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We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for
vector bundles constructed from line bundle sums, monads, and extensions. Within a certain class of
manifolds and for certain second homology classes, we derive simple necessary conditions for a
nonvanishing instanton superpotential. These show that nonvanishing instanton superpotentials are rare
and require a specific pattern for the bundle construction. For the class of monad and extension bundles
with this pattern, we derive a sufficient criterion for nonvanishing instanton superpotentials based on an
affine Hilbert function. This criterion shows that a nonzero instanton superpotential is common within this
class. The criterion can be checked using commutative algebra methods only and depends on the
topological data defining the Calabi-Yau X and the vector bundle V.
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I. INTRODUCTION

Nonperturbative superpotentials generated from instan-
ton effects play an important role in string theory [1–11]
and they form a crucial ingredient for a stability analysis of
string vacua and for practically all scenarios of moduli
stabilization. It is well known that contributions to the
instanton superpotential are proportional to expð−VolðCÞÞ,
where C is the (calibrated) cycle wrapped by the string or
the brane. However, more detailed calculations including
the prefactor of this exponential are often difficult to carry
out and explicit results are few and far between. In
particular, it is not easy to determine whether the instanton
superpotential is zero or nonzero.
In this paper, we are concerned with superpotentials from

string worldsheet instantons in heterotic compactifications
on Calabi-Yau three-folds X with vector bundles V → X.
For such compactifications, the instanton superpotential
can receive a contribution WC ∼ expð−VolðCÞÞ from each

second homology class C, where all isolated, genus zero
holomorphic curves Ci, i ¼ 1;…; nC, in the class C
contribute to the prefactor in WC.
Beasley and Witten [12] have studied linear and

half-linear sigma models and have shown that the con-
tributions from the curves Ci sum up to zero, and, hence,
that WC vanishes, under fairly general assumptions (see
also Refs. [13–16]). On the other hand, a number of papers
[17–20] have produced examples with a nonvanishing WC,
thus apparently evading the vanishing theorems of
Ref. [12]. There are two obvious resolutions: Either there
is a problem with the geometric methods used to calculate
the instanton contributions or the examples considered
violate one of the assumptions underlying the vanishing
theorems of Beasley and Witten. The results of Ref. [20]
point to the latter being the correct explanation.
More specifically, one of the assumptions underlying

the vanishing theorems is compactness of the instanton
moduli space. Unfortunately, this assumption is not easily
checked in general. A nice straightforward method,
due to Bertolini and Plesser [21], is only available if a
Gauged Linear Sigma Model (GLSM) formulation of the
model can be found. This limits the models for which the
assumptions can be checked with this method and requires,
among other things, that the bundle V is given as a monad
bundle. However, in Ref. [20] the authors have identified a
number of models for which the geometric calculation can
be carried out and a GLSM formulation can be found. In all
of those cases, the result of the geometric calculation turn
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out to be consistent with the vanishing theorems, as
formulated by Bertolini and Plesser.
In the present paper, we would like to invert the logic and

assume, based on the evidence in Ref. [20], that the
standard geometric methods to calculate instanton super-
potential are indeed correct and consistent with the vani-
shing theorems. By applying these methods we would like
to address two main questions.

(i) Can we find simple conditions for the vanishing/
nonvanishing of the instanton superpotential based
solely on the geometric data ðX; VÞ? These can be
thought of as geometric analogues of the Bertolini-
Plesser GLSM conditions, but applicable to a wider
class of models for which no GLSM description
is known.

(ii) How “common” is it for the instanton superpotential
to be vanishing or nonvanishing?

As we will see, the first question can be partially answered
in terms of simple cohomology conditions and a certain
affine Hilbert function which we introduce. Analyzing
these, we find that a nonvanishing instanton superpotential
only arises within a specific subclass of bundles V, but that
it is common to be nonvanishing within this subclass. The
plan of the paper is as follows. In the next section, we
review the standard geometric method to calculate string
instanton superpotentials. As we will see, this method
requires explicit knowledge of the isolated, genus zero
curves Ci, which can be difficult to determine explicitly. In
Sec. III, we introduce a class of (complete intersection)
Calabi-Yau manifolds where these curves can be found, at
least for certain homology classes C. Basic features of
common vector bundle constructions, including line bundle
sums, monad bundles, and extension bundles, relevant for
our discussion of instantons, are summarized in Sec. IV.
The requisite mathematical background on coordinate rings
and Hilbert functions is reviewed in Sec. V. In Sec. VI, we
formulate the Hilbert function criterion for nonvanishing
instanton superpotentials and apply it to a number of
examples. We conclude in Sec. VII.

II. GEOMETRIC CALCULATION OF
INSTANTON SUPERPOTENTIALS

In this section, we first review a method for calculating
instanton superpotentials based on techniques from alge-
braic geometry (see, for example, Refs. [8,10,11] for more
details).
We are working in the context of E8 × E8 heterotic

string compactifications on Calabi-Yau three-folds to four-
dimensional theories with N ¼ 1 supersymmetry. Our
main object of interest is the superpotential of the four-
dimensional theory generated by string instanton effects.
The basic data which defines the compactification

consist of a Calabi-Yau three-fold X and a holomorphic,
poly-stable vector bundle V → X with c1ðVÞ ¼ 0, and a
structure group which can be embedded into E8. In general,

there is also another bundle whose structure group embeds
into the second E8 factor and/or five branes wrapping
holomorphic curves in X. Details of these further ingre-
dients are not really relevant for our discussion but we
would like to ensure that there exist choices of a second
bundle or five-branes such that the compactification is
anomaly-free and respects supersymmetry. This is guaran-
teed if we demand that the curve dual to c2ðTXÞ − c2ðVÞ is
an element of the Mori cone of X for a poly-stable V. In this
case, an anomaly-free, supersymmetric completion can,
for example, be achieved by wrapping five-branes on a
holomorphic curve with class c2ðTXÞ − c2ðVÞ.
The instanton superpotential W in the resulting four-

dimensional theory can be written as a sum W ¼ P
C WC

over contributions WC which are associated with classes
C ∈ H2ðX;ZÞ in the second homology of X. We will
usually focus on one of these homology classes C and
will attempt to compute WC. The superpotential term WC
receives contributions from the isolated, genus zero hol-
omorphic curves with class C. We denote these curves by
Ci, where i ¼ 1;…; nC and nC is the genus zero Gromov-
Witten invariant. Schematically, the superpotential termWC
can be written as

WC ¼
�XnC
i¼1

PfaffCi

�
exp

�
−
Z
C
ðJ þ iBÞ

�
ð2:1Þ

where J is a Kähler form on X, B is the NS two-form, and
PfaffCi

is the Pfaffian. Its precise form in terms of differ-
ential operators on the curve Ci can be found, for example,
in Ref. [6]. The instanton superpotential associated with
the class C is, of course, proportional to the exponent
expð−VolðCÞÞ. The (one-loop) prefactor in Eq. (2.1) cor-
responds to the various contributing isolated, genus zero
curves Ci with class C which are wrapped by instantonic
strings.
From a theoretical perspective as well as in the context of

physical applications, such as for example in applications
to moduli stabilization, it is crucial to know whether the
prefactor

P
i PfaffCi

in Eq. (2.1) is zero or nonzero. This is
the main question we will address in the present paper.
How can the Pfaffians PfaffCi

be computed in practice?
The key statement [10] underlying the algebraic compu-
tation is formulated in terms of the bundle

Vi ≔ VjCi
⊗ OP1ð−1Þ ð2:2Þ

and asserts the following equivalence:

H0ðViÞ ≠ 0 ⇔ PfaffCi
¼ 0: ð2:3Þ

Broadly speaking, the idea is to work out the cohomology
on the left-hand side, rather than computing the Pfaffian
directly. More specifically, we note that the value of this
cohomology does depend on the choice of moduli, that is,
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on the complex structure moduli of X and on the bundle
moduli of V. Here we will generally assume that the
complex structure moduli of X have been fixed to suitably
generic values and focus on the dependence on the bundle
moduli of V, which we denote as b ¼ ðbαÞ. Of course it is
possible that the cohomology in (2.3) is nonzero for all
values of b. In this case, the Pfaffian, as a function of b,
vanishes identically.
A more interesting situation arises when the cohomology

in (2.3) vanishes for generic values of b but has a “jumping
locus” in bundle moduli space where it acquires a nonzero
value. As we will see, such a jumping locus is described by
an equation of the form fiðbÞ ¼ 0, where fi is a holo-
morphic function. Since this function fi and the Pfaffian
PfaffCi

have an identical zero locus they must be propo-
rtional. Hence, we can write

WC ¼
�XnC
i¼1

λifiðbÞ
�
exp

�
−
Z
C
ðJ þ iBÞ

�
; ð2:4Þ

where λi ∈ C are constants.
Unfortunately, we do not currently know how to com-

pute the constants λi in Eq. (2.4), at least not with algebraic
methods. In fact, these constants are tied up with a rather
subtle interpretation [6] of the NS two-form field B.
Unfortunately, our ignorance in this respect somewhat
obstructs our ability to answer the question about the
vanishing of WC. Luckily, not all is lost if the fi are indeed
nontrivial functions of the moduli b, as is frequently the
case. Then we have

ðfiÞi¼1;…;nC linearly independent functions ⇒ WC ≠ 0:

ð2:5Þ

This is the basic criterion which will underlie much of
our discussion. It allows for a definite conclusion if the
functions fi are linearly independent—in this case WC is a
nonzero function. If the fi are linearly dependent the
answer depends on the unknown constants λi. If their
values are such that they realize the linear dependence
relation

P
i λifi ¼ 0 then WC vanishes, otherwise WC is

still nonzero.
Any computation along the above lines requires, in a

first instance, explicit knowledge of the isolated, genus-
zero curves1 Ci in a given class C. Finding these curves can
be quite nontrivial, so any concrete progress depends
on a setting where these curves can be found. We will
now review how this can be done for a certain class of
Calabi-Yau manifolds.

III. THE CALABI-YAU MANIFOLDS

A. General setup

We consider an ambient space of the form A ¼ P1 × B,
where B ¼ Pn1 × � � �×Pnm , with homogeneous coordinates
x¼ðx0;x1Þ for the P1 factor and y¼ðyα;0;…;yα;nαÞα¼1;…;m

for the other factors. In this ambient space, we define
complete intersection Calabi-Yau manifolds (CICYs) X
which are specified by a configuration matrix

type I∶ X ∈

"
P1 1 1 0 � � � 0

B q1 q2 q3 � � � qK

#
;

type II∶ X ∈

"
P1 2 0 � � � 0

B q1 q2 � � � qK

#
: ð3:1Þ

Every column of the configuration matrix indicates the
multidegree of a homogeneous polynomial Pa ¼ Paðx; yÞ
and the CICY manifold X is the common zero locus of
these polynomials. The Calabi-Yau condition, c1ðTXÞ ¼ 0,
is equivalent to the degrees in each row of the configuration
matrix summing up to the dimension of the projective space
plus one. For P1 this leaves only two possible patterns for
the degree and this is how the above two types arise.
The point about these CICY manifolds, as shown in

Ref. [18], is that the isolated, genus zero curves in the class
C which corresponds to the first P1 factor can be deter-
mined rather straightforwardly. We briefly review how
this works, starting with type I. In this case, the defining
polynomials can be written as

P1ðx; yÞ ¼ x0Q1ðyÞ þ x1Q2ðyÞ;
P2ðx; yÞ ¼ x0Q3ðyÞ þ x1Q4ðyÞ;
Paðx; yÞ ¼ Qaþ2ðyÞ for a > 2; ð3:2Þ

where Q1 and Q2 have multidegree q1, Q3 and Q4 have
multidegree q2, andQaþ2 for a > 2 has multidegree qa. For
type II, the analogous decompositions are

P1ðx; yÞ ¼ x20Q1ðyÞ þ x0x1Q2ðyÞ þ x21Q3ðyÞ;
Paðx; yÞ ¼ Qaþ2ðyÞ for a > 2 ð3:3Þ

where Q1, Q2, and Q3 have multidegree q1 and Qaþ2 for
a > 2 has multidegree qa. For either type, the defining
equations P1ðx; yÞ ¼ � � � ¼ PKðx; yÞ ¼ 0 of the CICY
manifold are solved for all x ∈ P1 if

Q1ðyÞ ¼ Q2ðyÞ ¼ � � � ¼ QKþ2ðyÞ ¼ 0: ð3:4Þ

These last equations define a zero-dimensional complete
intersection in the space B which corresponds to a finite

1We focus on the dominant instanton contributions, which
arise from curves with single wrapping.
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number of points Yi. This finite point set can also be
represented by the configuration matrices

type I∶ fYig ∈
h
B q1 q1 q2 q2 q3 � � � qK

i
;

type II∶ fYig ∈
h
B q1 q1 q1 q2 � � � qK

i
: ð3:5Þ

In this way, we have identified a number of isolated, genus-
zero curves P1 × Yi ⊂ X, where i ¼ 1;…; nC in the class C
associated with the first P1 factor. By computing the
Gromov-Witten invariant for this class [18], it can be
shown that this is indeed the complete set of such curves.
For the calculation of instanton superpotentials along the

lines described in Sec. II, we need to find the isolated,
genus-zero curves explicitly. The above setup presents us
with a straightforward way to do this by solving the
Eqs. (3.4) for the loci Yi of these curves in the “transverse”
space B. Note that, while this is conceptually simple, it can
still be very difficult to carry out in practice. Finding the
exact solutions to Eqs. (3.4) is impossible for anything but
the simplest cases and even numerical solutions can be
difficult to come by. The alternative algebraic approach we
will be formulating is circumventing this problem—it
requires no explicit knowledge of the points Yi.
Finally, we introduce an algebraic descriptions of the

above setup. The point set fYig is a zero-dimensional
algebraic variety but there are two, subtly different ways to
think about this. For one, we can think of fYig as a
projective subvariety of B and associate with it the
projective ideal

I ¼ hQ1;…; QKþ2i: ð3:6Þ

Alternatively, we can also think about the point set fYig as
an affine variety. To this end, we focus on the patchU0 of B
where all yα;0 ≠ 0 and we assume that the defining
polynomials Qa are sufficiently generic such that all points
Yi are contained in U0. Then, we can think of the point set
fYig as an affine subvariety of U0 and associate with it an
ideal J which is obtained from I by adding the “localizing”
generators yα;0 − 1. Hence, J is explicitly given by

J ¼ hQ1;…; QKþ2; y1;0 − 1;…; ym;0 − 1i: ð3:7Þ

Associated with the ideals I and J are projective and affine
coordinate rings, respectively, and we have the following
maps between those rings:

C½y�→r S→
l
A with S ≔

C½y�
I

; A ≔
C½y�
J

: ð3:8Þ

Here, r maps a polynomial in C½y� to its associated class in
S and l is a localization map, effectively carried out by
setting all yα;0 ¼ 1. Note that the affine ring A is, in fact,

finite dimensional with dimension equal to nC, the number
of points Yi.
As we will see, these algebraic descriptions of the curve

loci fYig in terms of coordinate rings are key to our
subsequent discussion of instantons. In particular, the rings
S and A do not explicitly depend on the points Yi but
merely on the polynomials Qa. This feature means that out
algebraic approach will not rely on the explicit knowledge
of these points.

B. A few simple examples

It is useful to introduce a few simple examples which can
be used to illustrate our method as we go along. We
emphasise that the following examples are specifically
chosen for their simplicity, particularly a small number, nC,
of curves, so that an explicit “on paper” treatment is
possible. Our method will of course not be restricted to
such simple cases and some more complicated examples
will be described later.

1. Example 1: A type I example with two projective factors

Consider the CICY manifold X (number 7867 in the
standard list [22,23]) with configuration matrix

X ∈

"
P1 0 0 1 1

P6 3 2 1 1

#2;68

−132

x0; x1
y0;…; y6

ð3:9Þ

where the Hodge numbers h1;1ðXÞ, h2;1ðXÞ are attached
as a superscript and the Euler number as a subscript. The
single-wrapping Gromov-Witten invariant associated with
the class of the P1 factor is nC ¼ 6 and the configuration
matrix specifying the six loci Yi of these curves in the
transverse space P6 is

fY1;…; Y6g ∈
h
P6 3 2 1 1 1 1

i
≅
h
P2 3 2

i
: ð3:10Þ

The last equivalence follows by repeated application of the
equivalence ½Pnj1� ≅ Pn−1. In order to find the points Yi
explicitly, we make a particularly simple choice for the
polynomials Qa, namely

Q1 ¼ y31 − y30; Q2 ¼ y22 − y20;

Qa ¼ ya for a ¼ 3;…; 6: ð3:11Þ
Then, the six points are given by

fYig¼f½1∶αq∶ð−1Þs∶0∶ � � �∶0�∈P6jq¼ 0;1;2;s¼ 0;1g;
ð3:12Þ

where α ¼ expð2πi=3Þ. For the projective and affine
coordinate ring of these points we have
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S ¼ C½y0;…; y6�
hy31 − y30; y

2
2 − y20; y3; y4; y5; y6i

≅
C½y0; y1; y2�

hy31 − y30; y
2
2 − y20i

;

ð3:13Þ

A¼ C½y0;…; y6�
hy31 − y30;y

2
2− y20; y3; y4; y5;y6; y0 − 1i≅

C½y1; y2�
hy31− 1;y22− 1i

¼ Spanð½1�; ½y1�; ½y21�; ½y2�; ½y1y2�; ½y21y2�Þ: ð3:14Þ

In the last expression the square brackets indicate the class
in A and we see explicitly that A is six-dimensional. The
existence of a basis of A with monomial representatives is a
general feature of such affine coordinate rings for zero-
dimensional varieties, as we discuss in Sec. V.

2. Example 2: A type II example
with two projective factors

The CICY manifold X (with number 7888 in the
standard list [22,23]) is defined by the configuration matrix

X ∈

"
P1 0 2

P4 4 1

#2;86

−168

x0; x1
y0;…; y4

: ð3:15Þ

The single-wrapping Gromov-Witten invariant for the class
associated with theP1 factor is nC ¼ 4 and the loci Yi of the
four curves in P4 are described by the configuration matrix

fY1;Y2;Y3;Y4g∈
h
P4 4 1 1 1

i
≅
h
P1 4

i
: ð3:16Þ

For a simple choice of defining polynomials we can
explicitly compute the four points,

Q1 ¼ y41 − y40; Qa ¼ ya for a ¼ 2; 3; 4

⇒ Yq ¼ ½1∶iq−1∶0∶0∶0∶0�; q ¼ 0; 1; 2; 3: ð3:17Þ

The projective and affine coordinate rings of these four
points are given by

S ¼ C½y0;…; y4�
hy41 − y40; y2; y3; y4i

≅
C½y0; y1�
hy41 − y40i

; ð3:18Þ

A ¼ C½y0;…; y4�
hy41 − y40; y2; y3; y4; y0 − 1i ≅

C½y1�
hy41 − 1i

¼ Spanð½1�; ½y1�; ½y21�; ½y31�Þ: ð3:19Þ

3. Example 3: A type I example with
three projective factors

For a more complicated type I example with three
projective factors we consider the CICY X (number
7804 in the standard list [22,23]) with configuration matrix

X ∈

2
64
P1 0 1 1

P2 1 1 1

P3 3 1 0

3
75
3;57

−108

x0; x1
ỹ0; ỹ1; ỹ2
y0; y1; y2; y3

: ð3:20Þ

The single-wrapping Gromov-Witten invariant in the P1

direction is nC ¼ 3 and the loci Yi of these three curves in
P2 × P3 are described by the configuration matrix

fY1; Y2; Y3g ∈

"
P2 1 1 1 1 1

P3 3 1 1 0 0

#

≅ ½P3 3 1 1 � ≅ ½P1 3 �: ð3:21Þ

With simple defining equations

Q1 ¼ ỹ0y31 − ỹ0y30; Q2 ¼ ỹ0y2

Q3 ¼ ỹ0y3; Q4 ¼ ỹ1; Q5 ¼ ỹ2; ð3:22Þ

the three points are explicitly given by

Yq ¼ ð½1∶0∶0�; ½1∶αq−1∶0∶0�Þ; q ¼ 0; 1; 2; ð3:23Þ

where α ¼ expð2πi=3Þ. For the projective and affine
coordinate rings of these points we have

S ¼ C½ỹ0; ỹ1; ỹ2; y0; y1; y2; y3�
hỹ0y31 − ỹ0y30; ỹ0y2; ỹ0y3; ỹ1; ỹ2i

≅
C½y0; y1�
hy31 − y30i

; ð3:24Þ

A ¼ C½ỹ0; ỹ1; ỹ2; y0; y1; y2; y3�
hỹ0y31 − ỹ0y30; ỹ0y2; ỹ0y3; ỹ1; ỹ2; ỹ0 − 1; y0 − 1i

≅
C½y1�

hy31 − 1i ¼ Spanð½1�; ½y1�; ½y21�Þ: ð3:25Þ

4. Example 4: A type II example with
three projective factors

Our final example is a CICY X (number 7881 in the
standard list [22,23]) with configuration matrix

X ∈

2
664
P1 0 2

P1 2 0

P3 3 1

3
775
3;75

−144

x0; x1
y0; y1
ỹ0; ỹ1; ỹ2; ỹ3

ð3:26Þ

and a single-wrapping genus zero Gromov-Witten invariant
for the class associated with the first P1 factor of nC ¼ 2.
The loci Yi ∈ P1 × P3 of the two curves in the transverse
space are described by the configuration matrix

fY1;Y2g∈
"
P1 2 0 0 0

P3 3 1 1 1

#
≅
h
P1 2

i
: ð3:27Þ
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With simple choices for the defining equations, these two
points are easily computed:

Q1 ¼ ỹ30y
2
1 − ỹ30y

2
0; Q2 ¼ ỹ1; Q3 ¼ ỹ2;

Q4 ¼ ỹ3 ⇒ Y� ¼ ð½1∶� 1�; ½1∶0∶0∶0�Þ: ð3:28Þ

The projective and affine coordinate rings of these two
points are

S ¼ C½y0; y1; ỹ0; ỹ1; ỹ2ỹ3�
hỹ30y21 − ỹ30y

2
0; ỹ1; ỹ2; ỹ3i

≅
C½y0; y1�
hy21 − y20i

; ð3:29Þ

A ¼ C½y0; y1; ỹ0; ỹ1; ỹ2ỹ3�
hỹ30y21 − ỹ30y

2
0; ỹ1; ỹ2; ỹ3; y0 − 1; ỹ0 − 1i ≅

C½y1�
hy21 − 1i

¼ Spanð½1�; ½y1�Þ: ð3:30Þ

IV. THE BUNDLE

Our next step is the construction of vector bundles
V → X over the CICYmanifolds introduced in the previous
section. There are, of course, many ways to construct such
bundles. Here we focus on three standard methods, namely,
line bundle sums, extension bundles, and monad bundles.
We consider each of these classes in turn and discuss how
they relate to the geometric method for instanton calcu-
lations outlined in Sec. II.

A. Line bundle sums

Recall that we are working with CICY manifolds X ⊂ A
in an ambient space of the form A ¼ P1 × B, with B an
arbitrary product of projective factors. Line bundles on X
are denoted by OXðk; k̂Þ, where k is the degree in the P1

direction and k̂ the multidegree in the factors of B. As our
vector bundle we take a rank r ≤ 8 line bundle sum

V ¼ ⨁
r

a¼1

OXðka; k̂aÞ: ð4:1Þ

As usual, we impose c1ðVÞ ¼ 0 so that an embedding into
E8 is possible and this is equivalent to

c1ðVÞ ¼ 0 ⇔
Xr

a¼1

ka ¼
Xr

a¼1

k̂a ¼ 0: ð4:2Þ

To guarantee bundle supersymmetry we require that there is
a locus in the Kahler moduli space where the slopes of all
line bundles vanish. Finally, we require that the curve dual
to c2ðTXÞ − c2ðVÞ is in the Mori cone of X so that there
exists a supersymmetric, anomaly-free completion of the
model. These conditions impose further constraints on the
line bundle integers ka and k̂a which can be easily worked
out. We refrain from doing so as the details are not relevant
for our discussion of instanton effects.

From Eq. (2.3), we need to consider the bundles Vi ¼
VjCi

⊗ OP1ð−1Þ in order to calculate the Pfaffians.
Remembering that the curves Ci are given by a point in
B times the first P1 factor, these bundles are easily
computed by restricting the line bundles to the degrees
in the P1 direction,

Vi ¼ VjCi
⊗ OP1ð−1Þ ¼ ⨁

r

a¼1

OP1ðka − 1Þ: ð4:3Þ

Recall that the cohomology dimensions for line bundles on
P1 are governed by the formulas

h0ðOP1ðkÞÞ ¼
�
kþ 1 for k ≥ 0

0 for k < 0
;

h1ðOP1ðkÞÞ ¼
�
0 for k ≥ 0

−k − 1 for k < 0
: ð4:4Þ

This implies immediately that

h0ðViÞ ¼
X

fajka≥0g
ka: ð4:5Þ

Combining this result with Eqs. (2.3) and (4.2) leads to a
very simple criterion for the vanishing of the instanton
superpotential,

at least one ka ≠ 0 ⇔ WC ¼ 0: ð4:6Þ

In other words, the only cases which lead to nonvanishing
instanton superpotentials are the ones where all line
bundles restrict trivially to the curves Ci.
In conclusion, for line bundle sums we have a rather

simple and satisfactory criterion for the vanishing of the
instanton superpotential WC. However, note that line
bundle sums typically do have moduli and represent special
“split loci” in a moduli space of bundles which generically
have a non-Abelian structure group. The vanishing of WC
for a line bundle sum does not necessarily imply that WC
remains zero once we move away from the line bundle
locus in moduli space. To address this problem we need to
consider other bundle constructions which allow for non-
Abelian structure groups.

B. Monad and extension bundles

Extensions and monads are two standard methods to
construct bundles with a non-Abelian structure group.
We would now like to consider these two classes and
summarize how they relate to instanton superpotential
calculations.
The monad and extension bundles will be built from two

line bundle sums
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A ¼ ⨁
rA

α¼1

OXðaα; âαÞ; B ¼ ⨁
rB

β¼1

OXðbβ; b̂βÞ; ð4:7Þ

where we recall that the first entries aα, bβ denote the
degree in the P1 direction and âα, b̂β are the multidegrees in
the transverse space B. It is also useful to introduce the
restrictions of these line bundle sums to the curves Ci,
tensored with OP1ð−1Þ, since these bundles determine the
properties of the instantons,

Ai ≔ AjCi
⊗ OP1ð−1Þ ¼ ⨁

α
OP1ðaα − 1Þ;

Bi ≔ BjCi
⊗ OP1ð−1Þ ¼ ⨁

β
OP1ðbβ − 1Þ: ð4:8Þ

In terms of the above line bundle sums, monad and
extension bundles V → X are defined by short exact
sequences and their properties are summarized in the
following table.

Monads Extensions

Sequence 0 → V → A→
F
B → 0 0 → A → V → B → 0

Map F ∈ H0ðB ⊗ A�Þ δ∈Ext1ðB;AÞ≅H1ðA⊗B�Þ
rkðVÞ rA − rB rA þ rB
c1ðVÞ c1ðAÞ − c1ðBÞ c1ðAÞ þ c1ðBÞ
H0ðViÞ KerðH0ðAiÞ→

δi H0ðBiÞÞ KerðH0ðBiÞ→
δi H1ðAiÞÞ

For either construction, we should impose that rðVÞ ≤ 8
and c1ðVÞ ¼ 0 which leads to certain constraints on
the line bundle integers. Further constraints arise from
bundle superymmetry and the anomaly conditions but
there is no need to discuss these in detail. It is worth
noting that the cohomology dimensions which appear in the
last row can be easily computed from Eq. (4.4) and are
given by

h0ðAiÞ ¼
X

fαjaα≥0g
aα; h0ðBiÞ ¼

X
fβjbβ≥0g

bβ;

h1ðAiÞ ¼ −
X

fαjaα≤0g
aα: ð4:9Þ

In analogy with Eq. (4.8), we also introduce the restriction

Vi ≔ VjCi
⊗ OP1ð−1Þ ð4:10Þ

of V to the curve Ci. Since the index χðViÞ ¼ c1ðVÞ ¼ 0
vanishes from the index theorem we conclude that

h0ðViÞ ¼ h1ðViÞ: ð4:11Þ
Next, consider the long exact sequence in cohomology
associated with the monad sequence restricted to Ci,

0 → H0ðViÞ → H0ðAiÞ →
δi

H0ðBiÞ
→ H1ðViÞ → H1ðAiÞ → H1ðBiÞ → 0

: ð4:12Þ

Combining this sequence with the equality (4.11) shows
that whenever h0ðAiÞ ≠ h0ðBiÞ we must have h0ðViÞ ≠ 0.
The analogous long exact sequence for extensions

0 → H0ðAiÞ → H0ðViÞ → H0ðBiÞ
→
δi H1ðAiÞ → H1ðViÞ → H1ðBiÞ → 0

; ð4:13Þ

together with Eq. (4.11) leads to a similar conclusion. For
h0ðBiÞ ≠ h1ðAiÞ we must necessarily have h0ðViÞ ≠ 0.
Combining these observations with the criterion (2.3) then
proves the simple vanishing statement

�
h0ðAiÞ≠ h0ðBiÞ formonads

h0ðBiÞ≠ h1ðAiÞ forextensions

�
⇒ WC ¼ 0: ð4:14Þ

In other words, all cases with a nonzero instanton super-
potential must necessarily satisfy

h0ðAiÞ ¼ h0ðBiÞ for monads;

h0ðBiÞ ¼ h1ðAiÞ for extensions; ð4:15Þ

and, from now on, we will assume these relations are
satisfied. Then, we can think of the maps δi as square
matrices and introduce the determinants

fi ¼ detðδiÞ: ð4:16Þ

Clearly,H0ðViÞ ≠ 0 if and only if fi ¼ 0 and, hence, the fi
are the functions of the same name which we have
introduced in Sec. II and which enter the criterion (2.5).
The maps δi can be computed by restricting the monad map
F or the extension map δ to the cycle Ci, and then working
out the induced map on cohomology. In cases where the
monad and extension maps descend from ambient space
polynomials, on which we focus here, this always leads to
functions fi which can be expressed as

fi ¼ fjCi ; f ∈ C½y�k; ð4:17Þ

that is, as a restriction to Ci of polynomials f with a certain
multidegree k in the directions of the transverse space B.
Different choices of f with this multidegree reflect different
points in the bundle moduli space—we can think of the
coefficients of a general f ∈ C½y�k as (some of the) bundle
moduli b. Note that this considerably simplifies the
structure of the discussion. All we need to know is the
multidegree k in order to determine the crucial maps fi.
It can be computed from the line bundle integers âα and b̂β
but the precise relation depends on the case. Our sub-
sequent discussion is largely independent of these details
and merely starts with Eq. (4.17). Some examples of the
relation between k and the line bundle integers are provided
in Sec. VI B.
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V. COORDINATE RINGS AND
HILBERT FUNCTIONS

In this section we review some basic mathematical facts
about zero-dimensional varieties and their coordinate rings
and Hilbert functions. A useful mathematical reference for
some of this material is [24].
We briefly recall the algebraic setup which we

have already introduced in Sec. III A. For a product B ¼
Pn1 × � � � × Pnm of projective spaces with homogeneous
coordinates y ¼ ðyα;0;…; yα;nαÞα¼1;…;m we have the asso-
ciated multigraded coordinate ring C½y�, with multidegrees
denoted by k ¼ ðk1;…; kmÞ. It is also useful to introduce
the standard open patchU0 of B where all yα;0 ≠ 0. Assume
we have a zero-dimensional variety consisting of a finite
number of points fY1;…; Yng ⊂ B. In the context of
instanton calculations, these points are of course the loci
of the isolated, genus-zero curves in the transverse space B.
We can think of this point set as a projective subvariety of B
which is then described by a projective ideal I ⊂ C½y�.
Alternatively, if all points Yi are contained in U0 we can
think of it as an affine variety whose associated ideal J ¼
I þ hy1;0 − 1;…; ym;0 − 1i is obtained from I by adding the
localizing polynomials yα;0 − 1.
The map r∶C½y� → S introduced in Eq. (3.8) is defined

by rðfÞ ¼ ½f�, that is, it takes the class of a polynomial
within S ¼ C½y�=I. The map l∶S → A is the localization
map which, in practice, amounts to setting all yα;0 ¼ 1. The
affine coordinate ring A ¼ C½y�=J is finite dimensional and
its dimension dimðAÞ ¼ n equals the number of points it
describes. It is also known [24] that is has a basis with
monomial representatives.

A. Hilbert functions

The rings C½y� and S are multigraded and they have
standard Hilbert functions. For the ring S, the Hilbert
function hS and the Hilbert series HS are defined by

hSðkÞ ¼ dimðSkÞ; HSðtÞ ¼
X
k

hSðkÞtk: ð5:1Þ

In other words, the Hilbert function gives the dimension of
each multidegree part Sk of S while the Hilbert series is
simply the generating series for the Hilbert function (where
tk ¼ tk11 � � � tkmm ). For sufficiently large degrees k, the Hilbert
function is described by a polynomial—the so-called
Hilbert polynomial—whose degree equals the dimension
of the associated variety. Since we are concerned with a
zero-dimensional variety, the Hilbert function becomes a
constant for large k which is, in fact, equal to the number n
of points,

hSðkÞ → n for k ≫ 1: ð5:2Þ
There are standard methods to compute the Hilbert function
hS, in particular by using syzygies in cases where the

variety is a complete intersection. Since hS is not the main
object of interest for our discussion we refrain from
providing further details (see, for example, Ref. [25]).
The affine ring A is not graded but filtered, with the

filtration induced by the subalgebras A≤k of elements with
multidegree less or equal than k. The affine Hilbert function
and series for A are somewhat less common and are
defined by

hAðkÞ ≔ dimðA≤kÞ; HAðtÞ ¼
X
k

hAðkÞtk: ð5:3Þ

From Eq. (3.8), we have A≤k ¼ lðSkÞ, which implies that

hSðkÞ ≥ hAðkÞ ð5:4Þ

for all k. Unfortunately, equality does not always hold since
the map ljSk is not necessarily injective. Since A has a finite
basis with monomial representatives, it is clear that hA has
the same asymptotic behavior as hS, namely

hAðkÞ → n for k ≫ 1: ð5:5Þ

How can the affine Hilbert function hA be computed? The
following provides a basic algorithm.
(1) Compute a Groebner basis G ¼ ðgiÞ of J.
(2) Compute a monomial basis B ¼ ðbiÞ of (class

representatives of) A by collecting all monomials
not contained in hLTðgiÞi, where LTðgiÞ denotes the
leading term of gi as induced by the ordering chosen
in the Groebner basis computation.

(3) Select a monomial basis ðmiÞ of C½y�k and compute
its remainders mG

i relative to the Groebner basis G.
These remainders are linear combinations of the
basis B.

(4) Find the dimension of the space spanned by the
remainders mG

i . This dimension equals hAðkÞ.

B. Examples

Let us illustrate Hilbert functions and their computation
by continuing with the example from Sec. III B.

1. Example 1

Recall that this example involves six points in P6

described by the configuration matrix

fY1;…;Y6g∈
h
P6 3 2 1 1 1 1

i
≅
h
P2 3 2

i
; ð5:6Þ

and with coordinate rings
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S ≅
C½y0; y1; y2�

hy31 − y30; y
2
2 − y20i

;

A ≅
C½y1; y2�

hy31 − 1; y22 − 1i
¼ Spanð½1�; ½y1�; ½y21�; ½y2�; ½y1y2�; ½y21y2�Þ: ð5:7Þ

Using standard methods, the Hilbert series, and Hilbert
function for S are obtained as

HSðt1Þ ¼
1þ 2t1 þ 2t21 þ t31

1 − t1

⇒ hSðkÞ ¼
�
2kþ 1 for k < 3

6 for k ≥ 3
: ð5:8Þ

To compute the affine Hilbert function we can follow the
above algorithm. First we need to compute a Groebner
basis G for the ideal

J ¼ hy31 − y30; y
2
2 − y20; y0 − 1i: ð5:9Þ

In lexicographic ordering, the Groebner basis and its
leading terms are

G¼ ðy0 − 1; y31 − 1; y22 − 1Þ ⇒ hLTðgiÞi ¼ hy0; y31; y22i:
ð5:10Þ

Collecting terms not contained in hLTðgiÞi, we find

B ¼ ð1; y1; y21; y2; y1y2; y21y2Þ; ð5:11Þ

and this is indeed the monomial basis for A given in
Eq. (5.7). Next, we compute the monomial basis and its
remainders. Let us look at k ¼ 2. A monomial basis for
C½y�2 is simply

ðmiÞ ¼ ðy20; y0y1; y0y2; y21; y1y2; y22Þ: ð5:12Þ

Reducing this modulo (5.10), we find

ðmG
i Þ ¼ ð1; y1; y2; y21; y1y2; 1Þ: ð5:13Þ

Since the space spanned by the remainders is five dimen-
sional we have hAð2Þ ¼ 5. Continuing along those lines it
is straightforward to verify that hA ¼ hS, so in this case the
two Hilbert functions coincide.

2. Example 2

This example involves four points in P4 with configu-
ration matrix

fY1;Y2;Y3;Y4g∈
h
P4 4 1 1 1

i
≅
h
P1 4

i
ð5:14Þ

and coordinate rings

S ≅
C½y0; y1�
hy41 − y40i

;

A ≅
C½y1�

hy41 − 1i ¼ Spanð½1�; ½y1�; ½y21�; ½y31�Þ: ð5:15Þ

The Hilbert series and function for S are given by

HSðt1Þ ¼
1þ t1 þ t21 þ t31

1 − t1

⇒ hSðkÞ ¼
�
kþ 1 for k < 3

4 for k ≥ 3
: ð5:16Þ

A quick inspection of the monomial basis for A in
Eq. (5.15) shows that hA ¼ hS, so again the Hilbert
functions coincide.

3. Example 3

This example involves three points in B ¼ P2 × P3

described by a configuration matrix

fY1; Y2; Y3g ∈

"
P2 1 1 1 1 1

P3 3 1 1 0 0

#
; ð5:17Þ

and with associated coordinate rings

S¼ C½ỹ0; ỹ1; ỹ2;y0;y1;y2;y3�
hỹ0y31− ỹ0y30; ỹ0y2; ỹ0y3; ỹ1; ỹ2i

;

A¼ C½ỹ0; ỹ1; ỹ2;y0;y1;y2;y3�
hỹ0y31− ỹ0y30; ỹ0y2; ỹ0y3; ỹ1; ỹ2; ỹ0−1;y0−1i : ð5:18Þ

The Hilbert series for S is a bit more complicated

HSðtÞ ¼
1 − t1t52 þ 2t1t42 − t1t32 þ t1t22 − 2t1t2

ð1 − t1Þð1 − t2Þ4
¼ 1þ t1 þ 4t2 þ 2t1t2 þ � � � ð5:19Þ

and we have expanded only up to terms of degree
k ≤ ð1; 1Þ. The affine Hilbert function can be computed
algorithmically, as discussed, and the result is schemati-
cally shown in Fig. 1. We note from Eq. (5.19) that
hSð0; 1Þ ¼ 4 while Fig. 1 indicates that hAð0; 1Þ < 3, in
fact, hAð0; 1Þ ¼ 2. This is an example where the two
Hilbert functions do not coincide—the map ljSð0;1Þ is not

injective.

4. Example 4

For this example, we have two points in B ¼ P1 × P3

with configuration matrix
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fY1; Y2g ∈

"
P1 2 0 0 0

P3 3 1 1 1

#
; ð5:20Þ

and coordinate rings

S ¼ C½y0; y1; ỹ0; ỹ1; ỹ2ỹ3�
hỹ30y21 − ỹ30y

2
0; ỹ1; ỹ2; ỹ3i

;

A ¼ C½y0; y1; ỹ0; ỹ1; ỹ2ỹ3�
hỹ30y21 − ỹ30y

2
0; ỹ1; ỹ2; ỹ3; y0 − 1; ỹ0 − 1i : ð5:21Þ

The Hilbert series for S is given by

HSðkÞ ¼
1 − t21t

3
2

ð1 − t1Þ2ð1 − t2Þ
¼ 1þ 2t1 þ t2 þ 2t1t2 þ � � � ð5:22Þ

and the results for the affine Hilbert function is schemati-
cally shown in Fig. 1. It turns out that in this case hA ¼ hS
so the two Hilbert functions coincide.

C. Evaluation from coordinate rings

Recall that our goal is to use the criterion (2.5) for the
nonvanishing of the instanton superpotential. This requires
us to work out the functions fi which are proportional to the
Pfaffians. We have seen in Eq. (4.17) that they can be
obtained from fi ¼ fðYiÞ, that is, by evaluating functions
f ∈ C½y�k of a certain multidegree k at the loci Yi of the
curves Ci. This is straightforward in principle but might not
be easy to carry out in practice since the points Yi may be
difficult to compute. We will now propose an alternative
method to calculate fi which does not rely on the explicit
knowledge of the points Yi but uses the affine coordinate
ring A instead. See Ref. [24] for mathematical details
underlying this approach.
First recall that the affine coordinate ring A, associated

with the point set fY1;…; Yng, is a finite-dimensional
vector space of dimension n. We can define a linear map by

μ∶C½y� → EndðAÞ; μðfÞðaÞ ≔ ½f�a; ð5:23Þ

where ½f� ¼ l∘rðfÞ is the class of the polynomial f in A.
Hence, for every polynomial f ∈ C½y� the image μðfÞ is a
linear map on A which acts simply by the multiplication in
the ring A. Since the ring multiplication is commutative, we
have

μðfÞμðf̃Þ ¼ μðf̃ÞμðfÞ ð5:24Þ

for all f; f̃ ∈ C½y�. In other words, all linear maps on A
obtained in this way commute with each other. The main
mathematical statement we will be relying on is the
following [24]:

ffðY1Þ;…; fðYnÞg ¼ feigenvalues of μðfÞg: ð5:25Þ

This means, the crucial quantities fi ¼ fðYiÞ proportional
to the Pfaffians are given by the eigenvalues of the linear
map μðfÞ∶A → A. Moreover, all maps μðfÞ obtained for f
ranging in C½y�k commute and, hence, can be simulta-
neously diagonalized.
This discussion allows us to reformulate our original

problem of linear (in)dependence of fi in terms of the
properties of polynomials in the coordinate ring A. These
properties can be studied using standard methods of
commutative algebra and Hilbert series. As a result the
criterion for a nonvanishing superpotential can be stated
using the Hilbert function as will be considered in the next
section.

VI. A HILBERT FUNCTION CONDITION
FOR INSTANTONS

We are now ready to combine our various observations
and formulate a condition for a nonzero instanton super-
potential WC, based on the affine Hilbert function. After
stating the condition in general, we apply it to a range of
examples.
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FIG. 1. Results for affine Hilbert function hAðkÞ in the k ¼ ðk1; k2Þ plane (with k1 on the horizontal axis and k2 on the vertical axis) for
example 3 with nC ¼ 3 (left) and example 4 with nC ¼ 2 (right). Blue points indicate degrees for which hAðkÞ < nC and empty points
satisfy hAðkÞ ¼ nC.
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A. The general condition

From our main criterion (2.5), we need to decide whether
or not the quantities fi ¼ fðYiÞ, where i ¼ 1;…; nC,
viewed as functions of bundle moduli b, are linearly
independent. A practical way to reformulate this is to
choose a basis ðfIÞI¼1;…;N of C½y�k and consider theN × nC
matrix MIi ¼ fIðYiÞ. In terms of this matrix, the criterion
(2.5) can be reformulated as

rkðMÞ ¼ nC ⇒ WC ≠ 0: ð6:1Þ

Let us point out that here it is assumed that the polynomial
f ∈ C½y�k is generic in the sense that we span the entire
space C½y�k as we vary its coefficients. In other words,
f can be expanded in the basis of ðfIÞI¼1;…;N with all
basis elements present in the expansion. Otherwise, if only
N0 < N basis elements appear in the expansion of f, we
have to restrictC½y�k to the subspace spanned by these basis
elements. The matrixM must now be constructed using the
basis elements ðfIÞI¼1;…;N0 and is of the size N0 × nC.
However, the condition (6.1) remains the same.
Now consider the linear maps μðfIÞ∶A → A, as defined

in the previous section. All these maps are simultaneously
diagonalizable and the eigenvalues of μðfIÞ are precisely
the entries ðMI1;…;MInCÞ of the Ith row of M. Hence, it
follows that

rkðMÞ ¼ dimðμðC½y�kÞÞ ¼ dimðl∘rðC½y�kÞ
¼ dimðA≤kÞ ¼ hAðkÞ: ð6:2Þ

This means the criterion (6.1) can be rewritten in terms of
the affine Hilbert function and then reads

hAðkÞ ¼ nC ⇒ WC ≠ 0: ð6:3Þ

This is our main result. We can use the affine Hilbert
function of the coordinate ring A, which describes the
locations of the curves Ci in the transverse space, to decide
whether the instanton superpotential WC is nonzero. To do
this, we have to determine the relevant multidegree k for the
bundle V in question. For common constructions, such as
extension and monad bundles, this degree can usually be
read off from the defining data of the bundle. Some explicit
examples of this are provided below. The simple conclusion
is that, whenever the affine Hilbert function hAðkÞ takes its
maximal value nC (equal to the number of curves Ci), the
instanton superpotential must be nonzero. For cases with
hAðkÞ < nC we cannot draw a definite conclusion and WC
can be zero or nonzero, depending on the undetermined
constants λi in Eq. (2.4). Note that the criterion (6.3) does
not depend on the precise locations of the points Yi, which
might be difficult to compute from the polynomial equa-
tions (3.4). It depends only on the Hilbert function of the
coordinate ring A, which can be computed using methods

of commutative algebra. The above result leads to a general
picture for the nonvanishing of the instanton superpotential.
First of all, we see from Eqs. (4.14) that “most” patterns
which arise in common bundle constructions, such as
monads and extensions, lead to a vanishing superpotential.
However, there are specific patterns, characterized by the
conditions (4.15), where the superpontial can be nonzero.
For such cases, the answer depends on a multidegree k
which can be extracted from the relevant bundle construc-
tion. The superpotential is nonzero if the Hilbert function
criterion (6.3) is satisfied. As Eq. (5.5) shows, this criterion
will be satisfied for sufficiently large k. This means, within
the subclass of bundles characterized by Eq. (4.15), a
nonvanishing instanton superpotential is the “typical”
situation. We would now like to illustrate this general
picture with a number of examples.

B. Examples

To set the scene, we indicate how the crucial multidegree
k can be extracted from a given bundle construction.
Consider a monad or extension bundle constructed from
the line bundle sums

A ¼
��c 0 � � � 0

â1 â2 � � � ârA

�
;

B ¼
�

c 0 � � � 0

b̂1 b̂2 � � � b̂rB

�
ð6:4Þ

where each column contains the multidegree of a line
bundle, with the first row the degree in the P1 direction and
the other rows the multidegree in the transverse space B.
The upper sign in the (1,1) entry of A is for monads, the
lower sign for extensions, and c is a positive integer. Note
that for either case the condition (4.15) is satisfied, so we
have indeed a pattern where the instanton contribution can
be nonvanishing. A quick calculation shows that the
multidegree k for this pattern is given by

k ¼ �cðb̂1 − â1Þ; ð6:5Þ

with the upper sign for monads and the lower sign for
extensions. Similar relations can be derived for other
patterns. In the following, we will not be specific about
this relation but rather present our examples in terms of the
multidegree k. In this way, the results are applicable to a
wide range of bundles, using equations such as (6.5). We
begin by revisiting our “running” examples, introduced in
Sec. III B.

1. Example 1

Our first example is for CICY manifold 7867 in the
ambient space A ¼ P1 × P6 defined by the configuration
matrix (3.9). Its Picard number is h1;1ðXÞ ¼ 2 so k is, in
fact, just a single degree in this case. We have nC ¼ 6
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TABLE I. Affine Hilbert function hAðkÞ in the k ¼ ðk1; k2Þ plane (with k1 on the horizontal axis and k2 on the vertical axis). Blue
points have hAðkÞ < nC whereas empty points indicate that hAðkÞ ¼ nC.

Configuration # nC hA2
664
P1 1 1 0 0

P3 2 0 1 1

P3 0 2 1 1

3
775
3;35

−64

6771 32

2
664
P1 1 1 0 0 0 0

P4 1 0 2 1 1 0

P4 0 1 0 1 1 2

3
775
3;39

−72

7208 8

2
664
P1 2 0 0 0

P2 0 1 1 1

P4 2 1 1 1

3
775
3;45

−84

7585 24

2
664
P1 1 1 0

P2 2 0 1

P3 1 2 1

3
775
3;46

−86

7610 32

2
664
P1 1 1 0 0 0 0

P4 1 0 1 1 1 1

P4 0 1 1 1 1 1

3
775
3;47

−88

7636 6
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curves and the Hilbert function hA ¼ hS, computed in
Eq. (5.8), together with the criterion (6.3), shows that

k ≥ 3 ⇒ WC ≠ 0: ð6:6Þ
This illustrates our earlier statements that, within patterns
of bundle constructions satisfying Eqs. (4.15), nonzero
instanton superpotentials are common.

2. Example 2

This is CICY manifold 7888 in the ambient space A ¼
P1 × P4 with configuration matrix (3.15). The Picard
number is h1;1ðXÞ¼2, so again k is a single degree, and
there are nC ¼ 4 curves. From the associated affine Hilbert
function (5.16) (hA ¼ hS in this case) we conclude that

k ≥ 3 ⇒ WC ≠ 0: ð6:7Þ
3. Example 3

The CICYmanifold 7804 is defined in the ambient space
A ¼ P1 × P2 × P3 with configuration matrix (3.20). There
are nC ¼ 3 curves and since h1;1ðXÞ ¼ 3 we know that k ¼
ðk1; k2Þ is a bidegree. The affine Hilbert function in this
case has been plotted in Fig. 1 and it indicates that

k2 ≥ 2 ⇒ WC ≠ 0: ð6:8Þ
Again, we see that the instanton superpotential is non-
vanishing for “most” bidegrees k ¼ ðk1; k2Þ.

4. Example 4

CICY manifold 7881 is defined in the ambient space
A ¼ P1 × P1 × P3 with configuration matrix (3.26). It has
nC ¼ 2 curves and Picard number h1;1ðXÞ ¼ 3, so that
k ¼ ðk1; k2Þ is a bidegree. The associated affine Hilbert
function, plotted in Fig. 1, shows that

k1 ≥ 1 ⇒ WC ≠ 0: ð6:9Þ
The above examples have been chosen for their relative

simplicity, particularly a small number nC of curves.
We have computed the affine Hilbert function for a number
of more complicated examples with Picard number
h1;1ðXÞ ¼ 3, using the algorithm described in Sec. VA.
The results are shown in Table I. For all cases, k ¼ ðk1; k2Þ
is a bidegree and blue points in the figures correspond to
bidegrees with hAðkÞ < nC while empty points indicate
hAðkÞ ¼ nC. From our main criterion (6.3) all bidegrees k
with empty points in those plots lead to a nonvanishing
instanton superpotential WC.

VII. CONCLUSION

In this paper, we have studied string instanton super-
potentials for heterotic Calabi-Yau compactifications. Our
main goal has been to find conditions for the vanishing/
nonvanishing of the instanton superpotentialWC associated

with a second homology class C of the Calabi-Yau manifold
X. We have considered bundles V → X constructed from
line bundle sums, monads, and extensions.
For line bundle sums we have found a simple criterion,

Eq. (4.6), for the vanishing/nonvanishing of the instanton
superpotential WC. It shows that nonvanishing instanton
superpotentials for line bundle sums requires a special class
of line bundles, which become trivial when restricted to the
curves Ci, but that within this class, the superpotential is
nonvanishing.
For bundles with non-Abelian structure groups, con-

structed frommonads or extensions, the picture is somewhat
more complicated. If certain cohomology dimensions of the
constituent line bundles are not equal, as in Eq. (4.14), the
instanton superpotentialWC vanishes. On the other hand, if
these dimensions are equal, as in Eq. (4.15), the super-
potential can be vanishing or nonvanishing.
In such cases, a criterion for nonvanishing superpoten-

tials can be formulated in terms of an affine Hilbert
function. This Hilbert function, hA, is associated with
the coordinate ring A which describes the loci Yi of the
nC curves Ci in a transverse space. What we have shown
[see Eq. (6.3)] is that whenever hAðkÞ ¼ nC, the instanton
superpotential is nonzero. Here k is a multidegree which
can be read off from the specific bundle construction. The
asymptotic behavior hAðkÞ → nC for large k means that a
nonvanishing instanton superpotential is a common feature
within this class.
The first observation from these results is that non-

vanishing instanton superpotentials are rare, in the sense
that they require a specific pattern when constructing the
bundle V. However, within the class of bundles following
this pattern, the superpotential is either always nonzero (for
line bundle sums) or it is frequently nonzero (for monads
and extensions). These observations may well provide
useful guidance for model building, particularly in view
of moduli stabilization.
There are several interesting directions to pursue. The

current formulation of our Hilbert function criterion
depends on an ambient space of the form A ¼ P1 × B,
so that we can talk about the loci Yi of the curves Ci in the
transverse space B and introduce their associated coordi-
nate ring A. It would be desirable to generalize this
condition so that it can be applied to more general
manifolds, possibly by introducing a coordinate ring
associated with the union of all curves Ci. It is currently
not clear how to formulate this.
Another deficit is that the criterion (6.3) only works in

one direction. If hAðkÞ < nC we are not able to draw a
definite conclusion. Unfortunately, improving on this
requires knowledge of the constants of proportionality λi
in the instanton superpotential (2.4), which are hard to
compute. Moreover, it is interesting that the condition for
vanishing/nonvanishing instanton superpotentials depends
on the degrees k in the transverse space, while the
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compactness criterion of Bertolini-Plesser depends on the
degree of the line bundles of the curve class under
investigation. However, the two degrees are linked by
anomaly cancellation and supersymmetry conditions, and
we have shown for examples in which a GLSM description
exists that the two condition give the same result. It would
be interesting to show the equality of the two approaches
algebraically.
Finally, our discussion has been limited to certain

homology classes, related to P1 factors in the ambient
space, and it would be desirable to remove this limitation.
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