002706220 001__ 2706220
002706220 005__ 20240216080547.0
002706220 0248_ $$aoai:cds.cern.ch:2706220$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002706220 0247_ $$2DOI$$a10.1088/1361-6471/abf3ba
002706220 037__ $$9arXiv$$aarXiv:2007.14491$$chep-ex
002706220 037__ $$9arXiv:reportnumber$$aCERN-ACC-Note-2020-0002
002706220 037__ $$aJLAB-ACP-20-3180
002706220 035__ $$9arXiv$$aoai:arXiv.org:2007.14491
002706220 035__ $$9Inspire$$a1809802
002706220 041__ $$aeng
002706220 100__ $$aAgostini, P.$$uSantiago de Compostela U.$$vUniversidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
002706220 245__ $$aThe Large Hadron-Electron Collider at the HL-LHC
002706220 269__ $$aGeneva$$bCERN$$c13 Jan 2020
002706220 260__ $$c2021-12-20
002706220 300__ $$a364 p
002706220 500__ $$aSubmitted to J.Phys.
002706220 500__ $$9Inspire$$aSubmitted to J.Phys.
002706220 500__ $$9arXiv$$a373 pages, many figures, to be published by J. Phys. G
002706220 520__ $$aThe Large Hadron electron Collider, LHeC, is the means to move deep inelastic physics following HERA to the energy frontier of particle physics as it is being exploited by the HL-LHC. The paper presents a thorough update of the initial LHeC Conceptual Design Report (CDR) published in 2012. It comprises new results on the far reaching physics programme on parton structure, QCD dynamics, electroweak and top physics. It is shown how LHeC will open a new chapter of nuclear particle physics by extending the kinematic range in lepton-nucleus scattering by several orders of magnitude. Owing to an enhanced luminosity goal, the high centre of mass energy and the cleanliness of the neutral and charged current final states, the LHeC has a very remarkable Higgs programme and a promising potential to discover new physics beyond the Standard Model. The design is for concurrent LHeC and HL-LHC operation which paves the way for transforming the LHC in its final phase of operation to a high precision Higgs and electroweak physics facility with also a much increased range to explore new physics up to 100 TeV mass, as is demonstrated in a separate chapter. Building on the CDR, the paper presents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, SRF technology and interaction region designs. A lower energy, high current ERL facility, PERLE at Orsay, is described which uses the basic LHeC configuration parameters, a 3-turn racetrack, the source, and cryo-module designs, enabling it to serve as a development facility assisting the design and anticipated operation of the LHeC. The electron accelerator frequency is now chosen to be $801.58$\,MHz and the first 5-cell Niobium cavity is presented which has reached a $Q_0$ of $3 \cdot 10^{10}$ exceeding the design goal. An updated detector design, including a forward hadron tagger, is presented as a base for the acceptance, resolution and calibration goals which arise from the Higgs and PDF physics programme. The detector is shown to require an installation time of two years which is commensurate with typical LHC shutdown durations. The paper comprises a brief report of the LHeC international advisory committee with recommendations on the next steps to be made in preparing the possible endorsement of the LHeC as part of the LHC project. While the paper is dedicated to the LHeC, it also presents novel results on the FCC-eh which is designed to utilise the same ERL technology, or a relocated LHeC depending on future developments of the energy frontier collider landscape.
002706220 520__ $$9IOP$$aThe Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC’s conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
002706220 520__ $$9arXiv$$aThe Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operation. This report represents an update of the Conceptual Design Report (CDR) of the LHeC, published in 2012. It comprises new results on parton structure of the proton and heavier nuclei, QCD dynamics, electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics in extending the accessible kinematic range in lepton-nucleus scattering by several orders of magnitude. Due to enhanced luminosity, large energy and the cleanliness of the hadronic final states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, the report represents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, superconducting radio frequency technology and further components. Challenges of energy recovery are described and the lower energy, high current, 3-turn ERL facility, PERLE at Orsay, is presented which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution and calibration goals which arise from the Higgs and parton density function physics programmes. The paper also presents novel results on the Future Circular Collider in electron-hadron mode, FCC-eh, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
002706220 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002706220 540__ $$3publication$$aCC-BY-4.0$$uhttps://creativecommons.org/licenses/by/4.0/
002706220 542__ $$3publication$$dThe Author(s)$$g2021
002706220 595__ $$aCERN EDS
002706220 595__ $$zUNCL
002706220 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002706220 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002706220 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002706220 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002706220 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002706220 6531_ $$9CERN$$aLHC
002706220 6531_ $$9CERN$$aLHeC
002706220 6531_ $$9CERN$$aHL-LHC
002706220 6531_ $$9CERN$$aERL
002706220 6531_ $$9CERN$$aEnergy Recovery Linac
002706220 6531_ $$9CERN$$aSRF
002706220 6531_ $$9CERN$$aDetector
002706220 6531_ $$9CERN$$aQCD
002706220 6531_ $$9CERN$$aHiggs
002706220 6531_ $$9CERN$$aBSM
002706220 690C_ $$aCERN
002706220 690C_ $$aINTNOTE
002706220 690C_ $$aPUBLATS
002706220 690C_ $$aARTICLE
002706220 693__ $$pCERN HL-LHC
002706220 693__ $$aCERN LHC
002706220 693__ $$sCERN LHeC
002706220 693__ $$aCERN FCC
002706220 700__ $$aAksakal, [email protected]$$uKahramanmaras U.$$vKahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
002706220 700__ $$aAlekhin, [email protected]$$uHamburg U.$$uSerpukhov, IHEP$$vUniversität Hamburg, Hamburg, Germany$$vInstitute of High Energy Physics (IHEP), Protvino, Russia
002706220 700__ $$aAllport, [email protected]$$uBirmingham U.$$vUniversity of Birmingham, Birmingham, United Kingdom
002706220 700__ $$aAndari, N.$$uU. Paris-Saclay$$vUniversité Paris-Saclay, Saint-Aubin, France
002706220 700__ $$aAndre, K.D.J.$$uU. Liverpool (main)$$uCERN$$vUniversity of Liverpool, Liverpool, United Kingdom$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aAngal-Kalinin, D.$$uDaresbury$$uCockcroft Inst. Accel. Sci. Tech.$$vScience and Technology Facilities Council (STFC)—Daresbury Laboratory, Daresbury, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom
002706220 700__ $$aAntusch, S.$$uBasel U.$$vUniversität Basel, Basel, Switzerland
002706220 700__ $$aAperio Bella, L.$$uBeijing, Inst. High Energy Phys.$$vChinese Academy of Sciences—Institute of High Energy Physics (IHEP), Beijing, People’s Republic of China
002706220 700__ $$aApolinario, L.$$uLIP, Lisbon$$vLaboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Lisbon, Portugal
002706220 700__ $$aApsimon, R.$$uLancaster U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom$$vUniversity of Lancaster, Lancaster, United Kingdom
002706220 700__ $$aApyan, A.$$uYerevan Phys. Inst.$$vA Alikhanian National Laboratory (AANL), Yerevan, Armenia
002706220 700__ $$aArduini, G.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aAri, V.$$uAnkara U.$$vAnkara University, Ankara, Turkey
002706220 700__ $$aArmbruster, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aArmesto, N.$$uSantiago de Compostela U.$$vUniversidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
002706220 700__ $$aAuchmann, B.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aAulenbacher, K.$$uU. Mainz, PRISMA$$uMainz U.$$vJohannes Gutenberg University Mainz (JGU)—PRISMA Cluster of Excellence, Mainz, Germany$$vJohannes Gutenberg-Universität Mainz (JGU), Mainz, Germany
002706220 700__ $$aAzuelos, G.$$uMontreal U.$$vUniversité de Montréal, Montreal, Canada
002706220 700__ $$aBackovic, S.$$uMontenegro U.$$vUniversity of Montenegro, Podgorica, Montenegro
002706220 700__ $$aBailey, I.$$uLancaster U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom$$vUniversity of Lancaster, Lancaster, United Kingdom
002706220 700__ $$aBailey, S.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aBalli, F.$$uU. Paris-Saclay$$vUniversité Paris-Saclay, Saint-Aubin, France
002706220 700__ $$aBehera, S.$$uIndian Inst. Tech., Guwahati$$vDepartment of Physics, Indian Institute of Technology, Guwahati, Assam, India
002706220 700__ $$aBehnke, O.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aBen-Zvi, I.$$uRIKEN BNL$$vBrookhaven National Laboratory (BNL), Upton, United States of America
002706220 700__ $$aBenedikt, M.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aBernauer, J.$$uSUNY, Stony Brook$$uRIKEN BNL$$vStony Brook University, Stony Brook, United States of America$$vBNL Research Center, RIKEN, Upton, NY, United States of America
002706220 700__ $$aBertolucci, S.$$uCERN$$uU. Bologna (main)$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland$$vUniversità di Bologna, Bologna, Italy
002706220 700__ $$aBiswal, S.S.$$uRavenshaw U., Cuttack$$vRavenshaw University, Cuttack, India
002706220 700__ $$aBlümlein, J.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aBogacz, A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aBonvini, M.$$uINFN, Rome$$vIstituto Nazionale di Fisica Nucleare (INFN)—Sezione di Roma, Rome, Italy
002706220 700__ $$aBoonekamp, M.$$uIRFU, Saclay$$vCommissariat à l’Energie Atomique (CEA)—Institut de Recherche sur les Lois Fondamentales de l’Univers (IRFU), Gif-sur-Yvette, France
002706220 700__ $$aBordry, F.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aBoroun, G.R.$$uRazi U., Kermanshah$$vRazi University, Kermanshah, Iran
002706220 700__ $$aBottura, L.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aBousson, S.$$uU. Paris-Saclay$$vUniversité Paris-Saclay, Saint-Aubin, France
002706220 700__ $$aBouzas, A.O.$$uCINVESTAV, IPN$$vCentro de Investigación y de Estudios Avanzados (CINVESTAV), Mérida, Mexico
002706220 700__ $$aBracco, C.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aBracinik, J.$$uBirmingham U.$$vUniversity of Birmingham, Birmingham, United Kingdom
002706220 700__ $$aBritzger, D.$$jORCID:0000-0002-9246-7366$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, Munich, Germany
002706220 700__ $$aBrodsky, S.J.$$uSLAC$$vSLAC National Accelerator Laboratory, Menlo Park, United States of America
002706220 700__ $$aBruni, C.$$uU. Paris-Saclay$$vUniversité Paris-Saclay, Saint-Aubin, France
002706220 700__ $$aBrüning, O.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aBurkhardt, H.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aCakir, O.$$uAnkara U.$$vAnkara University, Ankara, Turkey
002706220 700__ $$aCalaga, R.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aCaldwell, A.$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, Munich, Germany
002706220 700__ $$aCalıskan, A.$$uIstanbul U.$$vGumushane University, Gumushane, Turkey
002706220 700__ $$aCamarda, S.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aCatalan-Lasheras, N.C.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aCassou, K.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aCepila, J.$$uPrague, Tech. U.$$vFaculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
002706220 700__ $$aCetinkaya, V.$$uDumlupinar U.$$vKutahya Dumlupinar University, Kutahya, Turkey
002706220 700__ $$aChetvertkova, V.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aCole, B.$$uColumbia U.$$vColumbia University, New York, United States of America
002706220 700__ $$aColeppa, B.$$uIndian Inst. Tech., Gandhinagar$$vIndian Institute of Technology (IIT), Gandhinagar, India
002706220 700__ $$aCooper-Sarkar, A.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aCormier, E.$$uCELIA, Bordeaux$$vLaboratoire Photonique, Numérique et Nanosciences (LP2N), IOGS-CNRS-Université Bordeaux, Talence, France
002706220 700__ $$aCornell, A.S.$$uJohannesburg U.$$vUniversity of Johannesburg (UJ), Johannesburg, South Africa
002706220 700__ $$aCorsini, R.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aCruz-Alaniz, E.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aCurrie, J.$$uDurham U., IPPP$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aCurtin, D.$$uToronto U.$$vUniversity of Toronto, Toronto, Canada
002706220 700__ $$aD'Onofrio, M.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aDainton, J.$$uLancaster U.$$vUniversity of Lancaster, Lancaster, United Kingdom
002706220 700__ $$aDaly, E.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aDas, A.$$uOsaka U.$$vOsaka University, Osaka, Japan
002706220 700__ $$aDas, S.P.$$uLos Andes U.$$vUniversidad de los Andes, Santiago, Columbia
002706220 700__ $$aDassa, L.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$ade Blas, J.$$uDurham U., IPPP$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aDelle Rose, L.$$uINFN, Florence$$vIstituto Nazionale di Fisica Nucleare (INFN)—Sezione di Firenze, Firenze, Italy
002706220 700__ $$aDenizli, H.$$uAbant Izzet Baysal U.$$vBolu Abant Izzet Baysal University, Bolu, Turkey
002706220 700__ $$aDeshpande, K.S.$$uMaryland U., College Park$$vUniversity of Maryland, College Park, United States of America
002706220 700__ $$aDouglas, D.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aDuarte, L.$$uRepublica U., Montevideo$$vUniversidad de la Republica—Instituto de Fisica Facultad de Ciencias (IFFC), Montevideo, Uruguay
002706220 700__ $$aDupraz, K.$$uOrsay$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France$$vUniversité Paris-Sud, Orsay, France
002706220 700__ $$aDutta, S.$$uSGTB Khalsa Coll.$$vSri Guru Tegh Badadur Khalsa College, Delhi, India
002706220 700__ $$aEfremov, A.V.$$uDubna, JINR$$vJoint Institute for Nuclear Research (JINR), Dubna, Russia
002706220 700__ $$aEichhorn, R.$$uCornell U.$$vCornell University, Ithaca, United States of America
002706220 700__ $$aEskola, K.J.$$uJyvaskyla U.$$vUniversity of Jyväskylä, Jyväskylä, Finland
002706220 700__ $$aFerreiro, E.G.$$uSantiago de Compostela U.$$vUniversidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
002706220 700__ $$aFischer, O.$$uHeidelberg, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, Heidelberg, Germany
002706220 700__ $$aFlores-Sánchez, O.$$uPuebla U., Mexico$$vBenemerita Universidad Autonoma de Puebla (BUAP), Puebla, Mexico
002706220 700__ $$aForte, S.$$uMilan U.$$uINFN, Milan$$vUniversità degli Studi di Milano, Milano, Italy$$vIstituto Nazionale di Fisica Nucleare (INFN)—Sezione di Milano, Milano, Italy
002706220 700__ $$aGaddi, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aGao, J.$$uUSTC, Hefei$$vUniversity of Science and Technology of China (USTC), Hefei, People’s Republic of China
002706220 700__ $$aGehrmann, T.$$uZurich U.$$vDepartment of Physics, Universität Zürich, Zurich, Switzerland
002706220 700__ $$aGehrmann-De Ridder, A.$$uZurich U.$$uZurich, ETH$$vDepartment of Physics, Universität Zürich, Zurich, Switzerland$$vInstitute for Theoretical Physics, ETH, Zurich, Switzerland
002706220 700__ $$aGerigk, F.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aGilbert, A.$$uNorthwestern U.$$vNorthwestern University, Evanston, United States of America
002706220 700__ $$aGiuli, F.$$uINFN, Rome$$uRome U., Tor Vergata$$vUniversity of Rome Tor Vergata and INFN, Sezione di Roma 2, Rome, Italy
002706220 700__ $$aGlazov, A.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aGlover, N.$$uDurham U., IPPP$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aGodbole, R.M.$$uBangalore, Indian Inst. Sci.$$vIndian Institute of Science (IISc), Bangalore, India
002706220 700__ $$aGoddard, B.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aGonçalves, V.$$uPelotas U.$$vUniversidade Federal de Pelotas (UFPel), Pelotas, Brazil
002706220 700__ $$aGonzalez-Sprinberg, G.A.$$uRepublica U., Montevideo$$vUniversidad de la Republica—Instituto de Fisica Facultad de Ciencias (IFFC), Montevideo, Uruguay
002706220 700__ $$aGoyal, A.$$uDelhi U.$$vUniversity of Delhi, Delhi, India
002706220 700__ $$aGrames, J.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aGranados, E.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aGrassellino, A.$$uFermilab$$vFermi National Accelerator Laboratory (FNAL), Batavia, United States of America
002706220 700__ $$aGunaydin, Y.O.$$uKahramanmaras U.$$vKahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
002706220 700__ $$aGuo, Y.C.$$uLiaoning Normal U.$$vLiaoning Normal University (LNNU), Dalian, People’s Republic of China
002706220 700__ $$aGuzey, V.$$uSt. Petersburg, INP$$vPetersburg Nuclear Physics Institute (PNPI), Petersburg, Russia
002706220 700__ $$aGwenlan, C.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aHammad, A.$$uBasel U.$$vUniversität Basel, Basel, Switzerland
002706220 700__ $$aHan, C.C.$$uTokyo U.$$uTokyo U., IPMU$$vUniversity of Tokyo, Tokyo, Japan$$vKavli Institute for the Physics and Mathematics of the Universe (KIPMU), Kashiwa, Japan
002706220 700__ $$aHarland-Lang, L.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aHaug, F.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aHautmann, F.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aHayden, D.$$uMichigan State U.$$vMichigan State University, East Lansing, United States of America
002706220 700__ $$aHessler, J.$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, Munich, Germany
002706220 700__ $$aHelenius, I.$$uJyvaskyla U.$$vUniversity of Jyväskylä, Jyväskylä, Finland
002706220 700__ $$aHenry, J.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aHernandez-Sanchez, J.$$uPuebla U., Mexico$$vBenemerita Universidad Autonoma de Puebla (BUAP), Puebla, Mexico
002706220 700__ $$aHesari, H.$$uIPM, Tehran$$vInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran
002706220 700__ $$aHobbs, T.J.$$uSouthern Methodist U.$$vSouthern Methodist University, Dallas, United States of America
002706220 700__ $$aHod, N.$$uWeizmann Inst.$$vWeizmann Institute of Science, Rehovot, Israel
002706220 700__ $$aHoffstaetter, G.H.$$uCornell U.$$vCornell University, Ithaca, United States of America
002706220 700__ $$aHolzer, B.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aHonorato, C.G.$$uPuebla U., Mexico$$vBenemerita Universidad Autonoma de Puebla (BUAP), Puebla, Mexico
002706220 700__ $$aHounsell, B.$$uU. Liverpool (main)$$uCockcroft Inst. Accel. Sci. Tech.$$uIJCLab, Orsay$$vUniversity of Liverpool, Liverpool, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aHu, N.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aHug, F.$$uU. Mainz, PRISMA$$uMainz U.$$vJohannes Gutenberg University Mainz (JGU)—PRISMA Cluster of Excellence, Mainz, Germany$$vJohannes Gutenberg-Universität Mainz (JGU), Mainz, Germany
002706220 700__ $$aHuss, A.$$uCERN$$uDurham U., IPPP$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aHutton, A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aIslam, R.$$uIndian Inst. Tech., Guwahati$$uKrishnagar Coll.$$vDepartment of Physics, Indian Institute of Technology, Guwahati, Assam, India$$vDepartment of Physics, Mathabhanga College, Cooch Behar, West Bengal, India
002706220 700__ $$aIwamoto, S.$$uU. Padua (main)$$vUniversità degli Studi di Padova, Padua, Italy
002706220 700__ $$aJana, S.$$uHeidelberg, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, Heidelberg, Germany
002706220 700__ $$aJansova, M.$$uU. Strasbourg$$vUniversité de Strasbourg, Strasbourg, France
002706220 700__ $$aJensen, E.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aJones, T.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aJowett, J.M.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aKaabi, W.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aKado, M.$$uINFN, Rome$$vIstituto Nazionale di Fisica Nucleare (INFN)—Sezione di Roma, Rome, Italy
002706220 700__ $$aKalinin, D.A.$$uDaresbury$$uCockcroft Inst. Accel. Sci. Tech.$$vScience and Technology Facilities Council (STFC)—Daresbury Laboratory, Daresbury, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom
002706220 700__ $$aKaradeniz, H.$$uGiresun U.$$vGiresun University, Giresun, Turkey
002706220 700__ $$aKawaguchi, S.$$uTokyo Inst. Tech.$$vTokyo Institute of Technology, Tokyo, Japan
002706220 700__ $$aKaya, U.$$uTOBB ETU, Ankara$$vTOBB University of Economic and Technology (TOBB ETU), Ankara, Turkey
002706220 700__ $$aKhalek, R.A.$$uVrije U., Amsterdam$$vVrije University, Amsterdam, The Netherlands
002706220 700__ $$aKhanpour, H.$$uIPM, Tehran$$uUSTM, Behshahr$$vInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran$$vUniversity of Science and Technology of Mazandaran, Behshahr, Iran
002706220 700__ $$aKilic, A.$$uUludag U.$$vUludag University, Bursa, Turkey
002706220 700__ $$aKlein, M.$$jORCID:0000-0002-8527-964X$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aKlein, U.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aKluth, S.$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik, Munich, Germany
002706220 700__ $$aKöksal, M.$$uCumhuriyet U.$$vSivas Cumhuriyet University, Sivas, Turkey
002706220 700__ $$aKocak, F.$$uUludag U.$$vUludag University, Bursa, Turkey
002706220 700__ $$aKorostelev, M.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aKostka, P.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aKrelina, M.$$uSanta Maria U., Valparaiso$$vUniversidad Tecnica Federico Santa Maria, Valparaiso, Chile
002706220 700__ $$aKretzschmar, J.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aKuday, S.$$uIstanbul U.$$vIstanbul Aydin University, Istanbul, Turkey
002706220 700__ $$aKulipanov, G.$$uNovosibirsk, IYF$$vSiberian Branch of Russian Academy of Science—Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
002706220 700__ $$aKumar, M.$$uWitwatersrand U.$$vUniversity of the Witwatersrand, Johannesburg, South Africa
002706220 700__ $$aKuze, M.$$uTokyo Inst. Tech.$$vTokyo Institute of Technology, Tokyo, Japan
002706220 700__ $$aLappi, T.$$uJyvaskyla U.$$vUniversity of Jyväskylä, Jyväskylä, Finland
002706220 700__ $$aLarios, F.$$uCINVESTAV, IPN$$vCentro de Investigación y de Estudios Avanzados (CINVESTAV), Mérida, Mexico
002706220 700__ $$aLatina, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aLaycock, P.$$uRIKEN BNL$$vBrookhaven National Laboratory (BNL), Upton, United States of America
002706220 700__ $$aLei, G.$$uTsinghua U., Beijing$$vTsinghua University, Beijing, People’s Republic of China
002706220 700__ $$aLevitchev, E.$$uNovosibirsk, IYF$$vSiberian Branch of Russian Academy of Science—Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
002706220 700__ $$aLevonian, S.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aLevy, A.$$uTel Aviv U.$$vTel-Aviv University, Tel Aviv, Israel
002706220 700__ $$aLi, R.$$uZhejiang U., Inst. Mod. Phys.$$uHangzhou, Zhejiang U.$$vZhejiang Institute of Modern Physics (ZIMP), Hangzhou, People’s Republic of China$$vZhejiang University (ZJU), Hangzhou, People’s Republic of China
002706220 700__ $$aLi, X.$$uUSTC, Hefei$$vUniversity of Science and Technology of China (USTC), Hefei, People’s Republic of China
002706220 700__ $$aLiang, H.$$uUSTC, Hefei$$vUniversity of Science and Technology of China (USTC), Hefei, People’s Republic of China
002706220 700__ $$aLitvinenko, V.$$uRIKEN BNL$$uSUNY, Stony Brook$$vBrookhaven National Laboratory (BNL), Upton, United States of America$$vStony Brook University, Stony Brook, United States of America
002706220 700__ $$aLiu, M.$$uLiaoning Normal U.$$vLiaoning Normal University (LNNU), Dalian, People’s Republic of China
002706220 700__ $$aLiu, T.$$uXiamen U.$$vXiamen University (XMU), Xiamen, People’s Republic of China
002706220 700__ $$aLiu, W.$$uUniversity Coll. London$$vUniversity College London, London, United Kingdom
002706220 700__ $$aLiu, Y.$$uHenan Inst. Sci. Technol.$$vHenan Institute of Science and Technology (HIST), Xinxiang, People’s Republic of China
002706220 700__ $$aLiuti, S.$$uVirginia U.$$vUniversity of Virginia, Charlottesville, United States of America
002706220 700__ $$aLobodzinska, E.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aLonguevergne, D.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aLuo, X.$$uDalian U. Tech.$$vDalian University of Technology (DLUT), Dalian, People’s Republic of China
002706220 700__ $$aMa, W.$$uUSTC, Hefei$$vUniversity of Science and Technology of China (USTC), Hefei, People’s Republic of China
002706220 700__ $$aMachado, M.$$uRio Grande do Sul U., Porto Alegre (main)$$vUniversidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
002706220 700__ $$aMandal, S.$$uValencia U., IFIC$$vInstitut de Física Corpuscular—CSIC/Universitat de València, Paterna (Valencia), Spain
002706220 700__ $$aMäntysaari, H.$$uJyvaskyla U.$$uHelsinki U.$$vUniversity of Jyväskylä, Jyväskylä, Finland$$vUniversity of Helsinki, Helsinki, Finland
002706220 700__ $$aMarhauser, F.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aMarquet, C.$$uEcole Polytechnique, CPHT$$vCPHT, CNRS, Ecole Polytechnique, I. P. Paris, France
002706220 700__ $$aMartens, A.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aMartin, R.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aMarzani, S.$$uGenoa U.$$uINFN, Genoa$$vUniversity Genova, Genova, Italy$$vIstituto Nazionale di Fisica Nucleare (INFN)—Sezione di Genova, Genova, Italy
002706220 700__ $$aMcFayden, J.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aMcintosh, P.$$uDaresbury$$vScience and Technology Facilities Council (STFC)—Daresbury Laboratory, Daresbury, United Kingdom
002706220 700__ $$aMellado, B.$$uWitwatersrand U.$$vUniversity of the Witwatersrand, Johannesburg, South Africa
002706220 700__ $$aMeot, F.$$uCornell U.$$vCornell University, Ithaca, United States of America
002706220 700__ $$aMilanese, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aMilhano, J.G.$$uLIP, Lisbon$$vLaboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Lisbon, Portugal
002706220 700__ $$aMilitsyn, B.$$uDaresbury$$uCockcroft Inst. Accel. Sci. Tech.$$vScience and Technology Facilities Council (STFC)—Daresbury Laboratory, Daresbury, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom
002706220 700__ $$aMitra, M.$$uHarish-Chandra Res. Inst.$$vHarish-Chandra Research Institute (HRI), Allahabad, India
002706220 700__ $$aMoch, S.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aMohammadi Najafabadi, M.$$uIPM, Tehran$$vInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran
002706220 700__ $$aMondal, S.$$uHelsinki U.$$vUniversity of Helsinki, Helsinki, Finland
002706220 700__ $$aMoretti, S.$$uSouthampton U.$$vUniversity of Southampton, Southampton, United Kingdom
002706220 700__ $$aMorgan, T.$$uDurham U., IPPP$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aMorreale, A.$$uSUNY, Stony Brook$$vStony Brook University, Stony Brook, United States of America
002706220 700__ $$aNadolsky, P.$$uSouthern Methodist U.$$vSouthern Methodist University, Dallas, United States of America
002706220 700__ $$aNavarra, F.$$uSao Paulo U.$$vUniversidade de Sño Paulo (USP), Sño Paulo, Brazil
002706220 700__ $$aNergiz, Z.$$uNigde U.$$vNigde Omer Halisdemir University, Nigde, Turkey
002706220 700__ $$aNewman, P.$$uBirmingham U.$$vUniversity of Birmingham, Birmingham, United Kingdom
002706220 700__ $$aNiehues, J.$$uDurham U., IPPP$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aNissen, E.A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aNowakowski, M.$$uAndes U., Bogota$$vUniversidad de los Andes, Carrera, Colombia
002706220 700__ $$aOkada, N.$$uAlabama U.$$vThe University of Alabama, Tuscaloosa, United States of America
002706220 700__ $$aOlivier, G.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aOlness, F.$$uSouthern Methodist U.$$vSouthern Methodist University, Dallas, United States of America
002706220 700__ $$aOlry, G.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aOsborne, J.A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aOzansoy, A.$$uAnkara U.$$vAnkara University, Ankara, Turkey
002706220 700__ $$aPan, R.$$uZhejiang U., Inst. Mod. Phys.$$uHangzhou, Zhejiang U.$$vZhejiang Institute of Modern Physics (ZIMP), Hangzhou, People’s Republic of China$$vZhejiang University (ZJU), Hangzhou, People’s Republic of China
002706220 700__ $$aParker, B.$$uRIKEN BNL$$vBrookhaven National Laboratory (BNL), Upton, United States of America
002706220 700__ $$aPatra, M.$$uTIFR, Mumbai, DHEP$$vTata Institute of Fundamental Research (TIFR), Mumbai, India
002706220 700__ $$aPaukkunen, H.$$uJyvaskyla U.$$vUniversity of Jyväskylä, Jyväskylä, Finland
002706220 700__ $$aPeinaud, Y.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aPellegrini, D.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aPerez-Segurana, G.$$uLancaster U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom$$vUniversity of Lancaster, Lancaster, United Kingdom
002706220 700__ $$aPerini, D.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aPerrot, L.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aPietralla, N.$$uDarmstadt, Tech. U.$$vTechnische Universität Darmstadt, Darmstadt, Germany
002706220 700__ $$aPilicer, E.$$uUludag U.$$vUludag University, Bursa, Turkey
002706220 700__ $$aPire, B.$$uEcole Polytechnique, CPHT$$vCPHT, CNRS, Ecole Polytechnique, I. P. Paris, France
002706220 700__ $$aPires, J.$$uLIP, Lisbon$$vLaboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Lisbon, Portugal
002706220 700__ $$aPlacakyte, R.$$uHelmholtz-Zentrum, Berlin$$vHomeday GmbH Berlin, Berlin, Germany
002706220 700__ $$aPoelker, M.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aPolifka, R.$$uCharles U.$$vCharles University, Praque, Czech Republic
002706220 700__ $$aPolini, A.$$uINFN, Bologna$$vIstituto Nazionale di Fisica Nucleare (INFN)—Sezione di Bologna, Bologna, Italy
002706220 700__ $$aPoulose, P.$$uIndian Inst. Tech., Guwahati$$vDepartment of Physics, Indian Institute of Technology, Guwahati, Assam, India
002706220 700__ $$aPownall, G.$$uOxford U.$$vUniversity of Oxford, Oxford, United Kingdom
002706220 700__ $$aPupkov, Y.A.$$uNovosibirsk, IYF$$vSiberian Branch of Russian Academy of Science—Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
002706220 700__ $$aQueiroz, F.S.$$uRio Grande do Norte U.$$vUniv. Federal do Rio Grande do Norte, Natal, Brazil
002706220 700__ $$aRabbertz, K.$$uKIT, Karlsruhe$$vKarlsruher Institut für Technologie (KIT), Karlsruhe, Germany
002706220 700__ $$aRadescu, V.$$uIBM, Heidelberg$$vIBM Deutschland RnD, GmbH, Urbar, Germany
002706220 700__ $$aRahaman, R.$$uIISER, Kolkata$$vIndian Institute of Science Education and Research (IISER), Kolkata, India
002706220 700__ $$aRai, S.K.$$uHarish-Chandra Res. Inst.$$vHarish-Chandra Research Institute (HRI), Allahabad, India
002706220 700__ $$aRaicevic, N.$$uMontenegro U.$$vUniversity of Montenegro, Podgorica, Yugoslavia
002706220 700__ $$aRatoff, P.$$uLancaster U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom$$vUniversity of Lancaster, Lancaster, United Kingdom
002706220 700__ $$aRashed, A.$$uShippensburg U.$$vShippensburg University of Pennsylvania, Shippensburg, PA, United States of America
002706220 700__ $$aRaut, D.$$uDelaware U.$$vUniversity of Delaware, Newark, United States of America
002706220 700__ $$aRaychaudhuri, S.$$uTIFR, Mumbai, DHEP$$vTata Institute of Fundamental Research (TIFR), Mumbai, India
002706220 700__ $$aRepond, J.$$uArgonne (main)$$vArgonne National Laboratory, Argonne, United States of America
002706220 700__ $$aRezaeian, A.H.$$uMicrosoft, BARC$$vOracle, San Fransisco, United States of America$$vApplied AI Center of Excellence, San Francisco, United States of America
002706220 700__ $$aRimmer, R.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aRinolfi, L.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aRojo, J.$$uVrije U., Amsterdam$$vVrije University, Amsterdam, The Netherlands
002706220 700__ $$aRosado, A.$$uPuebla U., Mexico$$vBenemerita Universidad Autonoma de Puebla (BUAP), Puebla, Mexico
002706220 700__ $$aRuan, X.$$uWitwatersrand U.$$vUniversity of the Witwatersrand, Johannesburg, South Africa
002706220 700__ $$aRussenschuck, S.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSahin, M.$$uUsak U.$$vUsak University, Usak, Turkey
002706220 700__ $$aSalgado, C.A.$$uSantiago de Compostela U.$$vUniversidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
002706220 700__ $$aSampayo, O.A.$$uMar del Plata U.$$vNational University of Mar del Plata, Mar del Plata, Argentina
002706220 700__ $$aSatendra, K.$$uIndian Inst. Tech., Guwahati$$vDepartment of Physics, Indian Institute of Technology, Guwahati, Assam, India
002706220 700__ $$aSatyanarayan, N.$$uOklahoma State U.$$vOklahoma State University (OSU), Stillwater, United States of America
002706220 700__ $$aSchenke, B.$$uRIKEN BNL$$vBrookhaven National Laboratory (BNL), Upton, United States of America
002706220 700__ $$aSchirm, K.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSchopper, H.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSchott, M.$$uMainz U.$$vJohannes Gutenberg-Universität Mainz (JGU), Mainz, Germany
002706220 700__ $$aSchulte, D.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSchwanenberger, C.$$uDESY$$vDeutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
002706220 700__ $$aSekine, T.$$uTokyo Inst. Tech.$$vTokyo Institute of Technology, Tokyo, Japan
002706220 700__ $$aSenol, A.$$uAbant Izzet Baysal U.$$vBolu Abant Izzet Baysal University, Bolu, Turkey
002706220 700__ $$aSeryi, A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility (Jefferson Lab), Newport News, United States of America
002706220 700__ $$aSetiniyaz, S.$$uLancaster U.$$uCockcroft Inst. Accel. Sci. Tech.$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom$$vUniversity of Lancaster, Lancaster, United Kingdom
002706220 700__ $$aShang, L.$$uPeking U.$$vPeking University (PKU), Beijing, People’s Republic of China
002706220 700__ $$aShen, X.$$uZhejiang U., Inst. Mod. Phys.$$uHangzhou, Zhejiang U.$$vZhejiang Institute of Modern Physics (ZIMP), Hangzhou, People’s Republic of China$$vZhejiang University (ZJU), Hangzhou, People’s Republic of China
002706220 700__ $$aShipman, N.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSinha, N.$$uIMSc, Chennai$$vInstitute of Mathematical Sciences (IMSc), Chennai, India
002706220 700__ $$aSlominski, W.$$uJagiellonian U.$$vJagiellonian University, Cracow, Poland
002706220 700__ $$aSmith, S.$$uDaresbury$$uCockcroft Inst. Accel. Sci. Tech.$$vScience and Technology Facilities Council (STFC)—Daresbury Laboratory, Daresbury, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom
002706220 700__ $$aSolans, C.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSong, M.$$uAnhui U.$$vAnhui University (AHU), Hefei, People’s Republic of China
002706220 700__ $$aSpiesberger, H.$$uMainz U.$$vJohannes Gutenberg-Universität Mainz (JGU), Mainz, Germany
002706220 700__ $$aStanyard, J.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aStarostenko, A.$$uNovosibirsk, IYF$$vSiberian Branch of Russian Academy of Science—Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
002706220 700__ $$aStasto, A.$$uPenn State U.$$vPennsylvania State University (PSU), University Park, United States of America
002706220 700__ $$aStocchi, A.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aStrikman, M.$$uPenn State U.$$vPennsylvania State University (PSU), University Park, United States of America
002706220 700__ $$aStuart, M.J.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aSultansoy, S.$$uTOBB ETU, Ankara$$vTOBB University of Economic and Technology (TOBB ETU), Ankara, Turkey
002706220 700__ $$aSun, H.$$uDalian U. Tech.$$vDalian University of Technology (DLUT), Dalian, People’s Republic of China
002706220 700__ $$aSutton, M.$$uGlasgow U.$$vUniversity of Sussex, Sussex, United Kingdom
002706220 700__ $$aSzymanowski, L.$$uNCBJ, Warsaw$$vNarodowe Centrum Badań Jądrowych (NCBJ), Warsaw, Poland
002706220 700__ $$aTapan, I.$$uUludag U.$$vUludag University, Bursa, Turkey
002706220 700__ $$aTapia-Takaki, D.$$uKansas State U.$$vKansas State University, Manhattan, United States of America
002706220 700__ $$aTanaka, M.$$uTokyo Inst. Tech.$$vTokyo Institute of Technology, Tokyo, Japan
002706220 700__ $$aTang, Y.$$uKorea Inst. Advanced Study, Seoul$$vKorea Institute for Advanced Study (KIAS), Cheongryangri-dong, Republic of Korea
002706220 700__ $$aTasci, A.T.$$uKastamonu U.$$vKastamonu University, Kastamonu, Turkey
002706220 700__ $$aTen-Kate, A.T.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aThonet, P.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aTomas-Garcia, R.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aTommasini, D.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aTrbojevic, D.$$uRIKEN BNL$$uCornell U.$$vBrookhaven National Laboratory (BNL), Upton, United States of America$$vCornell University, Ithaca, United States of America
002706220 700__ $$aTrott, M.$$uBohr Inst.$$vKøbenhavns Universitet—Niels Bohr Institutet (NBI), Copenhagen, Denmark
002706220 700__ $$aTsurin, I.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aTudora, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aTurk Cakir, I.$$uGiresun U.$$vGiresun University, Giresun, Turkey
002706220 700__ $$aTywoniuk, K.$$uBergen U.$$vUniversity of Bergen, Bergen, Norway
002706220 700__ $$aVallerand, C.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aValloni, A.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aVerney, D.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aVilella, E.$$uU. Liverpool (main)$$vUniversity of Liverpool, Liverpool, United Kingdom
002706220 700__ $$aWalker, D.$$uDurham U., IPPP$$vInstitute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
002706220 700__ $$aWallon, S.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aWang, B.$$uZhejiang U., Inst. Mod. Phys.$$uHangzhou, Zhejiang U.$$vZhejiang Institute of Modern Physics (ZIMP), Hangzhou, People’s Republic of China$$vZhejiang University (ZJU), Hangzhou, People’s Republic of China
002706220 700__ $$aWang, K.$$uZhejiang U., Inst. Mod. Phys.$$uHangzhou, Zhejiang U.$$vZhejiang~Institute~of~Modern~Physics~(ZIMP), Hangzhou, China$$vZhejiang~University~(ZJU), Hangzhou, China
002706220 700__ $$aWang, K.$$uWuhan U.$$vWuhan~University~of~Technology, Wuhan, China
002706220 700__ $$aWang, X.$$uDalian U. Tech.$$vDalian University of Technology (DLUT), Dalian, People’s Republic of China
002706220 700__ $$aWang, Z.S.$$uAPCTP, Pohang$$vAsia Pacific Center for Theoretical Physics (APCTP), Pohang, Korea
002706220 700__ $$aWei, H.$$uUC, Riverside$$vUniversity of California (UC), Riverside, United States of America
002706220 700__ $$aWelsch, C.$$uU. Liverpool (main)$$uCockcroft Inst. Accel. Sci. Tech.$$vUniversity of Liverpool, Liverpool, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom
002706220 700__ $$aWillering, G.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aWilliams, P.H.$$uDaresbury$$uCockcroft Inst. Accel. Sci. Tech.$$vScience and Technology Facilities Council (STFC)—Daresbury Laboratory, Daresbury, United Kingdom$$vCockcroft Institue of Accelerator Science and Technology, Daresbury, United Kingdom
002706220 700__ $$aWollmann, D.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aXiaohao, C.$$uBeijing, Inst. High Energy Phys.$$vChinese Academy of Sciences—Institute of High Energy Physics (IHEP), Beijing, People’s Republic of China
002706220 700__ $$aXu, T.$$uHebrew U.$$vHebrew University of Jerusalem—Racah Institute of Physics, Jerusalem, Israel
002706220 700__ $$aYaguna, C.E.$$uUPTC, Tunja$$vUniversidad Pedagogica y Tecnologica de Colombia, Tunja, Colombia
002706220 700__ $$aYamaguchi, Y.$$uTokyo Inst. Tech.$$vTokyo Institute of Technology, Tokyo, Japan
002706220 700__ $$aYamazaki, Y.$$uKobe U.$$vKobe University, Kobe, Japan
002706220 700__ $$aYang, H.$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory (LBNL), Berkeley, United States of America
002706220 700__ $$aYilmaz, A.$$uGiresun U.$$vGiresun University, Giresun, Turkey
002706220 700__ $$aYock, P.$$uAuckland U.$$vUniversity of Auckland, Auckland, New Zealand
002706220 700__ $$aYue, C.X.$$uLiaoning Normal U.$$vLiaoning Normal University (LNNU), Dalian, People’s Republic of China
002706220 700__ $$aZadeh, S.G.$$uRostock U.$$vUniversität Rostock, Rostock, Germany
002706220 700__ $$aZenaiev, O.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aZhang, C.$$uNCTS, Hsinchu$$vNational Center for Theoretical Sciences (NCTS), Hsinchu, Taiwan
002706220 700__ $$aZhang, J.$$uNankai U.$$vNankai University (NKU), Tianjin, People’s Republic of China
002706220 700__ $$aZhang, R.$$uUSTC, Hefei$$vUniversity of Science and Technology of China (USTC), Hefei, People’s Republic of China
002706220 700__ $$aZhang, Z.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aZhu, G.$$uZhejiang U., Inst. Mod. Phys.$$uHangzhou, Zhejiang U.$$vZhejiang Institute of Modern Physics (ZIMP), Hangzhou, People’s Republic of China$$vZhejiang University (ZJU), Hangzhou, People’s Republic of China
002706220 700__ $$aZhu, S.$$uPeking U.$$vPeking University (PKU), Beijing, People’s Republic of China
002706220 700__ $$aZimmermann, F.$$uCERN$$vEuropean Organization for Nuclear Research (CERN), Genève, Switzerland
002706220 700__ $$aZomer, F.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
002706220 700__ $$aZurita, J.$$uKIT, Karlsruhe, TTP$$uKIT, Karlsruhe, IKP$$vKarlsruher Institut für Technologie (KIT)—Institut für Theoretische Teilchenphysik (TTP), Karlsruhe, Germany$$vKarlsruher Institut für Technologie (KIT)—Institut für Kernphysik (IKP), Karlsruhe, Germany
002706220 700__ $$aZurita, P.$$uRegensburg U.$$vUniversität Regensburg, Regensburg, Germany
002706220 710__ $$5ATS
002706220 710__ $$aCERN ATS Department
002706220 710__ $$gFCC-he Study Group Collaboration
002706220 710__ $$gLHeC Collaboration
002706220 773__ $$c110501$$n11$$pJ. Phys. G$$v48$$y2021
002706220 859__ [email protected]
002706220 8564_ $$uhttps://misportal.jlab.org/ul/publications/view_pub.cfm?pub_id=16252$$yJLab Document Server
002706220 8564_ $$82242343$$s28209346$$uhttp://cds.cern.ch/record/2706220/files/arXiv:2007.14491.pdf
002706220 8564_ $$81595965$$s52342147$$uhttp://cds.cern.ch/record/2706220/files/CERN-ACC-Note-2020-0002_lhecathllhcV1_16.01.2020.pdf$$yPreprint
002706220 8564_ $$82242336$$s30201$$uhttp://cds.cern.ch/record/2706220/files/w5_figFCCeta.png$$y00005 Pseudorapidity ($\eta$) distributions, at parton-level, characterising the Vector-Boson-Fusion production and decay of the Higgs boson to $WW$ in DIS scattering at FCC-eh. The scattered lepton (blue) in the NC case (or missing energy for CC) has an average $\eta$ of about $-0.5$, i.e. it is scattered somewhat backwards (in electron beam direction). The pseudorapidity distributions of the generated Higgs boson (red) and its decay particles (black) are very similar and peak at $\eta \simeq 2$. The struck quark, especially at the FCC-eh as compared to LHeC, generates a very forward jet requiring forward calorimetry up to $\eta \simeq 6$ as is foreseen in the FCC-eh detector design. Events are generated with MadGraph, see setup in Tab.~\ref{tab:Hcross}.
002706220 8564_ $$82242337$$s10302$$uhttp://cds.cern.ch/record/2706220/files/w4_figFCCkine.png$$y00004 Distributions for $ep \to \nu H X$ events, at parton-level, for the negative 4-momentum transfer squared, $Q^2$ (top left), Bjorken $x$ (bottom left) and the inelasticity $y=Q^2/sx$ (top right) at $\sqrt{s}=3.5$\,TeV (FCC-eh). Events generated with MadGraph~\cite{Alwall:2014hca}, see Tab.~\ref{tab:Hcross}.
002706220 8564_ $$82242338$$s23080$$uhttp://cds.cern.ch/record/2706220/files/w13_kappas3.png$$y00013 Summary of uncertainties of Higgs couplings from $ep$ for the seven most abundant decay channels, for LHeC (gold), FCC-eh at 20\,TeV proton energy (brown) and for $E_p =50$\,TeV (blue).
002706220 8564_ $$82242339$$s12544$$uhttp://cds.cern.ch/record/2706220/files/w12_figWWHreco.png$$y00012 Reconstructed signal mass distributions (at DELPHES detector level) of truth matched events (left) and after the just combinatorial association of jets to the two $W$ bosons forming Higgs candidates (right). Green: virtual $W^*$ boson; blue: $W$ boson; red: Higgs signal from $W^*W$ reconstruction. It is observed that the combination causes some background while the respective signal peaks are clearly preserved with a purity of 68\,\% that the correct forward jet is identified.
002706220 8564_ $$82242340$$s1340$$uhttp://cds.cern.ch/record/2706220/files/w3_ncfeyn.png$$y00003 Higgs boson production in charged (left) and neutral (right) current deep inelastic electron-proton scattering to leading order.
002706220 8564_ $$82242341$$s30810$$uhttp://cds.cern.ch/record/2706220/files/w7_higgsmass12_final.png$$y00007 Invariant mass distributions at DELPHES detector level for an integrated luminosity of 100~fb$^{-1}$ and $-80$\,\% electron polarisation. Events passed preselection cuts of $Q^2_h>400$ GeV$^2$, $y_h<0.9$, $E_T^\textrm{miss} > 20$~GeV and at least three, flavour-untagged anti-kt $R=0.5$ jets with $p_T>15$~GeV. The different colours show the contributions per process, the photoproduction background ($\gamma p$ jjj) is assumed to be vetoed with 90\,\%. Note that samples are generated with a minimum dijet mass cut of 60~GeV. Upper left: Invariant dijet mass, showing $W$ candidates from single top production (blue), based on combining jets with second and third lowest $|\eta|$ values per event. Upper right: Invariant mass distribution combining the three highest $p_T$ jets per event showing single top mass candidates (blue). Lower middle: Invariant dijet mass, showing Higgs candidates (black dots, including background), combining jets with the two lowest $|\eta|$ values per event.
002706220 8564_ $$82242342$$s12362$$uhttp://cds.cern.ch/record/2706220/files/w11_figWWHtrue.png$$y00011 Reconstructed signal mass distributions (at DELPHES detector level) of truth matched events (left) and after the just combinatorial association of jets to the two $W$ bosons forming Higgs candidates (right). Green: virtual $W^*$ boson; blue: $W$ boson; red: Higgs signal from $W^*W$ reconstruction. It is observed that the combination causes some background while the respective signal peaks are clearly preserved with a purity of 68\,\% that the correct forward jet is identified.
002706220 8564_ $$82242344$$s44186$$uhttp://cds.cern.ch/record/2706220/files/w10_Hcc_SignalEvents.png$$y00010 Expected $H \to b \bar{b}$ (left) and $H \to c \bar{c}$ (right) signal events as a function of the BDT score. Events are selected at DELPHES detector level for an integrated luminosity of 1~ab$^{-1}$ and -80\,\% electron polarisation. The symbols correspond to the choice of the anti-kt distance parameter $R$ and different assumptions in the impact parameter resolution of 10~(5)~$\mu$m (nominal, no further text in legend added), 20~(10)~$\mu$m (Doubl res), 5~(2.5)~$\mu$m (Half res) for tracks with $0.5<p_T<5\,(>5)$~GeV within $|\eta|<3.5$.
002706220 8564_ $$82242345$$s22521$$uhttp://cds.cern.ch/record/2706220/files/w6_figHbb-Tanaka_LHeCatDIS2017.png$$y00006 Invariant dijet mass distribution at DELPHES detector-level expected for $1$~ab$^{-1}$ and -80\,\% electron polarisation at LHeC. The $S/B$ is about $2.9$ for the events in the Higgs mass range of 100 to 130~GeV. Events are generated with MadGraph using $M_H=125$~GeV and showered with PYTHIA 6.4, and subject to cut-based event selection criteria, see text for further details. Note that samples are generated with a minimum dijet mass cut of 60~GeV.
002706220 8564_ $$82242346$$s40751$$uhttp://cds.cern.ch/record/2706220/files/w8_higgsmass32_final.png$$y00008 Invariant mass distributions at DELPHES detector level for an integrated luminosity of 100~fb$^{-1}$ and $-80$\,\% electron polarisation. Events passed preselection cuts of $Q^2_h>400$ GeV$^2$, $y_h<0.9$, $E_T^\textrm{miss} > 20$~GeV and at least three, flavour-untagged anti-kt $R=0.5$ jets with $p_T>15$~GeV. The different colours show the contributions per process, the photoproduction background ($\gamma p$ jjj) is assumed to be vetoed with 90\,\%. Note that samples are generated with a minimum dijet mass cut of 60~GeV. Upper left: Invariant dijet mass, showing $W$ candidates from single top production (blue), based on combining jets with second and third lowest $|\eta|$ values per event. Upper right: Invariant mass distribution combining the three highest $p_T$ jets per event showing single top mass candidates (blue). Lower middle: Invariant dijet mass, showing Higgs candidates (black dots, including background), combining jets with the two lowest $|\eta|$ values per event.
002706220 8564_ $$82242347$$s12040$$uhttp://cds.cern.ch/record/2706220/files/w0_feynman_diag.png$$y00000 Left: Feynman diagram for the $e$-$\tau$ (and $e$-$\mu$) conversion processes $p e^- \to \tau^- + j$ (and $p e^- \to \mu^- + j$) mediated by a $Z'$ with flavour-violating couplings to charged leptons at the LHeC. Right: Limits on the coupling parameter $|V|^2$ for signal hypothesis compared with the existing limits from experimental constraints on the relevant flavour conserving and flavour violating processes. The black line is the LHeC sensitivity for the process $pe^-\to\tau j$. For the other limits, see text.
002706220 8564_ $$82242349$$s1419$$uhttp://cds.cern.ch/record/2706220/files/w2_ccfeyn.png$$y00002 Higgs boson production in charged (left) and neutral (right) current deep inelastic electron-proton scattering to leading order.
002706220 8564_ $$82242350$$s11700$$uhttp://cds.cern.ch/record/2706220/files/w9_higgsmass1_final.png$$y00009 Invariant mass distributions at DELPHES detector level for an integrated luminosity of 100~fb$^{-1}$ and $-80$\,\% electron polarisation. Events passed preselection cuts of $Q^2_h>400$ GeV$^2$, $y_h<0.9$, $E_T^\textrm{miss} > 20$~GeV and at least three, flavour-untagged anti-kt $R=0.5$ jets with $p_T>15$~GeV. The different colours show the contributions per process, the photoproduction background ($\gamma p$ jjj) is assumed to be vetoed with 90\,\%. Note that samples are generated with a minimum dijet mass cut of 60~GeV. Upper left: Invariant dijet mass, showing $W$ candidates from single top production (blue), based on combining jets with second and third lowest $|\eta|$ values per event. Upper right: Invariant mass distribution combining the three highest $p_T$ jets per event showing single top mass candidates (blue). Lower middle: Invariant dijet mass, showing Higgs candidates (black dots, including background), combining jets with the two lowest $|\eta|$ values per event.
002706220 8564_ $$82242351$$s157623$$uhttp://cds.cern.ch/record/2706220/files/w1_limit_tau.png$$y00001 Left: Feynman diagram for the $e$-$\tau$ (and $e$-$\mu$) conversion processes $p e^- \to \tau^- + j$ (and $p e^- \to \mu^- + j$) mediated by a $Z'$ with flavour-violating couplings to charged leptons at the LHeC. Right: Limits on the coupling parameter $|V|^2$ for signal hypothesis compared with the existing limits from experimental constraints on the relevant flavour conserving and flavour violating processes. The black line is the LHeC sensitivity for the process $pe^-\to\tau j$. For the other limits, see text.
002706220 8564_ $$82289682$$s25422$$uhttp://cds.cern.ch/record/2706220/files/kappas3.png$$y00013 Summary of uncertainties of Higgs couplings from $ep$ for the seven most abundant decay channels, for LHeC (gold), FCC-eh at 20\,TeV proton energy (brown) and for $E_p =50$\,TeV (blue).
002706220 8564_ $$82289683$$s23560$$uhttp://cds.cern.ch/record/2706220/files/mej_cutbased.png$$y00014 Electron-jet invariant mass distribution for the Higgs to invisible decay signal (normalized to 100\% branching ratio) and the stacked backgrounds for an integrated luminosity of 1~ab$^{-1}$ at the LHeC after all selection cuts.
002706220 8564_ $$82289684$$s2413$$uhttp://cds.cern.ch/record/2706220/files/ccfeyn.png$$y00002 Higgs boson production in charged (left) and neutral (right) current deep inelastic electron-proton scattering to leading order.
002706220 8564_ $$82289685$$s14042$$uhttp://cds.cern.ch/record/2706220/files/higgsmass1_final.png$$y00009 Invariant mass distributions at DELPHES detector level for an integrated luminosity of 100~fb$^{-1}$ and $-80$\,\% electron polarisation. Events passed preselection cuts of $Q^2_h>400$ GeV$^2$, $y_h<0.9$, $E_T^\textrm{miss} > 20$~GeV and at least three, flavour-untagged anti-kt $R=0.5$ jets with $p_T>15$~GeV. The different colours show the contributions per process, the photoproduction background ($\gamma p$ jjj) is assumed to be vetoed with 90\,\%. Note that samples are generated with a minimum dijet mass cut of 60~GeV. Upper left: Invariant dijet mass, showing $W$ candidates from single top production (blue), based on combining jets with second and third lowest $|\eta|$ values per event. Upper right: Invariant mass distribution combining the three highest $p_T$ jets per event showing single top mass candidates (blue). Lower middle: Invariant dijet mass, showing Higgs candidates (black dots, including background), combining jets with the two lowest $|\eta|$ values per event.
002706220 8564_ $$82289686$$s46528$$uhttp://cds.cern.ch/record/2706220/files/Hcc_SignalEvents.png$$y00010 Expected $H \to b \bar{b}$ (left) and $H \to c \bar{c}$ (right) signal events as a function of the BDT score. Events are selected at DELPHES detector level for an integrated luminosity of 1~ab$^{-1}$ and -80\,\% electron polarisation. The symbols correspond to the choice of the anti-kt distance parameter $R$ and different assumptions in the impact parameter resolution of 10~(5)~$\mu$m (nominal, no further text in legend added), 20~(10)~$\mu$m (Doubl res), 5~(2.5)~$\mu$m (Half res) for tracks with $0.5<p_T<5\,(>5)$~GeV within $|\eta|<3.5$.
002706220 8564_ $$82289687$$s14886$$uhttp://cds.cern.ch/record/2706220/files/figWWHreco.png$$y00012 Reconstructed signal mass distributions (at DELPHES detector level) of truth matched events (left) and after the just combinatorial association of jets to the two $W$ bosons forming Higgs candidates (right). Green: virtual $W^*$ boson; blue: $W$ boson; red: Higgs signal from $W^*W$ reconstruction. It is observed that the combination causes some background while the respective signal peaks are clearly preserved with a purity of 68\,\% that the correct forward jet is identified.
002706220 8564_ $$82289688$$s14382$$uhttp://cds.cern.ch/record/2706220/files/figFCCkine.png$$y00004 Distributions for $ep \to \nu H X$ events, at parton-level, for the negative 4-momentum transfer squared, $Q^2$ (top left), Bjorken $x$ (bottom left) and the inelasticity $y=Q^2/sx$ (top right) at $\sqrt{s}=3.5$\,TeV (FCC-eh). Events generated with MadGraph~\cite{Alwall:2014hca}, see Tab.~\ref{tab:Hcross}.
002706220 8564_ $$82289689$$s14704$$uhttp://cds.cern.ch/record/2706220/files/figWWHtrue.png$$y00011 Reconstructed signal mass distributions (at DELPHES detector level) of truth matched events (left) and after the just combinatorial association of jets to the two $W$ bosons forming Higgs candidates (right). Green: virtual $W^*$ boson; blue: $W$ boson; red: Higgs signal from $W^*W$ reconstruction. It is observed that the combination causes some background while the respective signal peaks are clearly preserved with a purity of 68\,\% that the correct forward jet is identified.
002706220 8564_ $$82289690$$s33152$$uhttp://cds.cern.ch/record/2706220/files/higgsmass12_final.png$$y00007 Invariant mass distributions at DELPHES detector level for an integrated luminosity of 100~fb$^{-1}$ and $-80$\,\% electron polarisation. Events passed preselection cuts of $Q^2_h>400$ GeV$^2$, $y_h<0.9$, $E_T^\textrm{miss} > 20$~GeV and at least three, flavour-untagged anti-kt $R=0.5$ jets with $p_T>15$~GeV. The different colours show the contributions per process, the photoproduction background ($\gamma p$ jjj) is assumed to be vetoed with 90\,\%. Note that samples are generated with a minimum dijet mass cut of 60~GeV. Upper left: Invariant dijet mass, showing $W$ candidates from single top production (blue), based on combining jets with second and third lowest $|\eta|$ values per event. Upper right: Invariant mass distribution combining the three highest $p_T$ jets per event showing single top mass candidates (blue). Lower middle: Invariant dijet mass, showing Higgs candidates (black dots, including background), combining jets with the two lowest $|\eta|$ values per event.
002706220 8564_ $$82289691$$s43093$$uhttp://cds.cern.ch/record/2706220/files/higgsmass32_final.png$$y00008 Invariant mass distributions at DELPHES detector level for an integrated luminosity of 100~fb$^{-1}$ and $-80$\,\% electron polarisation. Events passed preselection cuts of $Q^2_h>400$ GeV$^2$, $y_h<0.9$, $E_T^\textrm{miss} > 20$~GeV and at least three, flavour-untagged anti-kt $R=0.5$ jets with $p_T>15$~GeV. The different colours show the contributions per process, the photoproduction background ($\gamma p$ jjj) is assumed to be vetoed with 90\,\%. Note that samples are generated with a minimum dijet mass cut of 60~GeV. Upper left: Invariant dijet mass, showing $W$ candidates from single top production (blue), based on combining jets with second and third lowest $|\eta|$ values per event. Upper right: Invariant mass distribution combining the three highest $p_T$ jets per event showing single top mass candidates (blue). Lower middle: Invariant dijet mass, showing Higgs candidates (black dots, including background), combining jets with the two lowest $|\eta|$ values per event.
002706220 8564_ $$82289692$$s24863$$uhttp://cds.cern.ch/record/2706220/files/figHbb-Tanaka_LHeCatDIS2017.png$$y00006 Invariant dijet mass distribution at DELPHES detector-level expected for $1$~ab$^{-1}$ and -80\,\% electron polarisation at LHeC. The $S/B$ is about $2.9$ for the events in the Higgs mass range of 100 to 130~GeV. Events are generated with MadGraph using $M_H=125$~GeV and showered with PYTHIA 6.4, and subject to cut-based event selection criteria, see text for further details. Note that samples are generated with a minimum dijet mass cut of 60~GeV.
002706220 8564_ $$82289693$$s157623$$uhttp://cds.cern.ch/record/2706220/files/limit_tau.png$$y00001 Left: Feynman diagram for the $e$-$\tau$ (and $e$-$\mu$) conversion processes $p e^- \to \tau^- + j$ (and $p e^- \to \mu^- + j$) mediated by a $Z'$ with flavour-violating couplings to charged leptons at the LHeC~\cite{Antusch:2020fyz}. Right: Limits on the coupling parameter $|V|^2$ for signal hypothesis compared with the existing limits from experimental constraints on the relevant flavour conserving and flavour violating processes. The black line is the LHeC sensitivity for the process $pe^-\to\tau j$. For the other limits, see text.
002706220 8564_ $$82289694$$s12040$$uhttp://cds.cern.ch/record/2706220/files/feynman_diag.png$$y00000 Left: Feynman diagram for the $e$-$\tau$ (and $e$-$\mu$) conversion processes $p e^- \to \tau^- + j$ (and $p e^- \to \mu^- + j$) mediated by a $Z'$ with flavour-violating couplings to charged leptons at the LHeC~\cite{Antusch:2020fyz}. Right: Limits on the coupling parameter $|V|^2$ for signal hypothesis compared with the existing limits from experimental constraints on the relevant flavour conserving and flavour violating processes. The black line is the LHeC sensitivity for the process $pe^-\to\tau j$. For the other limits, see text.
002706220 8564_ $$82289695$$s32543$$uhttp://cds.cern.ch/record/2706220/files/figFCCeta.png$$y00005 Pseudorapidity ($\eta$) distributions, at parton-level, characterising the Vector-Boson-Fusion production and decay of the Higgs boson to $WW$ in DIS scattering at FCC-eh. The scattered lepton (blue) in the NC case (or missing energy for CC) has an average $\eta$ of about $-0.5$, i.e. it is scattered somewhat backwards (in electron beam direction). The pseudorapidity distributions of the generated Higgs boson (red) and its decay particles (black) are very similar and peak at $\eta \simeq 2$. The struck quark, especially at the FCC-eh as compared to LHeC, generates a very forward jet requiring forward calorimetry up to $\eta \simeq 6$ as is foreseen in the FCC-eh detector design. Events are generated with MadGraph, see setup in Tab.~\ref{tab:Hcross}.
002706220 8564_ $$82289696$$s2338$$uhttp://cds.cern.ch/record/2706220/files/ncfeyn.png$$y00003 Higgs boson production in charged (left) and neutral (right) current deep inelastic electron-proton scattering to leading order.
002706220 8564_ $$82345943$$s37809924$$uhttp://cds.cern.ch/record/2706220/files/Agostini_2021_J._Phys._G__Nucl._Part._Phys._48_110501.pdf$$yFulltext from Publisher
002706220 8564_ $$82347580$$s28209346$$uhttp://cds.cern.ch/record/2706220/files/2007.14491.pdf$$yFulltext
002706220 8564_ $$81595965$$s48875$$uhttp://cds.cern.ch/record/2706220/files/CERN-ACC-Note-2020-0002_lhecathllhcV1_16.01.2020.jpg?subformat=icon-700$$xicon-700$$yPreprint
002706220 8564_ $$81595965$$s8387$$uhttp://cds.cern.ch/record/2706220/files/CERN-ACC-Note-2020-0002_lhecathllhcV1_16.01.2020.gif?subformat=icon$$xicon$$yPreprint
002706220 8564_ $$81595965$$s9542$$uhttp://cds.cern.ch/record/2706220/files/CERN-ACC-Note-2020-0002_lhecathllhcV1_16.01.2020.jpg?subformat=icon-180$$xicon-180$$yPreprint
002706220 8564_ $$82242343$$s10117$$uhttp://cds.cern.ch/record/2706220/files/arXiv:2007.14491.jpg?subformat=icon-180$$xicon-180$$yPreprint
002706220 8564_ $$82242343$$s50480$$uhttp://cds.cern.ch/record/2706220/files/arXiv:2007.14491.jpg?subformat=icon-700$$xicon-700$$yPreprint
002706220 8564_ $$82242343$$s8563$$uhttp://cds.cern.ch/record/2706220/files/arXiv:2007.14491.gif?subformat=icon$$xicon$$yPreprint
002706220 916__ $$sn$$w202003
002706220 937__ $$c16 Jan [email protected]
002706220 963__ $$aPUBLIC
002706220 960__ $$a13
002706220 980__ $$aINTNOTEATSPUBL
002706220 980__ $$aNOTE
002706220 980__ $$aARTICLE