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Abstract

We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications

for vector bundles constructed from line bundle sums, monads and extensions. Within a certain

class of manifolds and for certain second homology classes, we derive simple necessary conditions

for a non-vanishing instanton superpotential. These show that non-vanishing instanton super-

potentials are rare and require a specific pattern for the bundle construction. For the class of

monad and extension bundles with this pattern, we derive a sufficient criterion for non-vanishing

instanton superpotentials based on an affine Hilbert function. This criterion shows that a non-

zero instanton superpotential is common within this class. The criterion can be checked using

commutative algebra methods only and depends on the topological data defining the Calabi-Yau

X and the vector bundle V .
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1 Introduction

Non-perturbative superpotentials generated from instanton effects play an important role in string

theory [1–11] and they form a crucial ingredient for a stability analysis of string vacua and for

practically all scenarios of moduli stabilization. It is well-known that contributions to the instanton

superpotential are proportional to exp(−Vol(C)), where C is the (calibrated) cycle wrapped by the

string or the brane. However, more detailed calculations including the pre-factor of this exponential

are often difficult to carry out and explicit results are few and far between. In particular, it is not

easy to determine whether the instanton superpotential is zero or non-zero.

In this paper, we are concerned with superpotentials from string worldsheet instantons in heterotic

compactifications on Calabi-Yau three-folds X with vector bundles V → X. For such compactifica-

tions, the instanton superpotential can receive a contribution WC ∼ exp(−Vol(C)) from each second

homology class C, where all isolated, genus zero holomorphic curves Ci, i = 1, . . . , nC , in the class C
contribute to the pre-factor in WC .

Beasley and Witten [12] have studied linear and half-linear sigma models and have shown that the

contributions from the curves Ci sum up to zero, and, hence, that WC vanishes, under fairly general

assumptions (see also Refs. [13–16]). On the other hand, a number of papers [17–20] have produced

examples with a non-vanishing WC , thus apparently evading the vanishing theorems of Ref. [12].

There are two obvious resolutions: Either there is a problem with the geometric methods used to

calculate the instanton contributions or the examples considered violate one of the assumptions

underlying the vanishing theorems of Beasley and Witten. The results of Ref. [20], points to the

latter being the correct explanation.
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More specifically, one of the assumptions underlying the vanishing theorems is compactness of the

instanton moduli space. Unfortunately, this assumption is not easily checked in general. A nice

straightforward method, due to Bertolini and Plesser [21], is only available if a GLSM formulation

of the model can be found. This limits the models for which the assumptions can be checked with

this method and requires, among other things, that the bundle V is given as a monad bundle.

However, in Ref. [20] the authors have identified a number of models for which the geometric cal-

culation can be carried out and a GLSM formulation can be found. In all those cases, the result of

the geometric calculation turn out to be consistent with the vanishing theorems, as formulated by

Bertolini and Plesser.

In the present paper, we would like to invert the logic and assume, based on the evidence in Ref. [20],

that the standard geometric methods to calculate instanton superpotential are indeed correct and

consistent with the vanishing theorems. By applying these methods we would like to address two

main questions.

• Can we find simple conditions for the vanishing/non-vanishing of the instanton superpotential

based solely on the geometric data (X,V )? These can be thought of as geometric analogues

of the Bertolini-Plesser GLSM conditions, but applicable to a wider class of models for which

no GLSM description is known.

• How “common” is it for the instanton superpotential to be vanishing or non-vanishing?

As we will see, the first question can be partially answered in terms of simple cohomology conditions

and a certain affine Hilbert function which we introduce. Analyzing these, we find that a non-

vanishing instanton superpotential only arises within a specific sub-class of bundles V , but that it

is common to be non-vanishing within this sub-class.

The plan of the paper is as follows. In the next section, we review the standard geometric method to

calculate string instanton superpotentials. As we will see, this method requires explicit knowledge

of the isolated, genus zero curves Ci, which can be difficult to determine explicitly. In Section 3, we

introduce a class of (complete intersection) Calabi-Yau manifolds where these curves can be found,

at least for certain homology classes C. Basic features of common vector bundle constructions,

including line bundle sums, monad bundles and extension bundles, relevant for our discussion of

instantons, are summarized in Section 4. The requisite mathematical background on coordinate

rings and Hilbert functions is reviewed in Section 5. In Section 6, we formulate the Hilbert function

criterion for non-vanishing instanton superpotentials and apply it to a number of examples. We

conclude in Section 7.

2 Geometric calculation of instanton superpotentials

In this section, we first review a method for calculating instanton superpotentials based on techniques

from algebraic geometry (see, for example, Refs. [8, 10,11] for more details).

We are working in the context of E8 × E8 heterotic string compactifications on Calabi-Yau three-

folds to four-dimensional theories with N = 1 supersymmetry. Our main object of interest is the

superpotential of the four-dimensional theory generated by string instanton effects.

The basic data which defines the compactification consist of a Calabi-Yau three-fold X and a holo-

morphic, poly-stable vector bundle V → X with c1(V ) = 0 and a structure group which can be

embedded into E8. In general, there is also another bundle whose structure group embeds into the

second E8 factor and/or five branes wrapping holomorphic curves in X. Details of these further
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ingredients are not really relevant for our discussion but we would like to ensure that there exist

choices of a second bundle or five-branes such that the compactification is anomaly-free and respects

supersymmetry. This is guaranteed if we demand that the curve dual to c2(TX) − c2(V ) is an el-

ement of the Mori cone of X for a poly-stable V . In this case, an anomaly-free, supersymmetric

completion can, for example, be achieved by wrapping five-branes on a holomorphic curve with class

c2(TX)− c2(V ).

The instanton superpotential W in the resulting four-dimensional theory can be written as a sum

W =
∑
CWC over contributions WC which are associated to classes C ∈ H2(X,Z) in the second ho-

mology of X. We will usually focus on one of these homology classes C and will attempt to compute

WC . The superpotential term WC receives contributions from the isolated, genus zero holomorphic

curves with class C. We denote these curves by Ci, where i = 1, . . . , nC and nC is the genus zero

Gromov-Witten invariant. Schematically, the superpotential term WC can be written as

WC =

[
nC∑
i=1

PfaffCi

]
exp

(
−
∫
C
(J + iB)

)
(2.1)

where J is a Kähler form on X, B is the NS two-form and PfaffCi is the Pfaffian. Its precise form in

terms of differential operators on the curve Ci can be found, for example, in Ref. [6]. The instanton

superpotential associated to the class C is, of course, proportional to the exponent exp(−Vol(C)).
The (one-loop) pre-factor in Eq. (2.1) corresponds to the various contributing isolated, genus zero

curves Ci with class C which are wrapped by instantonic strings.

From a theoretical perspective as well as in the context of physical applications, such as for example

in applications to moduli stabilization, it is crucial to know whether the pre-factor
∑

i PfaffCi in

Eq. (2.1) is zero or non-zero. This is the main question we will address in the present paper.

How can the Pfaffians PfaffCi be computed in practice? The key statement [10] underlying the

algebraic computation is formulated in terms of the bundle

Vi := V |Ci ⊗OP1(−1) (2.2)

and asserts the following equivalence.

H0(Vi) 6= 0 ⇐⇒ PfaffCi = 0 . (2.3)

Broadly speaking, the idea is to work out the cohomology on the left-hand side, rather than comput-

ing the Pfaffian directly. More specifically, we note that the value of this cohomology does depend

on the choice of moduli, that is, on the complex structure moduli of X and on the bundle moduli

of V . Here we will generally assume that the complex structure moduli of X have been fixed to

suitably generic values and focus on the dependence on the bundle moduli of V , which we denote

as b = (bα). Of course it is possible that the cohomology in (2.3) is non-zero for all values of b. In

this case, the Pfaffian, as a function of b, vanishes identically.

A more interesting situation arises when the cohomology in (2.3) vanishes for generic values of b but

has a “jumping locus” in bundle moduli space where it acquires a non-zero value. As we will see,

such a jumping locus is described by an equation of the form fi(b) = 0, where fi is a holomorphic

function. Since this function fi and the Pfaffian PfaffCi have an identical zero locus they must be

proportional. Hence, we can write

WC =

[
nC∑
i=1

λifi(b)

]
exp

(
−
∫
C
(J + iB)

)
, (2.4)
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where λi ∈ C are constants.

Unfortunately, we do not currently know how to compute the constants λi in Eq. (2.4), at least not

with algebraic methods. In fact, these constants are tied up with a rather subtle interpretation [6]

of the NS two-form field B. Unfortunately, our ignorance in this respect somewhat obstructs our

ability to answer the question about the vanishing of WC . Luckily, not all is lost if the fi are indeed

non-trivial functions of the moduli b, as is frequently the case. Then we have

(fi)i=1,...,nC linearly independent functions =⇒ WC 6= 0 . (2.5)

This is the basic criterion which will underlie much of our discussion. It allows for a definite

conclusion if the functions fi are linearly independent - in this case WC is a non-zero function. If

the fi are linearly dependent the answer depends on the unknown constants λi. If their values are

such that they realise the linear dependence relation
∑

i λifi = 0 then WC vanishes, otherwise WC
is still non-zero.

Any computation along the above lines requires, in a first instance, explicit knowledge of the isolated,

genus-zero curves1 Ci in a given class C. Finding these curves can be quite non-trivial, so any concrete

progress depends on a setting where these curves can be found. We will now review how this can

be done for a certain class of Calabi-Yau manifolds.

3 The Calabi-Yau manifolds

3.1 General set-up

We consider an ambient space of the form A = P1×B, where B = Pn1×· · ·×Pnm , with homogeneous

coordinates x = (x0, x1) for the P1 factor and y = (yα,0, . . . , yα,nα)α=1,...,m for the other factors. In

this ambient space, we define complete intersection Calabi-Yau manifolds (CICYs) X which are

specified by a configuration matrix

type I : X ∈

[
P1 1 1 0 · · · 0

B q1 q2 q3 · · · qK

]
, type II : X ∈

[
P1 2 0 · · · 0

B q1 q2 · · · qK

]
. (3.1)

Every column of the configuration matrix indicates the multi-degree of a homogeneous polynomial

Pa = Pa(x, y) and the CICY manifold X is the common zero locus of these polynomials. The

Calabi-Yau condition, c1(TX) = 0, is equivalent to the degrees in each row of the configuration

matrix summing up to the dimension of the projective space plus one. For P1 this leaves only two

possible patterns for the degree and this is how the above two types arise.

The point about these CICY manifolds, as shown in Ref. [18], is that the isolated, genus zero curves

in the class C which corresponds to the first P1 factor can be determined rather straightforwardly.

We briefly review how this works, starting with type I. In this case, the defining polynomials can

be written as
P1(x, y) = x0Q1(y) + x1Q2(y)

P2(x, y) = x0Q3(y) + x1Q4(y)

Pa(x, y) = Qa+2(y) for a > 2 ,

(3.2)

where Q1 and Q2 have multi-degree q1, Q3 and Q4 have multi-degree q2 and Qa+2 for a > 2 has

multi-degree qa. For type II, the analogous decompositions are

P1(x, y) = x20Q1(y) + x0x1Q2(y) + x21Q3(y)

Pa(x, y) = Qa+2(y) for a > 2
(3.3)

1We focus on the dominant instanton contributions, which arise from curves with single wrapping.
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where Q1, Q2 and Q3 have multi-degree q1 and and Qa+2 for a > 2 has multi-degree qa. For either

type, the defining equations P1(x, y) = · · · = PK(x, y) = 0 of the CICY manifold are solved for all

x ∈ P1 if

Q1(y) = Q2(y) = · · · = QK+2(y) = 0 . (3.4)

These last equations define a zero-dimensional complete intersection in the space B which cor-

responds to a finite number of points Yi. This finite point set can also be represented by the

configuration matrices

type I : {Yi} ∈
[
B q1 q1 q2 q2 q3 · · · qK

]
type II : {Yi} ∈

[
B q1 q1 q1 q2 · · · qK

]
.

(3.5)

In this way, we have identified a number of isolated, genus-zero curves P1 × Yi ⊂ X, where i =

1, . . . , nC in the class C associated to the first P1 factor. By computing the Gromov-Witten invariant

for this class [18], it can be shown that this is indeed the complete set of such curves.

For the calculation of instanton superpotentials along the lines described in Section 2, we need to

find the isolated, genus-zero curves explicitly. The above set-up presents us with a straightforward

way to do this by solving the equations (3.4) for the loci Yi of these curves in the “transverse”

space B. Note that, while this is conceptually simple, it can still be very hard to carry out in

practice. Finding the exact solutions to Eqs. (3.4) is impossible for anything but the simplest cases

and even numerical solutions can be difficult to come by. The alternative algebraic approach we will

be formulating is circumventing this problem - it requires no explicit knowledge of the points Yi.

Finally, we introduce an algebraic descriptions of the above set-up. The point set {Yi} is a zero-

dimensional algebraic variety but there are two, subtly different ways to think about this. For one,

we can think of {Yi} as a projective sub-variety of B and associate to it the projective ideal

I = 〈Q1, . . . , QK+2〉 . (3.6)

Alternatively, we can also think about the point set {Yi} as an affine variety. To this end, we

focus on the patch U0 of B where all yα,0 6= 0 and we assume that the defining polynomials Qa are

sufficiently generic such that all points Yi are contained in U0. Then, we can think of the point set

{Yi} as an affine sub-variety of U0 and associate to it an ideal J which is obtained from I by adding

the “localising” generators yα,0 − 1. Hence, J is explicitly given by

J = 〈Q1, . . . , QK+2, y1,0 − 1, . . . , ym,0 − 1〉 . (3.7)

Associated to the ideals I and J are projective and affine coordinate rings, respectively, and we have

the following maps between those rings:

C[y]
r−→ S

`−→ A with S :=
C[y]

I
, A :=

C[y]

J
. (3.8)

Here, r maps a polynomial in C[y] to its associated class in S and ` is a localisation map, effectively

carried out by setting all yα,0 = 1. Note that the affine ring A is, in fact, finite-dimensional with

dimension equal to nC , the number of points Yi.

As we will see, these algebraic descriptions of the curve loci {Yi} in terms of coordinate rings are

key to our subsequent discussion of instantons. In particular, the rings S and A do not explicitly

depend on the points Yi but merely on the polynomials Qa. This feature means that out algebraic

approach will not rely on the explicit knowledge of these points.
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3.2 A few simple examples

It is useful to introduce a few simple examples which can be used to illustrate our method as we

go along. We emphasise that the following examples are specifically chosen for their simplicity,

particularly a small number, nC , of curves, so that an explicit “on paper” treatment is possible. Our

method will of course not be restricted to such simple cases and some more complicated examples

will be described later.

Example 1: A type I example with two projective factors

Consider the CICY manifold X (number 7867 in the standard list [22,23]) with configuration matrix

X ∈

[
P1 0 0 1 1

P6 3 2 1 1

]2,68
−132

x0, x1
y0, . . . , y6

(3.9)

where the Hodge numbers h1,1(X), h2,1(X) are attached as a superscript and the Euler number as

a subscript. The single-wrapping Gromov-Witten invariant associated to the class of the P1 factor

is nC = 6 and the configuration matrix specifying the six loci Yi of these curves in the transverse

space P6 is

{Y1, . . . , Y6} ∈
[
P6 3 2 1 1 1 1

]
∼=
[
P2 3 2

]
. (3.10)

The last equivalence follows by repeated application of the equivalence [Pn | 1] ∼= Pn−1. In order to

find the points Yi explicitly, we make a particularly simple choice for the polynomials Qa, namely

Q1 = y31 − y30 , Q2 = y22 − y20 , Qa = ya for a = 3, . . . , 6 . (3.11)

Then, the six points are given by

{Yi} = {[1 : αq : (−1)s : 0 : · · · : 0] ∈ P6 | q = 0, 1, 2 , s = 0, 1} , (3.12)

where α = exp(2πi/3). For the projective and affine coordinate ring of these points we have

S =
C[y0, . . . , y6]

〈y31 − y30, y22 − y20, y3, y4, y5, y6〉
∼=

C[y0, y1, y2]

〈y31 − y30, y22 − y20〉
(3.13)

A =
C[y0, . . . , y6]

〈y31 − y30, y22 − y20, y3, y4, y5, y6, y0 − 1〉
∼=

C[y1, y2]

〈y31 − 1, y22 − 1〉
= Span([1], [y1], [y

2
1], [y2], [y1y2], [y

2
1y2]) . (3.14)

In the last expression the square brackets indicate the class in A and we see explicitly that A is

six-dimensional. The existence of a basis of A with monomial representatives is a general feature of

such affine coordinate rings for zero-dimensional varieties, as we discuss in Section 5.

Example 2: A type II example with two projective factors

The CICY manifold X (with number 7888 in the standard list [22,23]) is defined by the configuration

matrix

X ∈

[
P1 0 2

P4 4 1

]2,86
−168

x0, x1
y0, . . . , y4

. (3.15)

The single-wrapping Gromov-Witten invariant for the class associated to the P1 factor is nC = 4

and the loci Yi of the four curves in P4 are described by the configuration matrix

{Y1, Y2, Y3, Y4} ∈
[
P4 4 1 1 1

]
∼=
[
P1 4

]
. (3.16)
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For a simple choice of defining polynomials we can explicitly compute the four points.

Q1 = y41 − y40 , Qa = ya for a = 2, 3, 4 ⇒ Yq = [1 : iq−1 : 0 : 0 : 0 : 0], q = 0, 1, 2, 3 .

(3.17)

The projective and affine coordinate rings of these four points are given by

S =
C[y0, . . . , y4]

〈y41 − y40, y2, y3, y4〉
∼=

C[y0, y1]

〈y41 − y40〉
(3.18)

A =
C[y0, . . . , y4]

〈y41 − y40, y2, y3, y4, y0 − 1〉
∼=

C[y1]

〈y41 − 1〉
= Span([1], [y1], [y

2
1], [y31]) . (3.19)

Example 3: A type I example with three projective factors

For a more complicated type I example with three projective factors we consider the CICY X

(number 7804 in the standard list [22,23])) with configuration matrix

X ∈

 P1 0 1 1

P2 1 1 1

P3 3 1 0


3,57

−108

x0, x1
ỹ0, ỹ1, ỹ2
y0, y1, y2, y3

. (3.20)

The single-wrapping Gromov-Witten invariant in the P1 direction is nC = 3 and the loci Yi of these

three curves in P2 × P3 are described by the configuration matrix

{Y1, Y2, Y3} ∈

[
P2 1 1 1 1 1

P3 3 1 1 0 0

]
∼=
[
P3 3 1 1

]
∼=
[
P1 3

]
. (3.21)

With simple defining equations

Q1 = ỹ0y
3
1 − ỹ0y30 , Q2 = ỹ0y2 Q3 = ỹ0y3 , Q4 = ỹ1 , Q5 = ỹ2 , (3.22)

the three points are explicitly given by

Yq = ([1 : 0 : 0], [1 : αq−1 : 0 : 0]), q = 0, 1, 2 , (3.23)

where α = exp(2πi/3). For the projective and affine coordinate rings of these points we have

S =
C[ỹ0, ỹ1, ỹ2, y0, y1, y2, y3]

〈ỹ0y31 − ỹ0y30, ỹ0y2, ỹ0y3, ỹ1, ỹ2〉
∼=

C[y0, y1]

〈y31 − y30〉
(3.24)

A =
C[ỹ0, ỹ1, ỹ2, y0, y1, y2, y3]

〈ỹ0y31 − ỹ0y30, ỹ0y2, ỹ0y3, ỹ1, ỹ2, ỹ0 − 1, y0 − 1〉
∼=

C[y1]

〈y31 − 1〉
= Span([1], [y1], [y

2
1]) . (3.25)

Example 4: A type II example with three projective factors

Our final example is a CICY X (number 7881 in the standard list [22,23]) with configuration matrix

X ∈

 P1 0 2

P1 2 0

P3 3 1


3,75

−144

x0, x1
y0, y1
ỹ0, ỹ1, ỹ2, ỹ3

(3.26)

and a single-wrapping genus zero Gromov-Witten invariant for the class associated to the first P1

factor of nC = 2. The loci Yi ∈ P1 × P3 of the two curves in the transverse space are described by

the configuration matrix

{Y1, Y2} ∈

[
P1 2 0 0 0

P3 3 1 1 1

]
∼=
[
P1 2

]
. (3.27)
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With simple choices for the defining equations, these two points are easily computed:

Q1 = ỹ30y
2
1 − ỹ30y20 , Q2 = ỹ1 , Q3 = ỹ2 , Q4 = ỹ3 ⇒ Y± = ([1 : ±1], [1 : 0 : 0 : 0]) .

(3.28)

The projective and affine coordinate rings of these two points are

S =
C[y0, y1, ỹ0, ỹ1, ỹ2ỹ3]

〈ỹ30y21 − ỹ30y20, ỹ1, ỹ2, ỹ3〉
∼=

C[y0, y1]

〈y21 − y20〉
(3.29)

A =
C[y0, y1, ỹ0, ỹ1, ỹ2ỹ3]

〈ỹ30y21 − ỹ30y20, ỹ1, ỹ2, ỹ3, y0 − 1, ỹ0 − 1〉
∼=

C[y1]

〈y21 − 1〉
= Span([1], [y1]) (3.30)

4 The bundle

Our next step is the construction of vector bundles V → X over the CICY manifolds introduced

in the previous section. There are, of course, many ways to construct such bundles. Here we focus

on three standard methods, namely, line bundle sums, extension bundles and monad bundles. We

consider each of these classes in turn and discuss how they relate to the geometric method for

instanton calculations outlined in Section 2.

4.1 Line bundle sums

Recall that we are working with CICY manifolds X ⊂ A in an ambient space of the form A = P1×B,

with B an arbitrary product of projective factors. Line bundles on X are denoted by OX(k, k̂), where

k is the degree in the P1 direction and k̂ the multi-degree in the factors of B. As our vector bundle

we take a rank r ≤ 8 line bundle sum

V =
r⊕

a=1

OX(ka, k̂a) . (4.1)

As usual, we impose c1(V ) = 0 so that an embedding into E8 is possible and this is equivalent to

c1(V ) = 0 ⇐⇒
r∑

a=1

ka =
r∑

a=1

k̂a = 0 . (4.2)

To guarantee bundle supersymmetry we require that there is a locus in the Kahler moduli space

where the slopes of all line bundles vanish. Finally, we require that the curve dual to c2(TX)−c2(V )

is in the Mori cone of X so that there exist a supersymmetric, anomaly-free completion of the model.

These conditions impose further constraints on the line bundle integers ka and k̂a which can be easily

worked out. We refrain from doing so as the details are not relevant for our discussion of instanton

effects.

From Eq. (2.3), we need to consider the bundles Vi = V |Ci ⊗ OP1(−1) in order to calculate the

Pfaffians. Remembering that the curves Ci are given by a point in B times the first P1 factor, these

bundles are easily computed by restricting the line bundles to the degrees in the P1 direction.

Vi = V |Ci ⊗OP1(−1) =

r⊕
a=1

OP1(ka − 1) . (4.3)

Recall that the cohomology dimensions for line bundles on P1 is governed by the formulae

h0(OP1(k)) =

{
k + 1 for k ≥ 0

0 for k < 0
, h1(OP1(k)) =

{
0 for k ≥ 0

−k − 1 for k < 0
. (4.4)
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This implies immediately that

h0(Vi) =
∑

{a|ka≥0}

ka . (4.5)

Combining this result with Eq. (2.3) and Eq. (4.2) leads to a very simple criterion for the vanishing

of the instanton superpotential.

At least one ka 6= 0 ⇐⇒ WC = 0 . (4.6)

In other words, the only cases which lead to non-vanishing instanton superpotentials are the ones

where all line bundles restrict trivially to the curves Ci.

In conclusion, for line bundle sums we have a rather simple and satisfactory criterion for the vanishing

of the instanton superpotential WC . However, note that line bundle sums typically do have moduli

and represent special “split loci” in a moduli space of bundles which generically have a non-Abelian

structure group. The vanishing of WC for a line bundle sum does not necessarily imply that WC
remains zero once we move away from the line bundle locus in moduli space. To address this problem

we need to consider other bundle constructions which allow for non-Abelian structure groups.

4.2 Monad and extension bundles

Extensions and monads are two standard methods to construct bundles with a non-Abelian structure

group. We would now like to consider these two classes and summarize how they relate to instanton

superpotential calculations.

The monad and extension bundles will be built from two line bundle sums

A =

rA⊕
α=1

OX(aα, âα) , B =

rB⊕
β=1

OX(bβ, b̂β) . (4.7)

where we recall that the first entries aα, bβ denote the degree in the P1 direction and âα, b̂β are the

multi-degrees in the transverse space B. It is also useful to introduce the restrictions of these line

bundle sums to the curves Ci, tensored with OP1(−1), since these bundles determine the properties

of the instantons.

Ai := A|Ci ⊗OP1(−1) =
⊕
α

OP1(aα − 1) , Bi := B|Ci ⊗OP1(−1) =
⊕
β

OP1(bβ − 1) . (4.8)

In terms of the above line bundle sums, monad and extension bundles V → X are defined by short

exact sequences and their properties are summarized in the following table.

monads extensions

sequence 0 −→ V −→ A
F−→ B −→ 0 0 −→ A −→ V −→ B −→ 0

map F ∈ H0(B ⊗A∗) δ ∈ Ext1(B,A) ∼= H1(A⊗B∗)
rk(V ) rA − rB rA + rB
c1(V ) c1(A)− c1(B) c1(A) + c1(B)

H0(Vi) Ker
(
H0(Ai)

δi−→ H0(Bi)
)

Ker
(
H0(Bi)

δi−→ H1(Ai)
)

For either construction, we should impose that r(V ) ≤ 8 and c1(V ) = 0 which leads to certain

constraints on the line bundle integers. Further constraints arise from bundle superymmetry and

the anomaly conditions but there is no need to discuss these in detail. It is worth noting that the
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cohomology dimensions which appear in the last row can be easily computed from Eq. (4.4) and are

given by

h0(Ai) =
∑

{α|aα≥0}

aα , h0(Bi) =
∑

{β|bβ≥0}

bβ , h1(Ai) = −
∑

{α|aα≤0}

aα . (4.9)

In analogy with Eq. (4.8), we also introduce the restriction

Vi := V |Ci ⊗OP1(−1) (4.10)

of V to the curve Ci. Since the index χ(Vi) = c1(V ) = 0 vanishes from the index theorem we

conclude that

h0(Vi) = h1(Vi) . (4.11)

Next, consider the long exact sequence in cohomology associated to the monad sequence restricted

to Ci.

0 −→ H0(Vi) −→ H0(Ai)
δi−→ H0(Bi)

−→ H1(Vi) −→ H1(Ai) −→ H1(Bi) −→ 0
. (4.12)

Combining this sequence with the equality (4.11) shows that whenever h0(Ai) 6= h0(Bi) we must

have h0(Vi) 6= 0. The analogous long exact sequence for extensions

0 −→ H0(Ai) −→ H0(Vi) −→ H0(Bi)
δi−→ H1(Ai) −→ H1(Vi) −→ H1(Bi) −→ 0

, (4.13)

together with Eq. (4.11) leads to a similar conclusion. For h0(Bi) 6= h1(Ai) we must necessarily have

h0(Vi) 6= 0. Combining these observations with the criterion (2.3) then proves the simple vanishing

statement {
h0(Ai) 6= h0(Bi) for monads

h0(Bi) 6= h1(Ai) for extensions

}
⇒ WC = 0 . (4.14)

In other words, all cases with a non-zero instanton superpotential must necessarily satisfy

h0(Ai) = h0(Bi) for monads , h0(Bi) = h1(Ai) for extensions , (4.15)

and, from now on, we will assume these relations are satisfied. Then, we can think of the maps δi
as square matrices and introduce the determinants

fi = det(δi) . (4.16)

Clearly, H0(Vi) 6= 0 if and only if fi = 0 and, hence, the fi are the functions of the same name which

we have introduced in Section 2 and which enter the criterion (2.5). The maps δi can be computed

by restricting the monad map F or the extension map δ to the cycle Ci, and then working out the

induced map on cohomology. In cases where the monad and extension maps descend from ambient

space polynomials, on which we focus here, this always leads to functions fi which can be expressed

as

fi = f |Ci , f ∈ C[y]k , (4.17)

that is, as a restriction to Ci of polynomials f with a certain multi-degree k in the directions of

the transverse space B. Different choices of f with this multi-degree reflect different points in the

bundle moduli space - we can think of the coefficients of a general f ∈ C[y]k as (some of the) bundle

moduli b. Note that this considerably simplifies the structure of the discussion. All we need to know

is the multi-degree k in order to determine the crucial maps fi. It can be computed from the line

bundle integers âα and b̂β but the precise relation depends on the case. Our subsequent discussion

is largely independent of these details and merely starts with Eq. (4.17). Some examples of the

relation between k and the line bundle integers are provided in Section 6.2.
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5 Coordinate rings and Hilbert functions

In this section we review some basic mathematical facts about zero-dimensional varieties and their

coordinate rings and Hilbert functions. A useful mathematical reference for some of this material

is [24].

We briefly recall the algebraic set-up which we have already introduced in Section 3.1. For a product

B = Pn1 ×· · ·×Pnm of projective spaces with homogeneous coordinates y = (yα,0, . . . , yα,nα)α=1,...,m

we have the associated multi-graded coordinate ring C[y], with multi-degrees denoted by k =

(k1, . . . , km). It is also useful to introduce the standard open patch U0 of B where all yα,0 6= 0.

Assume we have a zero-dimensional variety consisting of a finite number of points {Y1, . . . , Yn} ⊂ B.

In the context of instanton calculations, these points are of course the loci of the isolated, genus-zero

curves in the transverse space B. We can think of this point set as a projective sub-variety of B
which is then described by a projective ideal I ⊂ C[y]. Alternatively, if all points Yi are contained

in U0 we can think of it as an affine variety whose associated ideal J = I + 〈y1,0 − 1, . . . , ym,0 − 1〉
is obtained from I by adding the localising polynomials yα,0 − 1.

The map r : C[y] → S introduced in Eq. (3.8) is defined by r(f) = [f ], that is, it takes the class

of a polynomial within S = C[y]/I. The map ` : S → A is the localisation map which, in practice,

amounts to setting all yα,0 = 1. The affine coordinate ring A = C[y]/J is finite-dimensional and its

dimension dim(A) = n equals the number of points it describes. It is also known [24] that is has a

basis with monomial representatives.

5.1 Hilbert functions

The rings C[y] and S are multi-graded and they have standard Hilbert functions. For the ring S,

the Hilbert function hS and the Hilbert series HS are defined by

hS(k) = dim(Sk) , HS(t) =
∑
k

hS(k)tk . (5.1)

In other words, the Hilbert function gives the dimension of each multi-degree part Sk of S while the

Hilbert series is simply the generating series for the Hilbert function (where tk = tk11 · · · tkmm ). For

sufficiently large degrees k, the Hilbert function is described by a polynomial – the so-called Hilbert

polynomial – whose degree equals the dimension of the associated variety. Since we are concerned

with a zero-dimensional variety, the Hilbert function becomes a constant for large k which is, in

fact, equal to the number n of points.

hS(k)→ n for k � 1 . (5.2)

There are standard methods to compute the Hilbert function hS , in particular by using syzygies in

cases where the variety is a complete intersection. Since hS is not the main object of interest for

our discussion we refrain from providing further details (see, for example, Ref. [25]).

The affine ring A is not graded but filtered, with the filtration induced by the sub-algebras A≤k of

elements with multi-degree less or equal than k. The affine Hilbert function and series for A are

somewhat less common and are defined by

hA(k) := dim(A≤k) , HA(t) =
∑
k

hA(k)tk . (5.3)

From Eq. (3.8), we have A≤k = `(Sk), which implies that

hS(k) ≥ hA(k) (5.4)
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for all k. Unfortunately, equality does not always hold since the map `|Sk is not necessarily injective.

Since A has a finite basis with monomial representatives, it is clear that hA has the same asymptotic

behaviour as hS , namely

hA(k)→ n for k � 1 . (5.5)

How can the affine Hilbert function hA be computed? The following provides a basic algorithm.

1. Compute a Groebner basis G = (gi) of J .

2. Compute a monomial basis B = (bi) of (class representatives of) A by collecting all monomials

not contained in 〈LT(gi)〉, where LT(gi) denotes the leading term of gi as induced by the

ordering chosen in the Groebner basis computation.

3. Select a monomial basis (mi) of C[y]k and compute its remainders mG
i relative to the Groebner

basis G. These remainders are linear combinations of the basis B.

4. Find the dimension of the space spanned by the remainders mG
i . This dimension equals hA(k).

5.2 Examples

Let us illustrate Hilbert functions and their computation by continuing with the example from

Section 3.2.

Example 1: Recall that this examples involves six points in P6 described by the configuration

matrix

{Y1, . . . , Y6} ∈
[
P6 3 2 1 1 1 1

]
∼=
[
P2 3 2

]
, (5.6)

and with coordinate rings

S ∼=
C[y0, y1, y2]

〈y31 − y30, y22 − y20〉
, A ∼=

C[y1, y2]

〈y31 − 1, y22 − 1〉
= Span([1], [y1], [y

2
1], [y2], [y1y2], [y

2
1y2]) . (5.7)

Using standard methods, the Hilbert series and Hilbert function for S are obtained as

HS(t1) =
1 + 2t1 + 2t21 + t31

1− t1
⇒ hS(k) =

{
2k + 1 for k < 3

6 for k ≥ 3
. (5.8)

To compute the affine Hilbert function we can follow the above algorithm. First we need to compute

a Groebner basis G for the ideal

J = 〈y31 − y30, y22 − y20, y0 − 1〉 . (5.9)

In lexicographic ordering, the Groebner basis and its leading terms are

G = (y0 − 1, y31 − 1, y22 − 1) ⇒ 〈LT(gi)〉 = 〈y0, y31, y22〉 . (5.10)

Collecting terms not contained in 〈LT(gi)〉, we find

B = (1, y1, y
2
1, y2, y1y2, y

2
1y2) , (5.11)

and this is indeed the monomial basis for A given in Eq. (5.7): Next, we compute the monomial

basis and its remainders. Let us look at k = 2. A monomial basis for C[y]2 is simply

(mi) = (y20, y0y1, y0y2, y
2
1, y1y2, y

2
2) . (5.12)
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Reducing this modulo (5.10), we find

(mG
i ) = (1, y1, y2, y

2
1, y1y2, 1) . (5.13)

Since the space spanned by the remainders is five-dimensional we have hA(2) = 5. Continuing along

those lines it is straightforward to verify that hA = hS , so in this case the two Hilbert functions

coincide.

Example 2: This example involves four points in P4 with configuration matrix

{Y1, Y2, Y3, Y4} ∈
[
P4 4 1 1 1

]
∼=
[
P1 4

]
. (5.14)

and coordinate rings

S ∼=
C[y0, y1]

〈y41 − y40〉
, A ∼=

C[y1]

〈y41 − 1〉
= Span([1], [y1], [y

2
1], [y31]) . (5.15)

The Hilbert series and function for S are given by

HS(t1) =
1 + t1 + t21 + t31

1− t1
⇒ hS(k) =

{
k + 1 for k < 3

4 for k ≥ 3
(5.16)

A quick inspection of the monomial basis for A in Eq. (5.15) shows that hA = hS , so again the

Hilbert functions coincide.

Example 3: This example involves three points in B = P2×P3 described by a configuration matrix

{Y1, Y2, Y3} ∈

[
P2 1 1 1 1 1

P3 3 1 1 0 0

]
, (5.17)

and with associated coordinate rings

S =
C[ỹ0, ỹ1, ỹ2, y0, y1, y2, y3]

〈ỹ0y31 − ỹ0y30, ỹ0y2, ỹ0y3, ỹ1, ỹ2〉
, A =

C[ỹ0, ỹ1, ỹ2, y0, y1, y2, y3]

〈ỹ0y31 − ỹ0y30, ỹ0y2, ỹ0y3, ỹ1, ỹ2, ỹ0 − 1, y0 − 1〉
(5.18)

The Hilbert series for S as a bit more complicated

HS(t) =
1− t1t52 + 2t1t

4
2 − t1t32 + t1t

2
2 − 2t1t2

(1− t1) (1− t2) 4
= 1 + t1 + 4t2 + 2t1t2 + · · · (5.19)

and we have expanded only up to terms of degree k ≤ (1, 1). The affine Hilbert function can be

computed algorithmically, as discussed, and the result is schematically shown in Fig. 1. We note

from Eq. (5.19) that hS(0, 1) = 4 while Fig. 1 indicates that hA(0, 1) < 3, in fact, hA(0, 1) = 2. This

is an example where the two Hilbert functions do not coincide - the map `|S(0,1)
is not injective.

Example 4: For this example, we have two points in B = P1 × P3 with configuration matrix

{Y1, Y2} ∈

[
P1 2 0 0 0

P3 3 1 1 1

]
, (5.20)

and coordinate rings

S =
C[y0, y1, ỹ0, ỹ1, ỹ2ỹ3]

〈ỹ30y21 − ỹ30y20, ỹ1, ỹ2, ỹ3〉
, A =

C[y0, y1, ỹ0, ỹ1, ỹ2ỹ3]

〈ỹ30y21 − ỹ30y20, ỹ1, ỹ2, ỹ3, y0 − 1, ỹ0 − 1〉
. (5.21)

The Hilbert series for S is given by

HS(k) =
1− t21t32

(1− t1) 2 (1− t2)
= 1 + 2t1 + t2 + 2t1t2 + · · · (5.22)

and the results for the affine Hilbert function is schematically shown in Fig. 1. It turns out that in

this case hA = hS so the two Hilbert functions coincide.
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Figure 1: Results for affine Hilbert function hA(k) in the k = (k1, k2) plane (with k1 on the horizontal axis and

k2 on the vertical axis) for Example 3 with nC = 3 (left) and Example 4 with nC = 2 (right). Blue points indicate

degrees for which hA(k) < nC and empty points satisfy hA(k) = nC .

5.3 Evaluation from coordinate rings

Recall that our goal is to use the criterion (2.5) for the non-vanishing of the instanton superpotential.

This requires us to work out the functions fi which are proportional to the Pfaffians. We have seen

in Eq. (4.17) that they can be obtained from fi = f(Yi), that is, by evaluating functions f ∈ C[y]k
of a certain multi-degree k at the loci Yi of the curves Ci. This is straightforward in principle but

might not be easy to carry out in practice since the points Yi may be hard to compute. We will

now propose an alternative method to calculate fi which does not rely on the explicit knowledge of

the points Yi but uses the affine coordinate ring A instead. See Ref. [24] for mathematical details

underlying this approach.

First recall that the affine coordinate ring A, associated to the point set {Y1, . . . , Yn}, is a finite-

dimensional vector space of dimension n. We can define a linear map by

µ : C[y]→ End(A) , µ(f)(a) := [f ] a , (5.23)

where [f ] = ` ◦ r(f) is the class of the polynomial f in A. Hence, for every polynomial f ∈ C[y] the

image µ(f) is a linear map on A which acts simply by the multiplication in the ring A. Since the

ring multiplication is commutative, we have

µ(f)µ(f̃) = µ(f̃)µ(f) (5.24)

for all f, f̃ ∈ C[y]. In other words, all linear maps on A obtained in this way commute with each

other. The main mathematical statement we will be relying on is the following [24]:

{f(Y1), . . . , f(Yn)} = {eigenvalues of µ(f)} . (5.25)

This means, the crucial quantities fi = f(Yi) proportional to the Pfaffians are given by the eigen-

values of the linear map µ(f) : A → A. Moreover, all maps µ(f) obtained for f ranging in C[y]k
commute and, hence, can be simultaneously diagonalised.

This discussion allows us to re-formulate our original problem of linear (in)dependence of fi in terms

of the properties of polynomials in the coordinate ring A. These properties can be studied using

standard methods of commutative algebra and Hilbert series. As a result the criterion for a non-

vanishing superpotential can be stated using the Hilbert function as will be considered in the next

section.
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6 A Hilbert function condition for instantons

We are now ready to combine our various observations and formulate a condition for a non-zero

instanton superpotential WC , based on the affine Hilbert function. After stating the condition in

general, we apply it to a range of examples.

6.1 The general condition

From our main criterion (2.5), we need to decide whether or not the quantities fi = f(Yi), where

i = 1, . . . , nC , viewed as functions of bundle moduli b, are linearly independent. A practical way to re-

formulate this is to choose a basis (fI)I=1,...,N of C[y]k and consider the N×nC matrix MIi = fI(Yi).

In terms of this matrix, the criterion (2.5) can be re-formulated as

rk(M) = nC ⇒ WC 6= 0 . (6.1)

Let us point out that here it is assumed that the polynomial f ∈ C[y]k is generic in the sense that

we span the entire space C[y]k as we vary its coefficients. In other words, f can be expanded in the

basis of (fI)I=1,...,N with all basis elements present in the expansion. Otherwise, if only N ′ < N

basis elements appear in the expansion of f , we have to restrict C[y]k to the subspace spanned by

these basis elements. The matrix M must now be constructed using the basis elements (fI)I=1,...,N ′

and is of the size N ′ × nC . However, the condition (6.1) remains the same.

Now consider the linear maps µ(fI) : A→ A, as defined in the previous section. All these maps are

simultaneously diagonalisable and the eigenvalues of µ(fI) are precisely the entries (MI1, . . . ,MInC)

of the Ith row of M . Hence, it follows that

rk(M) = dim(µ(C[y]k)) = dim(` ◦ r(C[y]k) = dim(A≤k) = hA(k) . (6.2)

This means the criterion (6.1) can be re-written in terms of the affine Hilbert function and then

reads

hA(k) = nC ⇒ WC 6= 0 . (6.3)

This is our main result. We can use the affine Hilbert function of the coordinate ring A, which

describes the locations of the curves Ci in the transverse space, to decide whether the instanton

superpotential WC is non-zero. To do this, we have to determine the relevant multi-degree k for

the bundle V in question. For common constructions, such as extension and monad bundles, this

degree can usually be read off from the defining data of the bundle. Some explicit examples of

this are provided below. The simple conclusion is that, whenever the affine Hilbert function hA(k)

takes its maximal value nC (equal to the number of curves Ci), the instanton superpotential must

be non-zero. For cases with hA(k) < nC we cannot draw a definite conclusion and WC can be zero

or non-zero, depending on the undetermined constants λi in Eq. (2.4). Note that the criterion (6.3)

does not depend on the precise locations of the points Yi, which might be difficult to compute from

the polynomial equations (3.4). It depends only on the Hilbert function of the coordinate ring A,

which can be computed using methods of commutative algebra.

The above result leads to a general picture for the non-vanishing of the instanton superpotential.

First of all, we see from Eqs. (4.14) that “most” patterns which arise in common bundle construc-

tions, such as monads and extensions, lead to a vanishing superpotential. However, there are specific

patterns, characterised by the conditions (4.15), where the superpontial can be non-zero. For such

cases, the answer depends on a multi-degree k which can be extracted from the relevant bundle

16



construction. The superpotential is non-zero if the Hilbert function criterion (6.3) is satisfied. As

Eq. (5.5) shows, this criterion will be satisfied for sufficiently large k. This means, within the

sub-class of bundles characterised by Eq. (4.15), a non-vanishing instanton superpotential is the

“typical” situation. We would now like to illustrate this general picture with a number of examples.

6.2 Examples

To set the scene, we indicate how the crucial multi-degree k can be extracted from a given bundle

construction. Consider a monad or extension bundle constructed from the line bundle sums

A =

(
±c 0 · · · 0

â1 â2 · · · ârA

)
, B =

(
c 0 · · · 0

b̂1 b̂2 · · · b̂rB

)
(6.4)

where each column contains the multi-degree of a line bundle, with the first row the degree in the P1

direction and the other rows the multi-degree in the transverse space B. The upper sign in the (1, 1)-

entry of A is for monads, the lower sign for extensions and c is a positive integer. Note that for either

case the condition (4.15) is satisfied, so we have indeed a pattern where the instanton contribution

can be non-vanishing. A quick calculation shows that the multi-degree k for this pattern is given

by

k = ±c(b̂1 − â1) , (6.5)

with the upper sign for monads and the lower sign for extensions. Similar relations can be derived

for other patterns. In the following, we will not be specific about this relation but rather present our

examples in terms of the multi-degree k. In this way, the results are applicable to a wide range of

bundles, using equations such as (6.5). We begin by revisiting our “running” examples, introduced

in Section (3.2).

Example 1: Our first example is for CICY manifold 7867 in the ambient space A = P1 × P6

defined by the configuration matrix (3.9). Its Picard number is h1,1(X) = 2 so k is, in fact, just a

single degree in this case. We have nC = 6 curves and the Hilbert function hA = hS , computed in

Eq. (5.8), together with the criterion (6.3), shows that

k ≥ 3 ⇒ WC 6= 0 . (6.6)

This illustrates our earlier statements that, within patterns of bundle constructions satisfying

Eqs. (4.15), non-zero instanton superpotentials are common.

Example 2: This is CICY manifold 7888 in the ambient space A = P1 × P4 with configuration

matrix (3.15). The Picard number is h1,1(X) = 2, so again k is a single degree, and there are nC = 4

curves. From the associated affine Hilbert function (5.16) (hA = hS in this case) we conclude that

k ≥ 3 ⇒ WC 6= 0 . (6.7)

Example 3: The CICY manifold 7804 is defined in the ambient space A = P1 × P2 × P3 with

configuration matrix (3.20). There are nC = 3 curves and since h1,1(X) = 3 we know that k = (k1, k2)

is a bi-degree. The affine Hilbert function in this case has been plotted in Fig. 1 and it indicates

that

k2 ≥ 2 ⇒ WC 6= 0 . (6.8)

Again, we see that the instanton superpotential is non-vanishing for “most” bi-degrees k = (k1, k2).

Example 4: CICY manifold 7881 is defined in the ambient spaceA = P1×P1×P3 with configuration
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matrix (3.26). It has nC = 2 curves and Picard number h1,1(X) = 3, so that k = (k1, k2) is a bi-

degree. The associated affine Hilbert function, plotted in Fig. 1, shows that

k1 ≥ 1 ⇒ WC 6= 0 . (6.9)

The above examples have been chosen for their relative simplicity, particularly a small number nC of

curves. We have computed the affine Hilbert function for a number of more complicated examples

with Picard number h1,1(X) = 3, using the algorithm described in Section 5.1. The results are shown

in Table 1. For all cases, k = (k1, k2) is a bi-degree and blue points in the figures correspond to

bi-degrees with hA(k) < nC while empty points indicate hA(k) = nC . From our main criterion (6.3)

all bi-degrees k with empty points in those plots leads to a non-vanishing instanton superpotential

WC .

7 Conclusion

In this paper, we have studied string instanton superpotentials for heterotic Calabi-Yau compactifi-

cations. Our main goal has been to find conditions for the vanishing/non-vanishing of the instanton

superpotential WC associated to a second homology class C of the Calabi-Yau manifold X. We have

considered bundles V → X constructed from line bundle sums, monads and extensions.

For line bundle sums we have found a simple criterion, Eq. (4.6), for the vanishing/non-vanishing

of the instanton superpotential WC . It shows that non-vanishing instanton superpotentials for line

bundle sums requires a special class of line bundles, which become trivial when restricted to the

curves Ci, but that within this class, the superpotential is non-vanishing.

For bundles with non-Abelian structure groups, constructed from monads or extensions, the picture

is somewhat more complicated. If certain cohomology dimensions of the constituent line bundles

are not equal, as in Eq. (4.14), the instanton superpotential WC vanishes. On the other hand, if

these dimensions are equal, as in Eq. (4.15), the superpotential can be vanishing or non-vanishing.

In such cases, a criterion for non-vanishing superpotentials can be formulated in terms of an affine

Hilbert function. This Hilbert function, hA, is associated to the coordinate ring A which describes

the loci Yi of the nC curves Ci in a transverse space. What we have shown (see Eq. (6.3)) is that

whenever hA(k) = nC , the instanton superpotential is non-zero. Here k is a multi-degree which can

be read off from the specific bundle construction. The asymptotic behaviour hA(k) → nC for large

k means that a non-vanishing instanton superpotential is a common feature within this class.

The first observation from these results is that non-vanishing instanton superpotentials are rare, in

the sense that they require a specific pattern when constructing the bundle V . However, within the

class of bundles following this pattern, the superpotential is either always non-zero (for line bundle

sums) or it is frequently non-zero (for monads and extensions). These observations may well provide

useful guidance for model-building, particularly in view of moduli stabilization.

There are several interesting directions to pursue. The current formulation of our Hilbert function

criterion depends on an ambient space of the form A = P1 × B, so that we can talk about the loci

Yi of the curves Ci in the transverse space B and introduce their associated coordinate ring A. It

would be desirable to generalise this condition so that it can be applied to more general manifolds,

possibly by introducing a coordinate ring associated to the union of all curves Ci. It is currently

not clear how to formulate this.
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configuration # nC hA

 P1 1 1 0 0

P3 2 0 1 1

P3 0 2 1 1


3,35

−64

6771 32
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0

1
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4
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6

 P1 1 1 0 0 0 0

P4 1 0 2 1 1 0

P4 0 1 0 1 1 2


3,39

−72

7208 8

0 1 2 3 4 5 6
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2

3

4

5
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 P1 2 0 0 0

P2 0 1 1 1

P4 2 1 1 1


3,45

−84

7585 24

0 1 2 3 4 5 6

0

1

2

3

4

5

6

 P1 1 1 0

P2 2 0 1

P3 1 2 1


3,46

−86

7610 32

0 1 2 3 4 5 6

0

1

2

3

4

5

6

 P1 1 1 0 0 0 0

P4 1 0 1 1 1 1

P4 0 1 1 1 1 1


3,47

−88

7636 6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Table 1: Affine Hilbert function hA(k) in the k = (k1, k2) plane (with k1 on the horizontal axis and k2 on the

vertical axis). Blue points have hA(k) < nC whereas empty points indicate that hA(k) = nC .
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Another deficit is that the criterion (6.3) only works in one direction. If hA(k) < nC we are not able

to draw a definite conclusion. Unfortunately, improving on this requires knowledge of the constants

of proportionality λi in the instanton superpotential (2.4), which are hard to compute. Moreover, it

is interesting that the condition for vanishing/non-vanishing instanton superpotentials depends on

the degrees k in the transverse space, while the compactness criterion of Bertolini-Plesser depends

on the degree of the line bundles of the curve class under investigation. However, the two degrees are

linked by anomaly cancellation and supersymmetry conditions, and we have shown for examples in

which a GLSM description exists that the two condition give the same result. It would be interesting

to show the equality of the two approaches algebraically.

Finally, our discussion has been limited to certain homology classes, related to P1 factors in the

ambient space, and it would be desirable to remove this limitation.
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