, in the ideal case of infinite parallel plates, is reduced to 5.5mm when these effects
are included (see figure 8).

An additional systematic shift, due to the tracks crossing the detector regions where the electric
field distortions are not maximal, has to be determined for the selected track sample (figure 7). Its
value can be precisely evaluated on a track by track basis, each one reconstructed with a few mm
precision. For the 40 tracks sample available for this study, a ~14% systematic reduction has been
evaluated.

– 9 –
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Finally, the linear fit used in the track reconstruction method, where the direction of each muon
is set by the first and last 5 cm of the track, introduces a ~8% systematic reduction, bringing the
measured maximum ∆X to 4mm (see figure 8).

Figure 8. Bending parameter ∆X as a function of the drift coordinate as evaluated from simulations with
J = 1.9 · 10−10 Cm−3s−1 and µ = 0.9 · 10−3 cm2V−1s−1 as input parameters: analytical formula referring
to infinite parallel plates and positive ions only (black continuous line); simulation of the ICARUS actual
geometry with the field shaping electrodes (blue dotted-dashed line); contribution of the negative ions (green
dotted-dashed line); effect of the available sample of 40 tracks (purple dotted line); reduction due to the track
fitting method (red dashed line).

3.2 Results from surface cosmic data

The presence of a track bending effect has been initially investigated evaluating the ∆X parameter
as a function of the drift coordinate (figure 9-left). On a track-by-track basis the Multiple Coulomb
Scattering (MCS) fluctuations dominate, being the outliers associated with lower energy muons
undergoing larger MCS. However, a global bending effect of up to a few millimeters clearly
emerges. A more refined analysis has been performed by dividing the drift path into 15 intervals,
10 cm wide, and calculating the average ∆X with a gaussian fit inside each bin, thus making ∆X
insensitive to the large fluctuations induced by MCS. The measured deviations from the straight
track are shown for the two ICARUS TPCs separately in figure 9-right. The corresponding maximal
deviation of 0.4 cm is observed at ~90 cm distance from the anode, as expected from the previous
calculation. Moreover, the observed bending effect respects the symmetry of the detector and no
significant differences are observed between the left and right TPCs.

These results have been compared with the expectations from the space charge simulation for
few values of ion mobility, including the contribution of the negative ions for the measured electron
lifetime τe = 1.7ms, see figure 10. A good agreement with the measured maximum track distortion
of ~4mm is found for J = (1.9 ± 0.1)·10−10 Cm−3s−1 and µ ∼ 0.9 · 10−3 cm2V−1s−1.
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Figure 9. Left: scatter plot of bending parameter ∆X as a function of the drift coordinate for all selected
tracks of Pavia surface sample. Right: average bending parameter ∆X as a function of the drift coordinate
evaluated on fixed drift length segments (10 cm) for the two TPCs separately. The anode position corresponds
to the 0 cm in drift coordinate, while the cathode position is at 150 cm.

As already discussed in section 2, eq. (2.5), the space charge distortions are proportional to the
ratio J/µ, hence the rough estimation of the average current density J injected in the detector by
cosmic rays actually prevents to quote a precise value for the mobility parameter µ.

The used space charge model well describes the general features of the measurements, thus
providing a first hint that the observed effect of track bending is actually due to space charge effects.

Accounting for the systematic effects related to the event sample and fit procedure (see sec-
tion 3.1), a maximum ∆Xmax = 5.5± 0.5mm can be estimated at the center of the detector, far from
the field shaping electrodes.

The slight shape disagreement could be attributed to residual effects not included into the sim-
ulation, such as global flows introduced by the liquid recirculation and thermal-induced convective
LAr motions which have typical speed comparable to that of the ions, as well as further effects as
recently suggested in [20].

3.3 Results from underground cosmic data

A further confirmation about the measured space charge effects in the Pavia dataset comes from the
analysis of cosmic ray data collected by ICARUS T600 underground at LNGS, where the cosmic
ray flux is largely suppressed and the space charge effects should be negligible. In underground
conditions muon bundles are not as frequent as on surface, so single muon events have been used
in the analysis. A sample of 81 muon tracks has been analyzed with the same selection criteria
and methods described for the surface cosmic muon tracks. As expected, in the LNGS sample the
result is compatible with absence of space charge effects, as shown in figure 11, where the Multiple
Coulomb Scattering effect on the single track is dominating.

It follows that the bending effects as measured on cosmic muon tracks in ICARUS on surface
can be indeed associated with the presence of space charge inside the LAr active volume.

As a final remark, the absence of distortions in the underground measurements does not allow
elucidating the impact of the convective motions in the liquid argon on the distortions observed at
surface. In fact, at LNGS the positive ion accumulation is negligible due to the reduced cosmic
ray flux and the negative ions density is even smaller due to the high drift electron lifetime. As a
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Figure 10. Bending parameter ∆X as a function of the drift coordinate. Simulations for three different
values of the ion mobility, including also negative ions, are compared with the experimental data (black dots).
The value J = 1.9 · 10−10 Cm−3s−1has been used as an input for the simulation.

consequence the space charge is not affecting the drifting electron trajectories and any liquid motion
redistributing the ion density is also not measurable.

Figure 11. Left: scatter plot of bending parameter ∆X as a function of the drift coordinate for all tracks
of LNGS underground sample. The observed fluctuations on ∆X are compatible with the Multiple Coulomb
Scattering effect. Right: bending parameter ∆X as a function of the drift coordinate evaluated for the two
TPCs separately.

4 Conclusions

The analysis performed on the ICARUS data collected at surface in Pavia demonstrates the presence
of small space charge effects with a maximum track bending value ∆Xmax = 5.5 ± 0.5mm, when
corrected for the systematics effects introduced by the adopted analysis method.
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The obtained results are in good agreement with an electric field simulation that takes into
account both the positive ion accumulation, mainly from cosmic ray ionization, and the negative
one from ionization electron capture by electronegative impurities.

On the other hand, no track bending was observed on a cosmic muon sample collected under-
ground by ICARUS at LNGS, confirming the distortions observed at surface are indeed due to ion
space charge.

It follows that space charge effects will not be a critical issue for the forthcoming ICARUS T600
detector operations at shallow depth at Fermilab, but shielded from cosmic rays by 3m concrete
overburden. In fact, the observed track bending is expected to be of the order of the detector spatial
resolution, considering the additional mitigation coming from the ~30% cosmic ray flux reduction
from the overburden shielding the ICARUS detector [8].
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