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Abstract: We consider non-perturbative superpotentials from world-sheet instantons

wrapped on holomorphic genus zero curves in heterotic string theory. These superpoten-

tial contributions feature prominently in moduli stabilization and large field axion inflation,

which makes their presence or absence, as well as their functional dependence on moduli,

an important issue. We develop geometric methods to compute the instanton superpoten-

tials for heterotic string theory with monad and extension bundles. Using our methods,

we find a variety of examples with a non-vanishing superpotential. In view of standard

vanishing theorems, we speculate that these results are likely to be attributed to the non-

compactness of the instanton moduli space. We test this proposal, for the case of monad

bundles, by considering gauged linear sigma models where compactness of the instanton

moduli space can be explicitly checked. In all such cases, we find that the geometric results

are consistent with the vanishing theorems. Surprisingly, linearly dependent Pfaffians even

arise for cases with a non-compact instanton moduli space. This suggests some gauged

linear sigma models with a non-compact instanton moduli space may still have a vanishing

instanton superpotential.
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1 Introduction

Non-perturbative instanton effects play a crucial role in many aspects of physics, such as

moduli stabilization and (large field) axion inflation. Especially in light of the de Sitter

swampland conjecture [1] and the weak gravity conjecture [2], it is an important question to

study under which conditions these terms can arise and what their moduli dependence is.
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In this paper, we will study world-sheet instantons in heterotic theories. These arise

from (euclidean) string world-sheets wrapping holomorphic curves of genus zero in a Calabi-

Yau (CY) manifold X. They are dual to D-brane instantons in Type II theories and

membrane instantons in M-Theory.1

The instanton contributions to the superpotential are, in general, functions of the

Kähler, the complex structure, and the bundle moduli. Schematically, world-sheet in-

stantons that wrap holomorphic genus zero curves γi, where i = 1, . . . , nγ , with second

homology class γ contribute a superpotential term

Wγ =

nγ∑
i=1

Pfaff(∂Vγi⊗Oγi (−1))

[det(∂Oγi )]
2 det(∂Nγi)

exp

[
−
∫
γ

J

2πα′
− iB

]
. (1.1)

Let us explain the various terms:

• nγ is the number of (isolated) holomorphic curves in the curve class of the genus zero

curve γ as counted by the Gromov-Witten invariants (we will focus on the dominant

contribution for which the instanton wraps the curves only once). We denote the nγ
curves with class γ by γi, where i = 1, . . . , nγ .

• Pfaff(∂Vγi⊗Oγi (−1)) is the Pfaffian of the Dirac operator obtained by integrating over

the right-moving fermionic world-sheet degrees of freedom. It depends on the complex

structure parameters of the CY and the bundle moduli. Here Vγi denotes the bundle

V restricted to γi and this is tensored with the spin bundle Oγi(−1) on γi.

• [det(∂Oγi )]
2 is the determinant of the ∂-operator on the trivial bundle and is just a

constant.

• det(∂Nγi) is the determinant of the ∂-operator on the normal bundle of γi which arises

from integrating over the bosonic fluctuations on the world-sheet. For a smooth,

isolated, genus 0 curve, the normal bundle is just NCi = Oγi(−1)⊗Oγi(−1), so this

term is det(∂Nγi) = [det(∂Oγi (−1))]2.

• The (1,1)-forms J and B are the Kähler form and the B-field on X, respectively.

The integral over the Kähler form is the area of the curve, which does not depend on

the individual curves γi but just on their class γ. The B field cancels the anomalous

variation of the Pfaffian factor [5–7].

An important observation by Beasley and Witten [8] (see also [9–12] for related work)

is that, while each instanton contribution associated to a curve γi can be non-zero, the

sum (1.1) over all instanton contributions in a given class γ vanishes, under fairly general

conditions. This powerful result is due to a residue theorem in a linear or half-linear (0, 2)

sigma model. While it would be interesting and, in light of the swampland conjectures,

important to see how this condition carries over to other string theories, such as Type II

under heterotic-Type II duality, we will focus on the heterotic case.

1For recent computations of instanton corrections in M-theory see ref. [3]. For a recent discussion of the

prevalence of necessary divisors in toric F-theory setups see [4].
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The residue theorem of Beasley-Witten is based on the following assumptions. The

compactification Calabi-Yau (CY) manifold X, its associated Kähler form, J and the vector

bundle on X must descend from a projective or, more generally, toric ambient space. Addi-

tionally, the instanton moduli space must be “compact”. This condition is defined in terms

of the linear or half-linear (0, 2) sigma model and manifests itself in a possible appearance

of additional fermionic zero modes which lead to the vanishing of the instanton sum (1.1).

Within this context of linear and half-linear sigma models, it is not easily checked.

Bertolini and Plesser [13] have emphasized the importance of compactness for the va-

lidity of the residue theorem. In cases with a gauged linear sigma model (GLSM) [14]

description, they have formulated a criterion that allows checking compactness of the in-

stanton moduli space. More specifically, their compactness criterion is simply a condition

on the GLSM U(1) charges. If the instanton moduli space turns out to be non-compact,

the residue theorem of Beasley and Witten does not apply and one cannot conclude that

the instanton sum vanishes.

To the best of our knowledge, it is not known whether every heterotic compactification

can be described as a GLSM. In a GLSM, the vector bundle V is naturally described in

terms of a monad bundle. Besides this bundle construction, there exist other descriptions

such as spectral cover or extension bundles, and it is unclear whether every such bundle

can re-written as a monad bundle. Moreover, a generic heterotic compactification involves

five-branes and it is not clear how they can be incorporated into a GLSM description (see

however [15, 16]). Consequently, checking Bertolini and Plesser’s compactness criterion can

still be a difficult task for models which are not originally formulated in terms of a GLSM.

In refs. [17–23], tools were derived that facilitate the computation of Pfaffians purely

based on methods of algebraic geometry. The key observation is that the Pfaffian on some

curve γi will be zero iff the bundle

Vi := V |Ci ⊗OCi(−1) (1.2)

has global sections. Hence, instead of computing the Pfaffian directly, we can compute

the cohomology dimension h0(Vi). This dimension depends on both complex structure and

bundle moduli. Here, we fix the complex structure moduli to a suitable generic value and

study the dependence on the bundle moduli β. If h0(Vi) > 0 everywhere in bundle moduli

space, the Pfaffian vanishes identically. A more interesting case arises when h0(Vi) = 0

generically, but if there exists a “jumping locus” in bundle moduli space, typically described

by an equation δi(β) = 0 for a polynomial δi, for which h0(Vi) > 0. Since δi and the Pfaffian

have the same zero locus they must be proportional, so that

δi = λiPfaff(∂̄Vi) , (1.3)

for λi ∈ C∗. The superpotential term (1.1), we can then be written as

Wγ =

[ nγ∑
i=1

λiδi

]
exp

(
−
∫
γ

J

2πα′
+ iB

)
. (1.4)
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We can use this result to formulate a sufficient condition for the non-vanishing of the

instanton contribution to the superpotential. If all δi are linearly independent as functions

of the bundle moduli β, then the instanton superpotential is necessarily non-vanishing.

In the present paper, we apply this criterion to study the vanishing/non-vanishing of

instanton superpotentials in the geometric framework. We find, perhaps surprisingly, that

compactifications with non-vanishing superpotential are more common than the apparent

generality of the residue theorem seems to suggest. We do not know the precise reason for

why the residue theorem does not apply to those cases, but we propose that it is due to a vi-

olation of the compactness assumption. In order to support this proposal, we study the rela-

tion between geometric models with monad bundles and the associated GLSM formulation.

The remainder of the paper is organized as follows. In section 2, we will recapitulate the

geometric setting, including the construction of the CY manifolds, various bundle construc-

tions, the method to compute the curves γi and the geometric method to compute Pfaffians

outlined above. We will also review a technique [24, 25] that allows us to find a monad de-

scriptions of certain extension bundles which will be used later. In section 3 we present geo-

metric examples of heterotic compactifications in which all geometric data descends from a

projective ambient space, yet the instanton sum (1.1) does not vanish. The non-cancellation

simply follows from linear independence of the holomorphic functions δi in eqs. (1.3), (1.4).

We present several examples both for extension and monad bundles to illustrate this. In

a companion paper [26] we report on a systematic scan over hundreds of thousands of

models which shows that such examples are quite common. In section 4, we review the

GLSM description of heterotic models with an emphasis on the Bertolini-Plesser criterion

for compactness of the instanton moduli space. In section 5 we discuss geometric models

for which we can find a GLSM description and we compare the statements about instanton

superpotentials which can be extracted in either framework. We conclude in section 6.

2 Instanton superpotentials from geometry

2.1 The Calabi-Yau geometry

In ref. [22], we have described a method of identifying all genus zero curves within certain

homology classes of CICY manifolds. This method applies if the homology class under

consideration descends from a P1 factor of the ambient space. In this case, the union of

all genus zero curves in this class can be written as a complete intersection. We will now

briefly review this method.

Our manifolds are defined in an ambient space P which we take to be a product

P = Pn1 × . . .× Pnm , (2.1)

of m projective factors. Within such an ambient space, a family of CICYs, X, is defined

by a configuration matrix

X ∈


Pn1 q1

1 q1
2 . . . q1

K

Pn2 q2
1 q2

2 . . . q2
K

...
...

...
. . .

...

Pnm qm1 qm2 . . . qmK

 , (2.2)
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which specifies the multi-degrees of the defining polynomials. More specifically, the CICY

is defined as the common zero locus of K polynomials pa, where the multi-degree of pa
is given by the ath column of the configuration matrix, so by qa = (q1

a, q
2
a, . . . , q

m
a )T . The

coefficients in generic polynomials pa of the appropriate degree parametrize the complex

structure of X. Not all these coefficients affect the complex structure (for example the

overall scaling of the coefficients in pa is irrelevant) but this redundancy can be removed

by suitably fixing some of the coefficients.

Since we are interested in CY three-folds we require that K + 3 =
∑m

i=1 ni. The CY

condition, c1(TX) = 0, amounts to

K∑
a=1

qia
!

= ni + 1 , i = 1, 2, . . . ,m . (2.3)

For our discussion, we assume that the ambient space P contains at least one P1 factor

which corresponds to the homology class γ we would like to study. We also order the

projective factors such that this P1 appears first and write the ambient space as P = P1×Q,

where Q = Pn2 × · · · × Pnm . Further, it is convenient to denote the degrees related to the

“transverse space” Q by q̂a = (q2
a, . . . , q

m
a )T .

Due to the CY condition (2.3), there are (up to trivial reordering) only two possibilities

for the degrees in a P1 direction. This leads to two types of configuration matrices [22],

referred to as type I and type II, given by

type I : X ∈

[
P1 1 1 0 . . . 0

Q q̂1 q̂2 q̂3 . . . q̂K

]
, type II : X ∈

[
P1 2 0 . . . 0

Q q̂1 q̂2 . . . q̂K

]
. (2.4)

Associated to these two types, we can define the complete intersection

type I : {yI} ∈
[
Q q̂1 q̂1 q̂2 q̂2 q̂3 . . . q̂K

]
,

type II : {yI} ∈
[
Q q̂1 q̂1 q̂1 q̂2 . . . q̂K

]
.

(2.5)

in the transverse space Q. By counting dimension, it is easy to check that these complete

intersections are zero-dimensional and, hence, correspond to a finite number of points

yi ∈ Q, where i = 1, . . . , nγ . Provided they are based on the polynomials which descend

from the original CY configurations (2.4), it can be verified that the nγ genus zero curves

γi = P1×yi ⊂ X are contained in the CY manifold X and have homology class γ. Moreover,

comparison with the Gromov-Witten invariants for γ shows that these provide all the genus

zero curves in this class.

In summary, we have an explicit method to find all genus zero curves in homology

classes C associated to ambient space P1 factors. Specifically, the locations yI of these

curves in the transverse space Q are determined by the configuration matrices (2.5).

2.2 The bundles

For the construction of geometric heterotic vacua we require vector bundles V → X with

structure groups that can be embedded into E8. In particular, this means that c1(V ) = 0.

– 5 –
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We also require that c2(TX)− c2(V ) is in the Mori cone of X so that there is a guaranteed

solution to the heterotic anomaly condition in terms of five-branes (although adding a

“hidden” bundle might be possible as well). For V to be supersymmetric it needs to be

poly-stable, a condition which can be checked algorithmically [27], although the process

can in practice be very tedious.

Throughout the paper, we will use different bundle constructions but our basic building

blocks will always be line bundles on the ambient space P, which we denote by OP(k) with

multi-degree k = (k1, . . . , km), and their restrictions OX(k) = OP(k)|X to the CY manifold

X. Note that the defining equations pa of the CY manifold X are sections of the bundle

N =
⊕

aNa, where Na = OP(qa). If the entire second cohomology of X descends from

the second ambient space cohomology, the CICY is called favorable. In this case, all line

bundles on X are obtained by restricting the line bundles on P.

We will frequently require line bundle sums which we denote by

A =

rA⊕
α=1

OP(aα) , B =

rB⊕
β=1

OP(bβ) , C =

rC⊕
γ=1

OP(cγ) , (2.6)

with multi-degrees aα = (a1
α, . . . , a

m
α ), bβ = (b1β , . . . , b

m
β ) and cγ = (c1

γ , . . . , c
m
γ ). Their

restrictions to the CY manifold are denoted by the corresponding non calligraphic letter, so

A = A|X =

rA⊕
α=1

OX(aα) , B = B|X =

rB⊕
β=1

OX(bβ), , C = C|X =

rC⊕
γ=1

OX(cγ) . (2.7)

The first and second Chern character of a line bundle sum can be computed from

chi1(A) =

rA∑
α=1

aiα , ch2i(A) =
1

2
dijk

rA∑
α=1

ajαa
k
α , (2.8)

and similarly for B and C. Here, dijk are the triple intersection numbers of X.

In the following, we will usually write down the defining sequences for the bundle V

on X but it is understood that associated sequences exist on the ambient space, defining

a bundle (or, in some cases a sheaf) V that restricts to V = V|X .

The tangent space to the bundle moduli spaceMX(V ) of V is computed by H0(V⊗V ∗).
If all bundle moduli of V descend from moduli of V we call the bundle favorable, in analogy

with the corresponding terminology for the manifold. For our calculations we will require

moduli to descend from the ambient space, so for favorable bundles we will be able to deal

with the entire moduli space. For non-favorable bundles our results will be restricted to

the subset of MX(V ) which does descend from V.

We begin the more explicit discussion with extension bundles.

Simple extension bundles. The simplest type of extension bundle we will consider is

an extension of two line bundle sums, defined by the short exact sequence

0→ B → V → C → 0 , (2.9)

– 6 –
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and with Chern character

rk(V ) = rB + rC (2.10)

chi1(V ) = chi1(B) + chi1(C) =
∑
β

biβ +
∑
γ

ciγ
!

= 0 (2.11)

ch2i(V ) = ch2i(B) + ch2i(C) =
1

2
dijk

∑
β

bjβb
k
β +

∑
γ

cjγc
k
γ

 , (2.12)

where the last equation assumes that ch1(V ) = 0. The moduli space of such extension

bundles is

MX(V ) = Ext1(C,B) ∼= H1(C∗ ⊗B) . (2.13)

The zero in Ext1(C,B) corresponds to the trivial extension V = B ⊕ C and non-trivial

extensions (with non-Abelian structure groups) are possible if Ext1(C,B) is non-trivial.

For instanton calculations we need an explicit handle on this bundle moduli space. The

most straightforward case is the one whereMX(V ) happens to be equal to its ambient space

counterpart MP(V) = Ext1(C,B). Things are not always this simple, however. There are

two effects which can lead to a difference between the moduli spaces MX(V ) andMP(V).

A bundle can be non-favorable if MX(V ) receives contributions from cohomologies

other than MP(V) ∼= H1(C∗ ⊗ B). In practice, we can only handle bundle moduli which

descend from ambient space moduli, so for such non-favorable bundles we are only be able

to consider the sub-space of MX(V ) which descends.

On the other hand, considering the ambient moduli space MP(V) might also be over-

counting, since restriction to X can imply that certain quotients have to be formed to

obtain the correct moduli space MX(V ). This can be corrected for relatively easily by

identifying and carrying out the relevant quotients which arise in the Koszul sequence.

We will ensure supersymmetry of the extension bundle in a neighborhood of the trivial

extension by ensuring that the line bundle sum B ⊕C is superymmetric. This amounts to

checking that there is a common solution to the slope zero condition

µX(L) =

∫
X
J2 ∧ c1(L)

!
= 0 (2.14)

(where J is the Kähler form of X) for all line bundles L ⊂ B ⊕ C.

Double extensions. On occasion, we will consider more complicated extension bundles

V which are defined by two exact sequences

0→ A→ V ′ → B → 0 , 0→ V ′ → V → C → 0 , (2.15)

which lead to the Chern character

rk(V ) = rA + rB + rC (2.16)

chi1(V ) = chi1 ∗ (A) + chi1(B) + chi1(C) =
∑
α

aiα +
∑
β

biβ +
∑
γ

ciγ
!

= 0 (2.17)

ch2i(V ) = ch2i(A) + ch2i(B) + ch2i(C) =
1

2
dijk

∑
α

ajαa
k
α +

∑
β

bjβb
k
β +

∑
γ

cjγc
k
γ

 (2.18)

As before, the last equation is valid provided ch1(V ) = 0.
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There are two bundle moduli spaces involved, namely

MX(V ) = Ext1(C, V ′) ∼= H1(C∗⊗V ′) , MX(V ′) = Ext1(B,A) ∼= H1(B∗⊗A) (2.19)

and choosing the zero in either moduli space leads to the trivial extension V = A⊕B⊕C.

If the extension Ext1(B,A) = 0 then V ′ = A⊕B and the double extension reduces to the

single extension 0 → A ⊕ B → V → C → 0. Only if both extension groups in eq. (2.19)

are non-zero can we have a non-trivial double extension where both V ′ and V are bundles

with non-Abelian structure group.

The moduli space MX(V ) can be computed from the short exact sequence

0→ C∗ ⊗A→ C∗ ⊗ V ′ → C∗ ⊗B → 0 , (2.20)

obtained by tensoring the first sequence (2.15) by C∗, and its associated long exact sequence

in cohomology. Explicit expressions depend somewhat on the circumstances. For example,

if H0(C∗ ⊗B) = H2(C∗ ⊗A) = 0 then

MX(V ) ∼= H1(C∗ ⊗ V ′) ∼= H1(C∗ ⊗A)⊕H1(C∗ ⊗B) . (2.21)

An explicit description of the moduli space in terms of the moduli space of the ambient

space bundle has the same issues as discussed for the single extension case. For non-

favorable double extensions bundles we can only include the part of the moduli space

MX(V ) in our instanton calculation which descends from MP(V). Over-counting which

arises from quotients in the Koszul sequence can be taken into account explicitly.

Just as in the case of a single extension, supersymmetry of bundles V obtained from

a double extension is ensured, in a neighborhood of the trivial extension, by ensuring a

common solution to eq. (2.14) for all line bundles L ⊂ A⊕B ⊕ C.

Monad bundles. We will focus on two-term monads and define the monad vector bundle

V by the short exact sequence

0→ V → A
f−→ B → 0 ⇒ V = Ker(f) , (2.22)

where A and B are line bundles sums as in eq. (2.7). The monad map f can be thought of

as an rB × rA matrix whose entries are sections

fβα ∈ H0(OX(bβ − aα)) . (2.23)

In practice, we will only incorporate those sections in fβα which descend from sections

H0(OP(bβ − aα)), that is, which can be written down as polynomials in the ambient space

coordinates. For V to be a bundle, rather than a sheaf, we need to require that the monad

map f does not degenerate anywhere on X. The Chern character of a monad bundle is

given by

rk(V ) = rA − aB (2.24)

chi1(V ) = chi1(A)− chi1(B) =
∑
α

aiα −
∑
β

biβ
!

= 0 (2.25)

ch2i(V ) = ch2i(A)− ch2i(B) =
1

2
dijk

∑
α

ajαa
k
α −

∑
β

bjβb
k
β

 , (2.26)

where the last equation holds provided ch1(V ) = 0.
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The expression for the dimension h0(V ⊗ V ∗) of the bundle moduli space is in general

complicated. However, provided we have

h1(B∗ ⊗B) = 0 , h1(B∗ ⊗A) = 0 , (2.27)

which is frequently satisfied for concrete models, there is a simple formula [28]:

h0(V ∗ ⊗ V ) = h0(A∗ ⊗B) + h0(B∗ ⊗A)− h0(A∗ ⊗A)− h0(B∗ ⊗B)

− h1(B∗ ⊗A) + h1(A∗ ⊗A) + 1 .
(2.28)

The terms in this formula which involve h1(·), as well as h0(B∗ ⊗ A), correspond to non-

polynomial deformations. If they are non-vanishing the bundle is non-favorable. The

remaining terms have a straightforward interpretation: h0(A∗ ⊗ B) counts the number

of sections (2.23) which enter the monad map. For the bundle to be favorable all these

sections have to descend from sections on the ambient space, so be polynomial in the

ambient space coordinates. The two terms h0(A∗ ⊗A) and h0(B∗ ⊗B) count the number

of bundle automorphisms of A and B which have to subtracted for a correct moduli count.

Finally, +1 is added to correct for the overall scaling which has been subtracted twice.

Relation between monad and extension bundles. A given bundle construction, even

if favorable, does not necessarily exhaust the entire moduli space of a given topological

bundle type. For example, an extension and a monad bundle might realize the same

topological type but they can correspond to different parts of the bundle moduli space.

For this reason, it can be useful to convert between the different constructions. Here, we

describe how to find a monad description of an extension bundle, following the method of

refs. [24, 25].

The basic idea is to start with a monad description of the structure sheaf,

0→ OX → Ã
φ−→ B̃ → 0 , (2.29)

where Ã, B̃ are line bundle sums such that

rk(Ã) = rk(B̃) + 1 and c1(Ã) = c1(B̃) . (2.30)

These conditions are necessary for the monad to describe the trivial bundle but not suffi-

cient. We also need to ensure that the monad map φ does not degenerate on X, so that

its kernel is indeed a bundle rather than a sheaf. To illustrate how this can be done, we

consider our preferred ambient spaces of the form P = P1 ×Q. For such a case, we choose

for the above line bundles sums

Ã = OX(r, 0, . . . , 0)⊕OX(r̃, 0, . . . , 0) , B̃ = OX(r + r̃, 0, . . . , 0) , (2.31)

where r and r̃ are positive integers. Then, the monad map is of the form φ = (ϕ, ϕ̃),

where ϕ and ϕ̃ are polynomials of degree r̃ and r, respectively, in the coordinates of the

P1. Provided ϕ and ϕ̃ are sufficiently generic they have no common zero locus in P1 so the

map does indeed not degenerate.
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Having obtained a monad for the trivial bundle it is then straightforward to write

down a monad for a line bundle sum V =
⊕

a La as

0→ V →
⊕
a

La ⊗ Ãa
F→
⊕
a

La ⊗ B̃a → 0 , (2.32)

where Ãa and B̃a are line bundle sums of the form (2.31), but possibly with different values

of r and r̃ for different a. To represent this line bundle sum the monad map F should have

the structure

F =

ϕ1 ϕ̃1 0 0 · · ·
0 0 ϕ2 ϕ̃2 · · ·
...

...
...

...
...

 (2.33)

where φa = (ϕa, ϕ̃a) are the maps in the monad realization (2.29) of the trivial bundle

(with Ã and B̃ replaced by Ãa and B̃a).

Now suppose we have an extension (2.9) of two line bundle sums B and C. Following

the above prescription we can then find a monad description for the trivial extension

V = B ⊕ C. The point is that the monad map in this description can often be deformed

away from the simple pattern in eq. (2.33) by filling in some of the zero entries. In this

way, the monad can be deformed away from the line bundle locus.

2.3 Computing the Pfaffians

Let us finally outline the general procedure to compute the Pfaffians. Details, such as

finding a parametrization of the bundle moduli space or computing relevant cohomologies,

are model-dependent and will be illustrated by the examples in section 3 and section 5.

Recall from eq. (1.2) the definition of the bundles Vi = V |γi ⊗OP1(−1), where γi is a

holomorphic genus zero curve. The individual Pfaffians for curves γi vanish if the operator

∂̄Vi has zero modes. Since the zero modes of this operator are counted by the sections of

the line bundle Vi, we get

h0(Vi) 6= 0 ⇔ Pfaff(∂̄Vi) = 0 . (2.34)

Note that the cohomologies H0(Vi) depend on both bundle and complex structure moduli.

To simplify the computation, we will fix the complex structure at a sufficiently generic value

and study the dependence of H0(Vi) on the bundle moduli β. If h0(Vi) > 0 everywhere

in bundle moduli space then the Pfaffian for γi vanishes identically. A more interesting

case arises when h0(Vi) = 0 for generic values but there is a “jumping locus”, a locus of

complex co-dimension one in bundle moduli space, where h0(Vi) > 0. Such a jumping

locus can be described as the zero locus of a polynomial δi = δi(β) and we conclude

that Pfaff(∂̄Vi) = λiδi for a complex constant λi. The procedure to compute instanton

superpotential geometrically can, hence, be summarized as follows.

1. Pick a curve class γ in the second homology of X for which the contribution Wγ to

the instanton superpotential is to be computed.
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2. Find a set of holomorphic representatives of all genus zero curves γi ⊂ X, where

i = 1, . . . , nγ , in the curve class γ.

3. Restrict the vector bundle V → X to each curve in the given class and tensor it with

OP1(−1), that is, compute the bundles Vi = V |γi ⊗OP1(−1).

4. If h0(Vi) > 0 everywhere in bundle moduli space, then Pfaff(∂̄Vi) = 0.

5. Otherwise, if h0(Vi) = 0 generically, find the jumping locus where h0(Vi) > 0 and

describe it as the zero locus of a polynomial δi = δi(β). Then Pfaff(∂̄Vi) = λiδi for

some complex constant λi.

6. The instanton superpotential contribution for the class γ is then given by

Wγ =

[ nγ∑
i=1

λiδi

]
exp

(
−
∫
γ
(J + iB)

)
. (2.35)

7. Check if the polynomials δi are linearly independent, as functions of the bundle

moduli β. If they are, the pre-factor in eq. (2.35) cannot vanish identically and Wγ

is non-zero. If they are linearly dependent, we cannot make a definite statement. In

this case, Wγ can be zero or non-zero, depending on the unknown constants λi.

3 Non-vanishing superpotentials in the geometric approach

The main purpose of this section is to present a number of explicit examples which lead

to a non-vanishing instanton superpotential and, at the same time satisfy the following

conditions which underlie the Beasley-Witten residue theorem:

• The Calabi-Yau manifold X is a CICY in some projective ambient space P, as in

eq. (2.1).

• The vector bundle on X is a restriction of a vector bundle on P.

• The Kähler form on X is a restriction of a Kähler form on P.2

In a companion paper [26], we are reporting the result of systematic computer scans of

hundreds of thousands of heterotic models on more than 100 different CICYs, mostly with

h1,1 = 2, 3. They lead to many thousands of models which satisfy the above conditions

and where the contributions from individual instantons are linearly independent and thus

cannot cancel. Here, we will illustrate this with a number of explicit examples.

At the end of this section, we will speculate about possible reasons why the examples

in this section — and indeed the large classes presented in ref. [26] — avoid the residue

theorem.

Some technical details of our examples, such as the precise location of the holomorphic

genus zero curves and equations of the sub-loci δi = 0 which determine the zeroes of the

Pfaffians, are given by very cumbersome expressions. These expressions are computed with

Mathematica and will not be presented explicitly.

2This assumption is not mentioned in ref. [8], and was established later, in ref. [21].
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3.1 An example with an SU(3) monad bundle

We will start with the following example. We consider CICY 7735 in the list of ref. [29]

which is described by the configuration matrix

X ∈

P1 2 0 0 0

P1 0 2 0 0

P5 1 1 2 2


(3,51) ∣∣∣∣∣∣∣

z1,0, z1,1

z2,0, z2,1

z3,0, z3,1, z3,2, z3,3, z3,4, z3,5 .

(3.1)

We find that the genus zero Gromov-Witten invariants for the three divisors are

~nγ = (8, 8, 128). The geometry is of Type II as discussed in section 2.1, and we can use the

method described there to find the position of the eight curves in the class associated to the

first P1 factor. In particular, these eight points are described by the complete intersection

{yi} =

[
P1 0 0 0 2 0 0

P5 1 1 1 1 2 2

]
, (3.2)

with y = (~z2, ~z3).

The bundle. The monad bundle V on X we consider is defined by the short exact

sequence 0→ V → A
f→ B → 0 with

A = OX(1, 1, 0)⊕OX(1, 1, 1)⊕OX(0, 1, 0)⊕OX(0, 1, 0) , B = OX(2, 4, 1) . (3.3)

This bundle has the following properties:

• It satisfies c1(V ) = 0 and c2(TX)− c2(V ) is effective.

• It satisfies basic stability checks.

• For sufficiently generic choices of the monad map it is a vector bundle rather than a

sheaf.

The monad map f can be written as a 1× 4 matrix

f =
(
f1,3,1 , f1,3,0 , f2,3,1 , f

′
2,3,1

)
, (3.4)

where the subscripts denote the multi-degrees of the polynomial maps. Since the third

and fourth function have the same multi-degrees, but correspond to independent maps, we

denote them by f2,3,1 and f ′2,3,1, respectively.

The bundle moduli space and redundancies. Let us next study the monad bundle

moduli space following the procedure outlined in section 2.2. We first compute h1(X,B∗⊗
B) and h1(X,B∗ ⊗A) to check that eq. (2.27) is satisfied, which is indeed the case. From

eq. (2.28) we then find h1(X,V ⊗V ∗) = 130. This should be compared with the number of

parameters in the polynomial map (3.4). We find that f1,3,1 has 48 monomials, f1,3,0 has

8, and f2,3,1 and f ′2,3,1 have 72 each, giving a total of 200 parameters. Thus this example

involves an over-parametrization of the bundle moduli space.
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To study this in more detail, we compute the individual terms in eq. (2.28). We first

note that some of the monomials in the ambient space monad map restrict trivially to X.

This is reflected in the fact that

h0(OX(1, 3, 1)) = 44 , h0(OX(1, 3, 0)) = 8 , h0(OX(2, 3, 1)) = 62 . (3.5)

So, for entry in the monad map, only 44 of the 48 ambient space monomials restrict non-

trivially. This can be seen from the Koszul resolution. Indeed, we find that

h0(OP(1, 3, 1)) = 48 , h0(N ∗2 ⊗OP(1, 3, 1)) = h0(OP(1, 1, 0)) = 4 . (3.6)

Hence, upon imposing the second of the four complete intersection equations, 4 of the 48

monomials become trivial. Similarly, for the third and fourth entry in the monad map, we

observe that

h0(OP(2, 3, 1)) = 72 , h0(,N ∗1 ⊗OP(2, 3, 1)) = h0(OP(0, 3, 0)) = 4 ,

h0(N ∗2 ⊗OP(2, 3, 1)) = h0(OP(2, 1, 0)) = 6 .
(3.7)

Therefore, 4 ambient space monomials become trivial on the first hypersurface and 6 on

the second, for a total of 10 on the CICY (which is the intersection of all four ambient

space hypersurfaces).

To identify further over-parametrizations, we next look at the bundle endomorphisms

A∗⊗A and B∗⊗B. Since rB = 1, we have B∗⊗B = OX , which corresponds to removing one

overall scaling degree of freedom. For the rA× rA cohomology matrix h0(X,OX(aα−aα′))
we find

h0(X,OX(aα − aα′)) =


1 8 0 0

0 1 0 0

2 14 1 1

2 14 1 1

 (3.8)

As can be seen, this bundle has several automorphisms. The diagonal entries are unity

and, hence, correspond to overall scaling symmetries. The bottom right 2 × 2 block arises

from the fact that a3 = a4.

We find that all other cohomology dimension in eq. (2.28) are zero. In particular,

there are no further contributions to h1(X,V ⊗ V ∗) that do not descend from the ambient

space, which means that the bundle is bundle favorable and does not under-parametrize

the bundle moduli space. Putting everything together, we find that we need to subtract 46

parameters that over-parametrize the bundle moduli space due to symmetries in the line

bundle sums A and B. This leaves precisely 176− 46 = 130 bundle moduli on X which is

the correct number.

The Pfaffians. In order to compute the Pfaffians, we next tensor the monad with

OX(−1, 0, 0) and restrict to the first P1 to obtain

0 −→ Vi −→ OP1 ⊕OP1 ⊕OP1(−1)⊕OP1(−1)
f |γi−−→ OP1(1) −→ 0 . (3.9)
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Next, we look at the sections H0(Vi). Since the line bundle OP1(−1) does not have any

sections, we drop it from the subsequent discussion and compute

H0(Vi) ∼= Ker
[
f |γi : H0

(
O⊕2
P1 )→ H0(OP1(1))

)]
, (3.10)

where i = 1, . . . , 8 labels the eight curves in the curve class γ of the first P1. For the

restricted monad map we find, after dropping the last two columns that correspond to the

OP1(−1) terms and inserting the position yi of the ith curve, that

f(~z1, ~z2, ~z3)|Ci =

(
f1,3,1(z1,0, z1,1; yi)

f1,3,0(z1,0, z1,1; yi)

)
=

(
z1,0 p3,1(yi) + z1,1 q3,1(yi)

z1,0 s3,0(yi) + z1,1 t3,0(yi)

)
, (3.11)

with

p3,1(yi) =

24∑
r=1

β(1)
r mr

3,1(yi) , q3,1(yi) =

24∑
r=1

β(2)
r mr

3,1(yi) , (3.12)

s3,0(yi) =
4∑
r=1

β(3)
r mr

3,0(yi) , t3,0(yi) =
4∑
r=1

β(4)
r mr

3,0(yi) , (3.13)

and mr
d1,d2

(y) = mr
d1,d2

(~z3, ~z3) denoting monomials of multidegree (d2, d3) in (~z2, ~z3). The

coefficients β
(i)
r parametrize the bundle moduli space of the (ambient space) monad bundle.

We could remove the redundancies as explained above, but the result does not depend

on this.

Choosing (α, β)T with α, β ∈ C as a basis of O⊕2
P1 , this means(

α

β

)
∈ ker [f |γi ] if (x1,0 x1,1)

(
p3,1(yi) q3,1(yi)

s3,0(yi) t3,0(yi)

)(
α

β

)
= 0 . (3.14)

The kernel of f |γi will be non-trivial if the determinant δ of the map in (3.14) vanishes.

So to test the Beasley-Witten vanishing result, we compute

δi = p3,1(yi)t3,0(yi)− q3,1(yi)s3,0(yi) . (3.15)

By construction, the δi’s we obtain this way are polynomials in the vector bundle moduli

β
(i)
r . As we have mentioned above, the functional form of the δi is very involved and will

not be presented here. The next step is to check whether

8∑
i=1

λiδi
?
= 0 (3.16)

for some λi ∈ C∗. We find that there are 192 different monomials bilinear in the bundle

moduli, and the δi form linearly independent combinations of these, that is, no λi exist to

make the above sum vanish. We conclude that the instanton contributions cannot cancel

and, hence, that the non-perturbative superpotential Wγ is non-vanishing.
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3.2 An examples with an SU(3) extension bundle

In this section, we will present an example based on an extension bundle with SU(()3)

structure group.

The geometry. We choose CICY number 7860 in the list of ref. [29]. Its configuration

matrix reads

X ∼


P1 1 1 0

P1 0 0 2

P2 1 0 2

P2 0 1 2


(4,68)

∣∣∣∣∣∣∣∣∣∣
~z1 = [z1,0 : z1,1]

~z2 = [z2,0 : z2,1]

~z3 = [z3,0 : z3,1 : z3,2]

~z4 = [z4,0 : z4,1 : z4,2] .

(3.17)

We define the bundle V as the extension 0→ A→ V → B → 0 of line bundle sums

A = OX(−2, 3,−1, 1) , B = OX(0, 0, 2,−2)⊕OX(2,−3,−1, 1) . (3.18)

Consistency conditions. We can check that the bundle satisfies the usual consistency

constraints, namely that c1(V ) = 0 and that c2(TX)− c2(V ) is effective. Furthermore, we

have checked that the trivial extension A⊕B allows for a common slope zero locus for all

line bundles.

In order to check that V is a non-trivial extension, we compute the dimensions of the

cohomologies following the techniques described in [27]. We find that

h•(OP(a1 − b1)) = (0, 0, 0, 40, 0, 0, 0) , h•(OX(a1 − b1)) = (0, 16, 0, 0) ,

h•(OP(a1 − b2)) = (0, 21, 0, 0, 0, 0, 0) , h•(OX(a1 − b2)) = (0, 21, 25, 0) .
(3.19)

Since h1(OX(a1 − b1)) and h1(OX(a1 − b2)) are non-zero, the bundle has non-trivial

extensions.

Finding the curves. The CICY geometry for the first P1 is of type I, and the location

of the two curves in transverse space Q are given by the complete intersection

{yi} =

P1 0 0 0 0 2

P2 1 1 0 0 2

P2 0 0 1 1 2

 , (3.20)

with y = (~z2, ~z3, ~z4). It is easy to see this configuration describes two points: the first two

equations fix a point in the first P2, the next two equations fix a point in the second P2,

and the last equation, being quadratic in ~z2, leads to two points in the P1. We denote

these points by yi, and the corresponding curves by γi, where i = 1, 2. Note that, since

the coefficients in the defining polynomials (3.17) parametrize (in a redundant way) the

complex structure moduli space, these points depend on the complex structure. We have

also cross-checked our results by computing the Gromov-Witten invariants, following the

methods of ref. [30].
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Parametrizing the bundle moduli space. To compute the Pfaffians we first need to

explicitly parametrize the bundle moduli space. As calculated in (3.19), the dimensions of

the corresponding bundle extensions on X are 16 and 21, respectively. As it turns out, the

Pfaffians only depend on the moduli of the latter. This is helpful, since the former do not

descend from H1 of the ambient space, since h1(OP(a1 − b1)) = 0 in (3.19). Let us denote

the projection from P onto Q by πQ,

πQ : P → Q ,
P1 × P1 × P2 × P2 7→ P1 × P2 × P2 .

(3.21)

The relevant extension space is then

H1(OP(a1 − b2)) = H1(OP(4, 6, 0, 0)) = H1(OCi(−4))⊗H1(OQ(6, 0, 0)) , (3.22)

where we have used the Künneth and Bott formulas. Due to Serre duality, we have

H1(OCi(−4)) ' H0(OCi(2))∗ , (3.23)

and this space is three-dimensional. Since we will need it later, we first introduce a basis

{t0, t1} for H0(Oγi(1))∗ and the dual basis {r0, r1} for H1(Oγi(−3)). A natural basis for

the left-hand side of (3.23) is then {r2
0, r0r1, r

2
1}, dual to the degree 2 polynomials of the

right-hand side {t20, t0t1, t21}. An arbitrary element v ∈ H1(OP(−4, 6, 0, 0)) can then be

written as

v = r2
0f

(1)
6,0,0(~z2, ~z3, ~z4) + r0r1f

(2)
6,0,0(~z2, ~z3, ~z4) + r2

1f
(3)
6,0,0(~z2, ~z3, ~z4) . (3.24)

That is, the three polynomials f (i) are homogeneous polynomials of degree 6 in [z2,0 : z2,1],

f
(1)
6,0,0(~z2, ~z3, ~z4) =

6∑
i=0

β
(1)
i zi2,0z

6−i
2,1 , f

(2)
6,0,0(~z2, ~z3, ~z4) =

6∑
i=0

β
(2)
i zi2,0z

6−i
2,1 ,

f
(3)
6,0,0(~z2, ~z3, ~z4) =

6∑
i=0

β
(3)
i zi2,0z

6−i
2,1 .

(3.25)

The 3× 7 = 21 coefficients β
(r)
i precisely parametrize the 21-dimensional extension space.

Computing the Pfaffians. Now that we have a parametrization of bundle moduli space

we can move on to computing the Pfaffians. We start from the extension (3.18) and tensor

it with OP(−1, 0, 0, 0) to obtain

0→ OP(−3, 3,−1, 1)→ V ⊗OP(−1, 0, 0, 0)→ OP(−1, 0, 2,−2)⊕OP(1,−3,−1, 1) .

(3.26)

Now we take the direct image with the projection πQ, which leads to the long exact sequence

0→ πQ∗O(−3,3,−1,1)→ πQ∗(V⊗OP(−1,0,0,0))→ πQ∗(OP(−1,0,2,−2)⊕OP(1,−3,−1,1))

→R1πQ∗O(−3,3,−1,1)→R1πQ∗(V⊗OP(−1,0,0,0))→R1πQ∗(OP(−1,0,2,−2)⊕OP(1,−3,−1,1))

→ 0 .
(3.27)
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At each point in Q and for any line bundle L, πQL and R1πQL are generated by the zeroth

and first cohomology group of the fiber (i.e., the first ambient space P1 factor). Since

H0(OP1(−3)) = 0 , H0(OP1(−1)) = 0 ,

H1(OP1(−1)) = 0 , H1(OP1(1)) = 0 ,
(3.28)

and, by Bott’s formula,

R1πQ∗O(−3, 3,−1, 1) = H1(OP1(−3))⊗OQ(3,−1, 1) , (3.29)

the long exact sequence becomes

0 −−→ πQ∗(V ⊗OP(−1, 0, 0, 0)) −−→ H0(OP1(1))⊗OB(−3,−1, 1))
f−−→ H1(OP1(−3))⊗OQ(3,−1, 1)) −−→ R1πQ∗(V ⊗OP(−1, 0, 0, 0))

−−→ 0 .

(3.30)

Since h0(OP1(1)) = 2 = h1(OP1(−3)), the map f can be represented by a 2 × 2 matrix.

We can now restrict the exact sequence (3.30) to the curves γi, i = 1, 2, by considering it

at the two points (~z i2∗, ~z
i

3∗, ~z
i

4∗) ⊂ Q, i = 1, 2. We see that the first term in the sequence

becomes

πQ∗(V ⊗OP(−1, 0, 0, 0)) = H0(Vi) . (3.31)

As discussed in section 1, this is precisely the space of zero modes of the Dirac operator.

Consequently, this will be non-trivial if f has a non-trivial kernel,

Pfaff(∂Vi) = 0 ⇔ det(f) = 0 . (3.32)

The map f is simply given by multiplication by v ∈ H1(OP(−4, 6, 0, 0)); see for exam-

ple (3.24). It is constructed by acting on v with the basis elements {t0, t1} introduced

above (3.24),

v(t0) = r0f
(1)
6,0,0(~z2, ~z3, ~z4) + r1f

(1)
6,0,0(~z2, ~z3, ~z4) ,

v(t1) = r0f
(2)
6,0,0(~z2, ~z3, ~z4) + r1f

(3)
6,0,0(~z2, ~z3, ~z4) .

(3.33)

Hence,

f =

(
f

(1)
6,0,0(~z2, ~z3, ~z4) f

(2)
6,0,0(~z2, ~z3, ~z4)

f
(2)
6,0,0(~z2, ~z3, ~z4) f

(3)
6,0,0(~z2, ~z3, ~z4)

)
,

δ = det(f) = f
(1)
6,0,0(~z2, ~z3, ~z4)f

(3)
6,0,0(~z2, ~z3, ~z4)− [f

(2)
6,0,0(~z2, ~z3, ~z4)]2 .

(3.34)

Thus, the Pfaffian for the curve γi is proportional to δi, that is, δ evaluated at yi.
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Checking Beasley-Witten cancellation. We find that a necessary condition for the

vanishing of the superpotential contribution is thus

λ1

(
f

(1)
6,0,0(y1)f

(3)
6,0,0(y1)−[f

(2)
6,0,0(y1)]2

)
+λ2

(
f

(1)
6,0,0(y2)f

(3)
6,0,0(y2)−[f

(2)
6,0,0(y2)]2

)
= 0 (3.35)

for some λ1, λ2 ∈ C. Note that (3.35) is quadratic in the 21 bundle moduli or, more

precisely, it contains terms of the form αiγj and βiβj . We find that for no values of λ1, λ2

can eq. (3.35) hold, which means that the instanton contribution

λ1

(
f

(1)
6,0,0(y1)f

(3)
6,0,0(y1)− [f

(2)
6,0,0(y1)]2

)
+ λ2

(
f

(1)
6,0,0(y2)f

(3)
6,0,0(y2)− [f

(2)
6,0,0(y2)]2

)
(3.36)

is non-vanishing.

3.3 An example admitting both extension and monad descriptions

In this subsection, we consider an example involving an extension bundle for which we

can find an equivalent monad description, following our discussion in subsection 2.2. This

means we can compute the Pfaffians in two different ways. We find both cases lead to the

same results; thus providing a non-trivial consistency check of our technique.

The geometry. We study the CICY with configuration matrix

X ∈



P1 1 1 0 0

P1 1 0 1 0

P1 1 0 0 1

P2 0 1 1 1

P1 2 0 0 0

P1 2 0 0 0



(6,54)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~z1 = [z1,0 : z1,1]

~z2 = [z2,0 : z2,1]

~z3 = [z3,0 : z3,1]

~z4 = [z4,0 : z4,1 : z4,2]

~z5 = [z5,0 : z5,1]

~z6 = [z6,0 : z6,1] .

(3.37)

This manifold is an ineffective split, leading to a favorable configuration, of CICY 7709 in

the list of ref. [29]. The first four ambient space factors (P1)3 ×P2 together with the first

three equations, define a (non-generic) dP3 where all three blow-ups are co-linear [31]. The

second Chern classes are

c2,i = (24, 24, 24, 36, 24, 24) , (3.38)

and the Gromov-Witten invariants in the class of the ith ambient space factor are

n1,0,0,0,0,0 = 8 , n0,1,0,0,0,0 = 8 , n0,0,1,0,0,0 = 8 , n0,0,0,1,0,0 = 0 , n0,0,0,0,1,0 = 36 , n0,0,0,0,0,1 = 36 .

(3.39)

We have computed these with our method [22] (where applicable) and have cross-checked

and supplemented with the method of ref. [30].

Similar to refs. [21, 22], we consider an SU(3) double extension bundle V defined via

three line bundle sums A, B, C, as

0→ A→ V ′ → B → 0 ,

0→ V ′ → V → C → 0 .
(3.40)
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The bundles A, B, C consist of a single line bundle each and are given by

A = OX(−2, 2, 0, 0, 1, 1) , B = OX(0, 1, 0, 0,−1, 0) , C = OX(2,−3, 0, 0, 0,−1) .

(3.41)

We will focus on the instanton contributions of the first ambient space factor.

Bundle cohomologies. We start by listing several bundle cohomologies that will be

useful here and later.

h•(A⊗ B∗) = (0, 12, 0, 0, 0, 0, 0, 0) , h•(A⊗B∗) = (0, 12, 0, 0) , (3.42a)

h•(A⊗ C∗) = (0, 108, 0, 0, 0, 0, 0, 0) , h•(A⊗ C∗) = (0, 108, 0, 0) , (3.42b)

h•B ⊗ C∗) = (0, 0, 0, 0, 0, 0, 0, 0) , h•(B ⊗ C∗) = (0, 0, 0, 0) . (3.42c)

Non-trivial extension. First we check that the extension is non-trivial, i.e., we need to

check Ext(B,A) ∼= H1(X,A⊗B∗) and Ext(C, V ) ∼= H1(X,V ′ ⊗ C∗). The former is given

directly by eq. (3.42a) and its dimension is 12. To compute the latter, we tensor the first

line of (3.40) by C and look at the resulting long exact sequence in cohomology,

0→H0(A⊗ C∗)→ H0(V ′ ⊗ C∗)→ H0(B ⊗ C∗)→
H1(A⊗ C∗)→ H1(V ′ ⊗ C∗)→ H1(B ⊗ C∗)→

H2(A⊗ C∗)→ . . .

(3.43)

We are interested in the underlined term. Since h0(B⊗C∗) = h1(B⊗C∗) = 0, we find that

h1(A⊗ C∗) = h1(V ′ ⊗ C∗) = 108 . (3.44)

Hence, there exist non-trivial extensions.

Bianchi identities. The Bianchi identities can be satisfied provided c2(TX)− c2(V ) is

effective. Comparing the second Chern class

c2(V ) = (14,−10, 2, 3,−18,−22) , (3.45)

with that of the tangent bundle in eq. (3.38) shows that the difference is indeed effective.

Bundle stability. Verifying poly-stability of an SU(3) bundle on a manifold with h1,1 = 6

is very involved. So we will content ourselves with the following checks:

• Note that A injects into V ′ and V ′ injects into V . We check that neither injecting

subsheaf destabilizes V .

• There exist a common slope zero locus for the trivial extension V = A⊕B ⊕ C.

• Turing on vevs for bundle moduli that lead away from the trivial extension still

preserve the D-term equations.

We verify these requirements numerically with Mathematica.
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Let us be more explicit about the last check based on the D-terms. The process of

constructing a non-trivial extension can be described in supersymmetric low-energy field

theory and is equivalent to finding supersymmetric vacua of the D-term equations [32, 33].

We expand the Kähler form

J =
6∑
i=1

tiDi , (3.46)

where ti are the Kähler parameters and Di are the (duals of the) divisors that are obtained

from pulling back the hyperplane class of the ith ambient space factor Pni to X. For

notational convenience we also define

vi =
∑
j,k

dijktjtk , (3.47)

where dijk are the triple intersection numbers. The vi are proportional to the volume of

divisor Di and thus need to be positive. At the split locus, we get three D-term equations

(one for each line bundle), out of which two are linearly independent (due to the fact that

the bundle is an S[U(1)3] bundle). The bundle moduli at the split locus are singlets under

the non-Abelian groups but they do carry U(1) charge. Their multiplicity is counted by

h•(Li ⊗ L∗j ) (where Li ∈ {A,B,C}) and they carry charge 1 and −1 under the ith and

jth U(1), respectively. We denote the matter fields by M(q1,q2,q3). From the cohomolo-

gies (3.42a)–(3.42c) we see that there are 12 fields M(1,−1,0) and 108 fields M(1,0,−1). The

D-term equations can then be written as

2v1 + v3 − 2v4 + v5 −
12∑
i=1

|〈M i
(1,−1,0)〉|

2 −
108∑
i=1

|〈M i
(1,0,−1)〉|

2 = 0 ,

v1 − v3 +

12∑
i=1

|〈M i
(1,−1,0)〉|

2 = 0 ,

−3v1 + 2v4 − v5 +
108∑
i=1

|〈M i
(1,0,−1)〉|

2 = 0 .

(3.48)

We observe that these equations do have solutions for positive Käbler parameters ti (which

depend on vi as in eq. (3.47)) and non-negative vevs |M(q1,q2,q3)|2. The fact that they have

solutions where all vevs are turned off means that the bundle is stable at the split locus.

Furthermore, there are many flat directions in the combined Kähler and bundle moduli

space, which correspond to supersymmetric deformations away from the trivial extension.

Checking Beasley-Witten cancellation. In this section, we check Beasley-Witten

cancellation. The computation is analogous to the one presented in subsection 3.2, so we

will be brief here. As we have shown above the (relevant part of the) bundle moduli space

of V is given by h1(A⊗ C∗) = 108, where

A⊗ C∗ = OP(−4, 5, 0, 0, 1, 2) . (3.49)
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This allows us to write the extension in terms of ambient space coordinates. Using Serre

duality, we can write an arbitrary element m ∈ H1(A⊗ C∗) as

m = z2
1,0f

(1)
(5,1,2)(~z2, ~z5, ~z6) + z1,0z1,1f

(2)
(5,1,2)(~z2, ~z5, ~z6) + z2

1,1f
(3)
(5,1,2)(~z2, ~z5, ~z6) . (3.50)

The subscript indicates that the three functions f (i) are homogeneous of degree (5, 1, 2) in

the (P1)3 coordinates (~z2, ~z5, ~z6). There are 36 monomials of this multi-degree, so we have

a total of 108 parameters in m. These 108 parameters parametrize the h1(A⊗ C∗) = 108

dimensional extension space. In fact, the moduli space is only 107-dimensional since we

need to projectivize,

Next, we find the 8 curves in the curve class of the first ambient space P1 factor

following the steps outlined for a type I geometry in section 2.1. The 8 curves will fix 8

distinct points in the transverse space Q. We find that the Pfaffian is proportional to the

map δ with

δ = f
(1)
(5,1,2)(~z2, ~z5, ~z6)f

(3)
(5,1,2)(~z2, ~z5, ~z6)− [f

(2)
(5,1,2)(~z2, ~z5, ~z6)]2 . (3.51)

By substituting the values of yi = (~z2, ~z3, ~z4, ~z5, ~z6)i, i = 1, . . . , 8, that give the position of

the 8 curves, we obtain 8 polynomials in the 108 bundle moduli parameters for arbitrary

complex structure. Each polynomial has 1962 terms and we find that the 8 polynomi-

als are linearly independent. Hence, there cannot be any cancellation among them and,

consequently, the instanton superpotential is non-zero.

An equivalent monad bundle description. Next, we apply the method explained in

section 2.2 to find a monad bundle description for the previous extension bundle. We need

to choose the line bundle sums Ãa and B̃a in eq. (2.32) such that the bundle map F allows

for non-trivial deformations so that we get a bona fide SU(3) monad bundle rather than a

(partially) split bundle. Also, the construction requires P1 factors, which is why we chose

the extension bundle to be the trivial bundle on the P2 factor. In this way, we obtain an

infinite family of monad bundles

0→V→OX(r−2,2,0,0,1,1)⊕OX(r̃−2,2,0,0,1,1)⊕OX(0,1,0,0,−1,0)⊕OX(2,−3,0,0,0,−1)

f−→OX(r+r̃−2,2,0,0,1,1)→ 0 , (3.52)

with r, r̃ ≥ 2. The monad map f can be written as a 4× 1 matrix

f =
(
f

(1)
(r̃,0,0,0,0,0), f

(2)
(r,0,0,0,0,0), f

(3)
(r+r̃−2,1,0,0,2,1), f

(4)
(r+r̃−4,5,0,0,1,2)

)
, (3.53)

where the subscripts indicate the multi-degrees of the polynomials. Note that the monad

and the extension bundle are only equivalent on the CY. On the ambient space, their

moduli space has, in general, different dimensions. (This is possible since some of the

contributions to the bundle moduli come from higher terms in the Koszul sequence.)

As a cross-check, we have verified that the cohomologies h•(V ) for the extension bundle

and its associated monad agree. Moreover, we have computed the number of singlets from

h•(V ∗ ⊗ V ) = (1, 118, 118, 1). The 118 bundle moduli match precisely the moduli of the

– 21 –



J
H
E
P
0
2
(
2
0
2
0
)
0
8
1

extension bundle. The extension of V ′ has h1(A⊗ B∗) = 12, and due to projectivization,

these correspond to 11 moduli. Similarly, the extension of V has h1(V ′⊗C∗) = 108, which

means that the extension space is 107-dimensional. Together, we find 11 + 107 = 118

moduli. These correspond to the singlets M i
(1,−1,0) and M i

(1,0,−1), respectively.

Let us next illustrate how different choices of r and r̃ can be used to make the monad

bundle favorable so that all bundle moduli descend from the ambient space. When counting

the number of parameters in the monad map f , we find

number of parameters = (r+1)+(r̃+1)+12(r+r̃−1)+36(r+r̃−3) = 49(r+r̃)−118 .

(3.54)

For the minimum value r = r̃ = 2, the monad map has only 78 parameters, and some of

them are not even independent. So, not all of the 118 bundle moduli are explicit realized

by the monad in this case. For r + r̃ ≥ 5, there are more than 118 bundle moduli in

the monad map, so we have over-parametrization. By looking at the cohomologies, the

minimal choice which leads to ≥ 118 parameters in the monad map is r = r̃ = 3.

In more detail, we look at the various contributions from (2.28). The symmetries of the

bundle we need to subtract come from h0(B⊗B∗) and h0(C⊗C∗). In the present case, we

can write them as 4×4 and 1×1 matrices, respectively. These matrices will have a 1 on the

diagonal corresponding to scaling symmetries of the line bundle. The off-diagonal entries

(β, β′) correspond to maps from the line bundle OX(b′β) to the line bundle in OX(bβ). The

dimensions are

h0(OX(bβ − bβ′)) =


1 1 12(r − 1) 0

1 1 12(r̃ − 1) 0

0 0 1 0

0 0 0 1

 , h0(C ⊗ C∗) = 1 . (3.55)

Hence, the overparametrization due to symmetries in B and C is 12(r+r̃)−18. Just remov-

ing these redundancies (there are also redundancies coming from h1(B⊗C∗)) from (3.54),

the number of independent bundle moduli in the monad map is at most 37(r + r̃) − 100.

For r + r̃ = 5, this is 85, so we still under-parametrize. For r = r̃ = 3, this is 122

and we over-parametrize and the additional 4 moduli are removed by h1(OX(b1 − c1)) =

h1(OX(b2 − c1)) = 2. This means for r = r̃ = 3 (or larger), we will have made all 108

bundle moduli that enter the Pfaffian computation explicit in the monad map.

Let us summarize the result of this subsection. For all values of r, r̃ ≥ 2, the

monad (3.52) describes the same bundle as the double extension in eqs. (3.40), (3.41).

However, for r + r̃ ≤ 5 the monad captures only a portion of the full moduli space of the

extension. There are additional flat directions in the bundle moduli space which are not

seen by the polynomial map f in eq. (3.52). However, if r, r̃ ≥ 3 the monad map realizes

the full bundle moduli space of the associated extensions bundle. In these cases the number

of parameters in f (modulo over parametrization due to symmetries discussed just above)

precisely matches the number of flat directions of the extension bundle (3.40), (3.41).

We will now consider the case r = r̃ = 3. In this case, the monad map explicitly

realizes the same moduli space as the extension bundle and we must get the same answer

for the Pfaffians. We will now show that it is, indeed, true.
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Checking Beasley-Witten cancellation. In order to find the Pfaffians for the first P1

factor, we tensor the monad with OX(−1, 0, 0, 0, 0, 0) and restrict to the first P1 to obtain

0 −→ Vi −→ OP1 ⊕OP1 ⊕OP1(−1)⊕OP1(1)
f |γi−−→ OP1(3) −→ 0 . (3.56)

Next, we look at the sections H0(Vi). Since the line bundle OP1(−1) does not have any

sections, we drop them from the subsequent discussion and compute

H0(Vi) ∼= Ker[f |γi : H0(OP1 ⊕OP1 ⊕OP1(1))→ H0(OP1(3)))] , (3.57)

where i = 1, . . . , 8 labels the eight curves in the curve class of the first P1.

In order to find the kernel of the map, let us parametrize the l.h.s. of the map as

(κ1, κ2, z1,0, z1,1) with κ1, κ2 ∈ C and (z1,0, z1,1) being a basis of holomorphic section of

OP1(1). Now we look at the restricted monad map after dropping the third columns that

correspond to the OP1(−1) term,

f(~z1; y)|γi = (f
(1)
(3,0,0,0,0,0)(~z1; yi) , f

(2)
(3,0,0,0,0,0)(~z1; yi) , f

(4)
(2,5,0,0,1,2)(~z1; yi)) . (3.58)

Let us now study the conditions for which (κ1, κ2, z2,0, z2,1) is in the kernel of the map.

The first two components require

f
(1)
(3,0,0,0,0,0)(~z1; y) = 0 , f

(2)
(3,0,0,0,0,0)(~z1; y) = 0 . (3.59)

For the last component, we write

f
(4)
(2,5,0,0,1,2)(~z1; y) = z2

2,0f̃
(1)
(0,5,0,0,1,2)(y) + 2z2,0z2,1f̃

(2)
(0,5,0,0,1,2)(y) + z2

2,1f̃
(3)
(0,5,0,0,1,2)(y)

= (z2,0, z2,1) ·

(
f̃

(1)
(0,5,0,0,1,2)(y) f̃

(2)
(0,5,0,0,1,2)(y)

f̃
(2)
(0,5,0,0,1,2)(y) f̃

(3)
(0,5,0,0,1,2)(y)

)
·

(
z2,0

z2,1

)
.

(3.60)

This map has a non-trivial kernel iff

det

[(
f̃

(1)
(0,5,0,0,1,2)(y) f̃

(2)
(0,5,0,0,1,2)(y)

f̃
(2)
(0,5,0,0,1,2)(y) f̃

(3)
(0,5,0,0,1,2)(y)

)]
= 0 . (3.61)

This implies that the Pfaffian is proportional to the polynomial δ given by

δ = f̃
(1)
(0,5,0,0,1,2)(y)f̃

(3)
(0,5,0,0,1,2)(y)− [f̃

(2)
(0,5,0,0,1,2)(y)]2 . (3.62)

This is indeed the same expression as we have obtained for the extension bundle in eq. (3.51)

and, hence, we have a non-trivial consistency check of our methods. We already know that

the equation

8∑
i=1

λiδi = 0 (3.63)

does not have solutions for λi ∈ C∗. Hence, a cancellation of the various Pfaffians cannot

occur and the instanton superpotential Wγ is non-zero.
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3.4 Discussion of the residue theorem

We have constructed explicit models (and will indeed present large numbers of such models

in a companion paper [26]) which descend from the ambient space and appear to satisfy

the conditions of the Beasley-Witten residue theorem, yet lead to non-vanishing instanton

superpotentials. It is important to understand how this apparent contradiction is resolved.

The first possibility is that a generic heterotic compactification involves five-branes.

On the other hand it is not known whether the Beasley-Witten residue theorem is valid, or

even applicable, in this case. However, in some cases we can find the hidden bundle, Vhid,

which, together with the visible bundle V , satisfies the Bianchi identities without any need

for five-branes. For example, the model discussed in subsection 3.2 admits the following

hidden bundle:

Vhid = L4 ⊕ L5 (3.64)

with

L4 = OX(3, 2,−1,−1) , L5 = L∗4 = OX(−3,−2, 1, 1) . (3.65)

Indeed, one can check that c2(TX) = c2(V ) + c2(Vhid) for this choice of hidden bundle.

Nevertheless, a non-vanishing superpotential is found in this case.

The only assumption of the residue theorem which we have not verified is “compactness

of the instanton moduli space”. Therefore, it is natural to propose that the models de-

scribed in this section violate this condition. This assumption, however, is very elusive from

a geometric viewpoint. It can only be checked in the framework of GLSMs where Bertolini

and Plesser have established a precise criterion [13]. In the remainder of this paper, we

will, therefore, construct models with both a geometric and a GLSM description.

4 Instantons in gauged linear sigma models

In this section, we will first review key facts about gauged linear sigma models. Then we

will use the Bertolini-Plesser result [13], which provides a condition to check compactness

of the instanton moduli space.

4.1 Review of gauged linear sigma models

Abelian gauged linear sigma models, or GLSMs for short, were introduced by Witten in

ref. [14]. We will be mainly following the conventions and notation3 of ref. [34]. More

details can also be found for example in refs. [9, 35].

The representations of an N = (0, 2) SUSY in two dimensions allow for chiral and

vector superfields (as is familiar from the 4D N = 1 theory), but they can also have

chiral-fermi and fermionic gauge fields, whose lowest components are fermions. Let us

introduce a GLSM related to an ambient space P = Pn1 × · · · ×Pnm , a CICY described by

3To make the connection to the geometric approach more apparent, however, we will use the symbols A

and B for the bundles.
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a configuration matrix (2.2) and a two-term monad of the form (2.22). Its field content is

as follows:

• A set of U(1) gauge superfields (V,A)i, i = 1, . . . ,m.

• A set of fermionic gauge superfields Σj , j = 1, . . . , nF , which, however, do not appear

in two-term monads.

• A set of chiral multiplets ZI = (zI , ψI), I = 1, . . . N with N = m +
∑m

i=1 ni and

charges QiI under the ith U(1).

• A set of chiral multiplets Bβ = (pβ , πβ), β = 1, . . . , rB with charges −biβ under the

ith U(1).

• A set of chiral-fermi multiplets Pk = (ck, χk), k = 1, . . . ,K with charges −qik under

the ith U(1).

• A set of chiral-fermi multiplets Aα = (λα, Lk), α = 1, . . . , rA with charges aiα under

the ith U(1).

Note that the names of the GLSM fields, the range of their indices and their charges are

in line with the corresponding quantities from our geometric discussion.

Each gauge superfield comes with FI-parameters ti, i = 1, . . . ,m (and a θ-angle), which

are linked to the Kähler parameters of the geometric setup. Since we focus on favorable

cases, the number of Kähler parameters is equal to the number of ambient space Pni factors,

and we have introduced that many U(1) gauge fields. The Calabi-Yau phase of the GLSM

will correspond to the case where all ti � 0.

In addition to the gauge charges, all fields also carry a charge under an Abelian (non-

R) symmetry U(1)L and an Abelian R-symmetry U(1)R. In particular, the superpotential

has U(1)L charge 0 and U(1)R charge 1. We summarize the charge assignments in table 1.

Note that in (0, 2) GLSMs the sum of the scalar charges can be non-zero, which will

lead to a one-loop running of the FI parameters. In order to cure this, it was observed in [35]

that one can simply add a pair of spectator superfields, consisting of a chiral superfield S

and a chiral-fermi superfield Ξ with opposite charges,

QiS =
∑
β

biβ −
∑
k

qik , QiΞ = −
∑
β

biβ +
∑
k

qik . (4.1)

The U(1)L,R and the U(1)i charges of S and Ξ allow for a term

W ⊃ mSΞ (4.2)

in the superpotential so that the spectators pair up and become massive in the IR. How-

ever, as was shown in ref. [13], the zero modes of S can still decompactify the instanton

moduli space.
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ZI Pk Aα Bβ S Ξ

U(1)i QiI −qik aiα −biβ QS QΞ

U(1)L 0 0 −1 1 1 −1

U(1)R 0 1 0 1 1 0

Interpretation
Geometry Geometry Monad Monad

Spectator Spectator
coordinates constraints A-terms B-terms

Table 1. Overview of GLSM fields and their U(1) charges.

Moreover, we note that the U(1)L,R charge assignments are compatible with the su-

perpotential

W ⊃
K∑
k=1

PkHk(ZI) +

rB∑
β=1

Bβ

rA∑
α=1

Aαfαβ(ZI) , (4.3)

where Hk(ZI) and fα(ZI) are holomorphic polynomials in ZI whose multi-degree is such

that the superpotential is gauge-invariant. Note that f corresponds to the monad map in

eq. (2.22).

In the Calabi-Yau phase ti � 0, the F- and D-terms give rise (for sufficiently generic

H and f such that the geometry is smooth) to constraints

Hk(ZI)
!

= 0 , ∀k = 1, . . . ,K , (4.4)

which precisely imposes the K equations that define the CICY in the ambient space. Since

the zI are the collection of all N coordinates of all m ambient space factors, it makes

sense to break them up into the Pni they belong to, that is, to split I into I = {i, r} with

i = 1, . . . ,m and r = 0, . . . , ni. Then, the charge of Zji,r under the jth U(1) is simply δji
and zi,0, . . . , zi,ni are the homogeneous coordinates of Pni .

Thus, a GLSM as defined in table 1 describes a CICY given by the configuration

matrix (2.2), and a vector bundle V on X is given by a monad 0→ V → A
f−→ B → 0 with

A =

rA⊕
α=1

OX(a1
α, . . . , a

m
α ) , B =

rB⊕
β=1

OX(b1β , . . . , b
m
β ) . (4.5)

Since the GLSM is chiral, we have to worry about gauge anomalies. They lead to

linear and quadratic constraints on the gauge charges. (Note that the contributions of the

spectators to the anomalies cancel.) The linear anomaly constraints

N∑
I=1

QiI =

K∑
k=1

qik ,

rA∑
α=1

aiα =

rB∑
β=1

biβ , ∀ i = 1, . . . ,m , (4.6)

precisely correspond to the conditions c1(TX) = 0 and c1(V ) = 0, respectively. The

quadratic conditions from the mixed U(1)i ×U(1)j anomalies

0
!

= Aij =

 rA∑
α=1

aiαa
j
α −

rB∑
β=1

biβb
j
β

−( N∑
I=1

QiIQ
j
I −

K∑
k=1

qikq
j
k

)
(4.7)
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are somewhat more mysterious. While it is true that Aij = 0 for all i, j implies the Bianchi

identities c2(V ) = c2(TX), the conditions are much stronger. Moreover, they depend on the

chosen description of the geometry and the bundle, that is, different geometric descriptions

of the same CY manifold can lead to different anomalies. Similarly, different descriptions

of the same monad bundle on the same CY manifold can lead to different anomalies.

Indeed, if we expand the (2, 2)-forms c2(V ) and c2(TX) in a basis of (1, 1)-forms Di,

c2(V ) =
∑
i,j

νi,jDi ∧Dj , c2(TX) =
∑
i,j

γi,jDi ∧Dj , (4.8)

with γi,j and νi,j in Z, we find that the quadratic anomaly coefficients Ai,j appear in the

Bianchi identity as

c2(V )− c2(TX) =
∑
i,j

AijDi ∧Dj , Aij = (νi,j − γi,j) . (4.9)

Hence, Aij = 0 is stronger than the Bianchi identities, since the (2,2)-forms Di∧Dj , seen as

forms on X, are not necessarily linearly independent in cohomology. (They are, however,

linearly independent as forms on the ambient space.) Also, the GLSM anomaly conditions

are independent of the GLSM phase one is considering.

To illustrate this further, let us look, for example, at a Calabi-Yau one-fold, that is a

two-torus, with trivial bundle (no A and B fields) and a geometric description either as

a cubic curve in P2 or as a degree 6 curve inside the weighted projective space P1,2,3. In

either case, there is only a single ambient space factor (and, hence, one U(1)), a single

constraint field P , and three coordinate fields ZI with charges

P2[3] : QI = (1, 1, 1) , − q1 = 3 , P1,2,3[6] : QI = (1, 2, 3) , − q1 = 6 . (4.10)

Consequently, the anomaly A11 in eq. (4.7) is 6 and 12, respectively. From a geometric

point of view, this is curious, since c2(TX) vanishes. If we choose another description for

the trivial bundle in terms of a three-term monad (which would correspond to the standard

embedding)

0→ O →
3⊕

α=1

Aα → B → 0 (4.11)

with

P2[3] : aα = QI = (1, 1, 1) , − b1 = −q1 = 3 ,

P1,2,3[6] : aα = QI = (1, 2, 3) , − b1 = −q1 = 6 ,
(4.12)

the anomalies vanish.

The observation that the GLSM anomalies seem to be too strong has motivated the

introduction of a Green-Schwarz-like anomaly cancelation mechanism in the GLSM [15, 16],

which is generically necessary in the presence of flux that necessitates SU(3) structure

compactifications [36, 37]. The mechanism introduces field-dependent FI terms, and the

gauge transformation of the fields shift the path integral measure to cancel the anomalies.

– 27 –



J
H
E
P
0
2
(
2
0
2
0
)
0
8
1

However, since the field-dependent FI terms correct the Kähler parameters, the Kähler

form will no longer be closed and the CY manifold is deformed to a geometry with torsion

(in case there is an anomaly despite c2(V ) = c2(TX)) or with five-branes that cancel the

geometric anomaly (in cases where c2(V ) < c2(TX)). It would be interesting to study the

consequences for the compactness of the instanton moduli space and, consequently, for the

Beasley-Witten theorem in this context. This is, however, beyond the scope of this paper.

4.2 Compactness of the instanton moduli space for monad bundles

The conditions for a compact instanton moduli space have been identified by Bertolini and

Plesser in ref. [13]. They found that the zero modes of the bosonic chiral multiplets B

and S decompactify the instanton moduli space. Let us expand an effective curve µ in a

curve class γ in terms of Mori cone generators µi such that µ =
∑

iwiµi with wi ≥ 0. The

instantons in this curve class will have instanton numbers (w1, w2, . . . , wm).

The decompactifying zero modes are in one-to-one correspondence with the lowest

component fields pβ and s of the superfields Bβ and S. On P1, these zero modes are

given by the sections of the corresponding line bundles twisted with the P1 spin bundle

K1/2(P1) = OP1(−1),

pβ ↔ Γ(OP1(−biβwi − 1)) ,

s ↔ Γ(OP1( QiSwi − 1)) .
(4.13)

Note that if s has zero modes outside the geometric cone, the instanton moduli space

will nevertheless be compact. Hence, by using Bott’s formula we find that there will be

decompactifying sections if for any β there exist wi such that

−biβwi − 1 ≥ 0 or QiSwi − 1 ≥ 0 . (4.14)

4.3 Relation to the geometric models

In the next section, we will be interested in geometric heterotic models of the kind studied

previously that admit a GLSM description. Let us discuss a special case of eq. (4.14), where

the instanton wraps a single genus zero curve once so that (w1, w2, . . . , wm) = (1, 0, . . . , 0).

Moreover, we consider semi-positive monads which satisfy biβ ≥ 0 since they have a better

chance of giving rise to poly-stable vector bundles. This, implies that the first condition

in (4.14) is not satisfied and we will never find decompactifying zero modes from the monad

fields pβ . However, the zero modes of the spectator s can still lead to a non-compact

instanton moduli space. Since we focus on a single ambient space P1, the second equation

in (4.14) becomes

Q1
S ≥ 1 . (4.15)

Using eq. (4.1) and the fact that
∑

k q
2
k = 2 (which is just the Calabi-Yau condition) we

can equivalently write this as ∑
β

b1β ≥ 3 . (4.16)
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It would be very interesting to find a reason why monads of the type we consider with∑
β b

1
β < 3 always have a compact instanton moduli space.

A second very interesting question is the interplay of anomalies with the compactness

criterion. The compactness criterion is formulated in terms of monad fields Bβ on the P1,

while the geometric calculations mainly depend on the transverse space Q. However, the

anomaly conditions mixes data for P1 with that for Q, so the bundle charges in the P1

direction implicitly depend on all other charges as well. It would be interesting to use the

anomalies to establish this connection explicitly. While we do not do this in full generality,

we illustrate how the anomalies constrain the bundle charges for a simple class of monads

in section 4.4.

When the GLSM anomalies are not cancelled the model is not consistent and we

cannot invoke the Bertolini-Plesser criterion to check compactness of the moduli space.

Indeed, if we check compactness naively for such anomalous GLSMs, we find cases with

an (apparently) compact moduli space but Pfaffians computed from geometric methods

which are linearly independent. For such cases we would expect that, upon constructing

an equivalent but anomaly-free description, the fields B′β of the new model will lead to

zero modes (they will either have zero modes themselves or their charges will change the

spectator superfields such that S develops zero modes) that decompactify the instanton

moduli space.

4.4 Example for simple monad bundles

Let us illustrate how the requirement of vanishing GLSM anomalies constrains the possible

bundle charges in some simple cases. First, we consider an SU(3) monad bundle with just

one B term,

0→ V →
4⊕

α=1

OX(aα, âα)→ OX(b, b̂)→ 0 , (4.17)

where aα and b denote the degrees in the P1 direction and âα and b̂ are the multi-degrees in

the transverse space Q. We focus on semi-positive monads where aα, âα (and consequently

b and b̂ as well) are non-negative.

A vanishing first Chern class of V requires

4∑
α=1

aα = b ,

4∑
α=1

âα = b̂ . (4.18)

The quadratic anomaly of the first U(1), that is, A11 in (4.7), then imposes

type I:
∑
α<α′

aαaα′ = 0 , type II:
∑
α<α′

aαaα′ = 1 , (4.19)

where we have also used eq. (4.18). Since we only consider monads with aα ≥ 0, we find

that at least two aα have to be zero, and we take, without loss of generality, a3 = a4 = 0.

Now, the type I cases require that in addition we choose (say) a2 = 0 in which case the
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quadratic anomaly A11 vanishes identically for any a1. In particular, if a1 ≤ 2, the Beasley-

Witten vanishing conditions will be satisfied from eq. (4.16) (since b = a1), while a1 > 2

will lead to a non-compact instanton moduli space on this P1. For the type II cases, the

solutions are a3 = a4 = 0 and a1 = a2 = 1. Hence, these always lead to compact instanton

moduli spaces.

While the problem of solving the quadratic Diophantine equations corresponding to

the mixed anomalies is too general to make further precise statements, it is instructive to

look at the mixed quadratic anomalies A1i with i > 1. Here we have to distinguish the

type I and type II cases.

Type I case. The mixed quadratic anomalies A1i for type I read

qi1 + qi2 = a1(bi − ai1) . (4.20)

Let us observe that the vector b̂−â1 = (bi−ai1) on the r.h.s. gives precisely the multi-degree

of the monad map f in the ith ambient space factor coordinates. In the next section, we

will see that only the first column of the monad map will contribute to the Pfaffian. Hence,

this will determine the multi-degrees of the Pfaffian in the coordinates of the projective

ambient space.

Similarly, the two terms qi1 and qi2 are the degrees of the defining equation in the ith

ambient space factor. These multiply the P1 coordinates and, hence, enter in the Gromov-

Witten invariants, see eq. (2.5). This means that the degree of the Pfaffian is fixed entirely

in terms of the twisting of the P1 over Q.

While it is hard to make a definite statement, we observe that the following relation

a1 ≤ qi1 + qi2 ≤ 4 (4.21)

gives a necessary condition for vanishing of the A1i anomaly. Here, the final bound comes

from the fact that the highest P1 twisting that occurs in the CICY list is 4. Since for type

I we have a1 = b, we conclude, using eq. (4.16), that the window of possible SU(3) monads

with a single B field that have a non-compact instanton moduli space is very narrow.

Type II case. For type II, the mixed anomalies A1i become

2qi1 = 2bi − ai1 − ai2 . (4.22)

Again, we will see in the next section that the r.h.s. is precisely the degree of the Pfaffian

and this degree is fixed for a given CICY by the twisting of the P1 over Q. Similar to the

first case, we find a necessary condition for the mixed anomalies A1i to vanish

bi ≤ qi1 ≤ 4 . (4.23)

In this case, the Pfaffian will be given by the determinant of a matrix, which will lead to

a polynomial of multi-degree 2bi − ai1 − ai2.
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5 Geometric models with a GLSM description

In this section, we will discuss heterotic models for which we can find a GLSM descrip-

tion. First, in section 5.1, we will discuss in general the functional form of the Pfaffians

that we will encounter in the examples of this section. Then, in section 5.2, we present

examples with a compact instanton moduli space. For these models, the superpotential

must vanishes according to the results of refs. [8, 11, 12]. Indeed, we will see that in these

cases the Pfaffians computed from geometric methods are always linearly dependent and,

hence, allow for a cancellation. This provides a non-trivial consistency check between the

geometric methods and the vanishing theorems. Finally, in section 5.3, we discuss SU(3)

monads for which the spectator decompactifies the instanton moduli space.

In our scan we also find about 50 models with an anomaly-free GLSM description

where the Bertolini-Plesser criterion is violated and the instanton moduli space is, hence,

non-compact. Nevertheless, in all such cases the Pfaffians computed via geometric methods

turn out to be linearly dependent. This is surprising and counter to expectations but it is

not a contradiction. Indeed, for such cases neither the GLSM nor the geometric approach

tell us whether the instanton superpotential is vanishing or non-vanishing.

A non-vanishing instanton superpotential for these cases is consistent with the geomet-

ric picture — the values of the undetermined constants λi may be such that the linearly

dependent Pfaffians do not cancel — and would point to our geometric non-vanishing con-

dition being too weak. On the other hand, vanishing of the instanton superpotential for

these models — perhaps the more plausible case since the emergence of linearly dependent

Pfaffians is a highly non-trivial feature — would hint at reasons for the cancellation of

instanton effects which go beyond the current vanishing theorems. It would clearly be im-

portant to understand which of these possibilities is realized. For now, we emphasize that

in all cases where both a geometric and an anomaly-free GLSM description exist, there is

no contradiction between the geometric results and the vanishing theorems.

5.1 Computing Pfaffians for SU(3) monad bundles

Our examples with compact instanton moduli space in this section are based on the SU(3)

monad bundles introduced in subsection 4.4. Let us first discuss the computation in

some generality, and then present an example for each type. For type I examples, the

monad (4.17) restricted to the P1 and twisted by the spin bundle becomes

0→V |P1⊗OP1(−1)→OP1(a1−1)⊕OP1(−1)⊕OP1(−1)⊕OP1(−1)→OP1(a1−1)→ 0 ,

(5.1)

where we used b = a1 as well other consequences of the anomaly cancellation from

subsection 4.4.

Since the Pfaffian will be proportional to the locus where the number of sections jumps,

we can discard the OP1(−1) factors which have no sections and focus on the monad map

f (1)(y) with y = (~z2, . . . , ~znm) from OX(a1) to B. The zero locus of this map will be

proportional to the Pfaffians

δ = f
(1)

b̂−â1
(y) , (5.2)
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where the subscript denotes the degrees in the coordinates y = (~z2, . . . , ~znm) of Q. Note

that, as mentioned in subsection 4.4, the multi-degree of the Pfaffian is precisely the r.h.s.

of the mixed anomaly condition (4.20). The coefficient of each monomial in δ corresponds

to a bundle modulus. As discussed earlier, these might over- or under-parametrize the

bundle moduli space. Next, we find the position of the curves in the transverse space Q,

insert these into (5.2) and compute δ for each curve. Then we check whether or not the

δi are linearly independent. As we already discussed in subsection 4.4, the compactness

conditions are satisfied for a non-anomalous GLSM and a bundle with a1 ≤ 2 and, hence,

δi must be linearly dependent. We will present an explicit example below.

Similarly, for the type II examples, the monad (4.17) restricted to the P1 and twisted

by the spin bundle becomes

0→ V |P1 ⊗OP1(−1)→ OP1(1)⊕OP1(1)⊕OP1(−1)⊕OP1(−1)→ OP1(2)→ 0 . (5.3)

We can again drop the OP1(−1) parts and focus on the first two columns f (1) and f (2) of the

monad map. Choosing a basis (z1,0, z1,1) for the sections of OP1(1) and (z2
1,0, z1,0z1,1, z

2
1,1)

for the sections of OP1(2), we find for the maps f (α) from OX(aα) to B (with α = 1, 2)

f (α) = z1,0f̃
(α,0)(y) + z1,1f̃

(α,1)(y) (5.4)

with y = (~z2, . . . , ~znm) and, hence, the map reads

(z1,0, z1,1) ·

f̃ (1,0)

b̂−â1
(y) f̃

(2,0)

b̂−â2
(y)

f̃
(1,1)

b̂−â1
(y) f̃

(2,1)

b̂−â2
(y)

 ·(z1,0

z1,1

)
. (5.5)

This has a non-trivial kernel if the determinant

δ = det

f̃ (1,0)

b̂−â1
(y) f̃

(2,0)

b̂−â2
(y)

f̃
(1,1)

b̂−â1
(y) f̃

(2,1)

b̂−â2
(y)

 (5.6)

=
˜̃
f

(0)

2b̂−â1−â1
(y)− ˜̃

f
(1)

2b̂−â1−â1
(y) (5.7)

with

˜̃
f

(0)

2b̂−â1−â1
(y) = f̃

(1,0)

b̂−â1
(y)f̃

(2,1)

b̂−â2
(y) , (5.8)

˜̃
f

(1)

2b̂−â1−â1
(y) = f̃

(2,0)

b̂−â2
(y)f̃

(1,1)

b̂−â1
(y) , (5.9)

vanishes. Again, the degree of the Pfaffian is precisely the r.h.s. of the mixed anomaly

condition (4.22) (cf. subsection 4.4), and the coefficients of the monomials of the f̃ (α,r),

could over- or under-parametrize the bundle moduli space. As the next step, we find the

position of the curves in Q, insert these into (5.6) and compute δ for each curve. As was

already explained in subsection 4.4, in all type II models of this kind the compactness

criteria are satisfied and, hence, δi must be linearly dependent. As a consistency check, we

have verified, by scanning all 123 CICYs with Picard rank 3, that the geometric method
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always produces linearly dependent Pfaffians for bundles that satisfy the GLSM anomaly

conditions. An explicit type II example is presented below.

Let us also give a setup where the compactness criterion fails. As was discussed in

eq. (4.16), we need monad bundles whose line bundles OX(bα) sum up to at least three to

have a spectator zero mode that decompactifies the instanton moduli space. Sticking with

SU(3) bundles, we choose a construction with a rank five line bundle sum A and a rank

two line bundle sum B, explicitly given by

A=OX(2, â1)⊕OX(1, â2)⊕OX(0, â3)⊕OX(0, â4)⊕OX(0, â5), B=OX(2, b̂1)⊕OX(1, b̂2) .

(5.10)

Projecting to the P1 factor and tensoring with OP1(−1) gives

0→ V |P1 ⊗OP1(−1)→ OP1(1)⊕OP1(0)⊕ 3OP1(−1)→ OP1(1)⊕OP1(0)→ 0 . (5.11)

As before, we drop the OP1(−1) that do not have sections, so that the relevant part of the

5× 2 monad map f is the first 2× 2 block,

f2×2 =

f (1,1)

b̂1−â1
0

f
(2,1)

b̂1−â2
f

(2,2)

b̂2−â2

 , with f (i,j) ≡ 0 if min(b̂j − âi) < 0 . (5.12)

Choosing a basis of sections of OP1(1) as (z1,0, z1,1) and of OP1(0) as κ ∈ C, the map δ

becomes

δ = det



f̃

(1,1)

b̂1−â1
0 f̃

(2,1)

b̂1−â2

0
˜̃
f

(1,1)

b̂1−â1
˜̃
f

(2,1)

b̂1−â2

0 0 f
(2,2)

b̂2−â2


 = f̃

(1,1)

b̂1−â1
˜̃
f

(1,1)

b̂1−â1
f

(2,2)

b̂2−â2
. (5.13)

The functions with tildes are functions of the same degree as the corresponding functions

without tilde and their coefficients parametrize the moduli space.

Scanning over a large number of CICYs with Picard rank 3, we find the somewhat

surprising result that all models with monads of the type above have linearly dependent

Pfaffians. As discussed earlier, these results are consistent with either vanishing or non-

vanishing of the instanton sum and it would be important to decide between these two

possibilities. However, our experience points to an unexpected vanishing of the instanton

superpotential which goes beyond the vanishing predictions of the Beasley-Witten theo-

rem: more specifically, our examples typically involve O(10) curves in the class γ under

consideration, and Pfaffians which contain many thousands of different monomials in bun-

dle moduli. The fact that these thousands of terms can sum to zero by choosing just O(10)

constants λi is extremely surprising and unlikely to be a coincidence.
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5.2 Examples with compact moduli space

5.2.1 The geometric computation

We consider CICY 7836 with configuration matrix

X ∈

P1 1 1 0

P1 2 0 0

P4 2 1 2


(3,61)

∣∣∣∣∣∣∣∣
~z1 = [z1,0 : z1,1]

~z2 = [z2,0 : z2,1]

~z3 = [z3,0 : z3,1 : z3,2 : z3,3 : z3,4] .

(5.14)

and the two-term monad 0→ V → A
f→ B → 0 with

A = OX(1, 0, 0)⊕OX(0, 1, 0)⊕OX(0, 0, 1)⊕OX(0, 1, 2) , B = OX(1, 2, 3) . (5.15)

This example allows us to discuss both the type I and the type II case by focusing on

the first and second ambient space P1 factor, respectively. By explicitly constructing the

curves from eq. (2.4), we find that there are 16 curves in the curve class of the first P1

and 40 curves in the curve class of the second P1, respectively. This example satisfies all

consistency conditions we need to impose on a consistent string compactification.

Let us also compute the dimension of the bundle moduli space. On the ambient space,

the monad map f is given by the 1× 4 matrix

f =
(
f(0,2,3) , f(1,1,3) , f(1,2,2) , f(1,1,1)

)
. (5.16)

By counting the number of monomials that appear in f , we find a total of 105 + 140 +

90 + 20 = 355 terms. This (vastly) over-parametrizes the bundle moduli space, since

h1(V ∗ ⊗ V ) = 228, as we shall demonstrate next.

First, we observe that h1(B∗⊗A) = h1(B∗⊗B) = 0, so that eq. (2.28) can be applied.

In addition, h1(B∗ ⊗A) = h1(A∗ ⊗A) = h0(B∗ ⊗A) = 0 but we have the contributions

h0(OX(b1 − aα)) = (89, 92, 68, 18) . (5.17)

This is to be contrasted with the number of moduli that appear in the ambient space

monad map. Let us illustrate the reduction for the first term. Out of the original 105, 16

restrict to zero on X. This can be seen from the Koszul sequence together with

h0(N ∗3 ⊗OP(b1 − a1)) = h0(OP(0, 2, 1)) = 15 (5.18)

h1(N ∗1 ⊗N ∗2 ⊗OP(b1 − a1)) = h1(OP(−2, 0, 0)) = 1 . (5.19)

Hence these 15 + 1 contributions vanish on the CY X. The computations that illustrate

the reduction for the cohomologies H0(OX(b1 − aα)) where α = 2, 3, 4 are analogous.

In addition to the above, we also have to subtract the degrees of freedom that can be at-

tributed to the endomorphisms of the line bundle sums A and B. Obviously, h0(B⊗B∗)=1.

For the contributions to h0(A⊗A∗), we find

h0(OX(aα − aα′)) =


1 0 1 10

0 1 0 14

0 0 1 10

0 0 0 1

 . (5.20)

Combining everything, we arrive at the aforementioned result h1(V ∗ ⊗ V ) = 228.
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Type I case. The restriction of the monad bundle to the first P1 corresponds to the case

discussed in (5.1) with a1 = 1. The Pfaffian is hence given by

δ = f
(1)
2,3 (~z2, ~z3) =

105∑
i=1

βimi(y) . (5.21)

This has 105 monomials mi and bundle moduli βi (89 of which are independent on X).

While we could identify the 16 terms that restrict trivially to X, we do not need to in the

computation of the Pfaffians. We take the position yi of the curves γi, i = 1, . . . , 16, for

an arbitrary but fixed position in complex structure moduli space, and insert them into δ.

Beasley-Witten cancellation then means that the sum

16∑
i=1

λiδ(yi) (5.22)

can vanish by choosing the 16 λi ∈ C∗ appropriately. Indeed, we find that out of the 105

terms (with generic bundle moduli ai), only 15 are linearly independent and, hence, the

sum can cancel by choosing the 16 coefficient λi appropriately.

Type II case. Considering the contribution from the second P1 instead, the restriction

in this example corresponds to the one discussed in (5.3). The Pfaffian is hence given by

δ = det

[(
f̃

(1,0)
1,3 (y) f̃

(2,0)
1,1 (y)

f̃
(1,1)
1,3 (y) f̃

(2,1)
1,1 (y)

)]
, (5.23)

with y = ~z1, ~z3 and

f̃
(1,0)
1,3 (y) =

70∑
i=1

β
(1,0)
i mi

1,3(y) , f̃
(1,1)
1,3 (y) =

70∑
i=1

β
(1,1)
i mi

1,3(y) ,

f̃
(2,0)
1,1 (y) =

10∑
i=1

β
(2,0)
i mi

1,1(y) , f̃
(2,1)
1,1 (y) =

10∑
i=1

β
(2,1)
i mi

1,1(y) ,

(5.24)

where mi
d1,d2

is the ith monomial of multi-degree (d1, d2) in y = (~z1, ~z3). This determinant

has 1400 terms bilinear in the moduli β. Proceeding as before, we find the 40 curves at

arbitrary but fixed complex structure and consider the sum

40∑
i=1

λiδ(yi) . (5.25)

We find that out of the 1400 terms, 39 are linearly independent, so there exist λi, i =

1, . . . , 40 such that the sum vanishes.

5.2.2 The GLSM computation

The corresponding GLSM can be easily constructed from this geometric data. We sum-

marize the GLSM charges in table 2. The two cases fit into our general discussion in
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Z1,2 Z3,4 Z5,6,7,8,9 P1 P2 P3 A1 A2 A3 A4 B S Ξ

U(1)1 1 0 0 -1 -1 0 1 0 0 0 -1 -1 1

U(1)2 0 1 0 -2 0 0 0 1 0 1 -2 0 0

U(1)3 0 0 1 -2 -1 -2 0 0 1 2 -3 -2 2

Table 2. GLSM charges of the monad bundle on CICY 7836.

section 4.4, so we already know that the Bertolini-Plesser criteria are fulfilled and the

instanton moduli space is compact.

Using (4.7), we find that all GLSM anomalies cancel. Hence, we have an anomaly

free GLSM description of this heterotic model. Using eq. (4.14), we see from table 2 that

neither the spectator field S nor the field B have zero modes. Hence, the GLSM model

satisfies the compactness criterion by Bertolini and Plesser and the superpotential must be

zero from the vanishing theorems [8, 11, 12]. This nicely explains the seemingly miraculous

cancelation of the 105 and 1400 terms in the Pfaffian for the two cases discussed above. It

also provides a highly non-trivial consistency check of the geometric technique.

5.3 Example with non-compact moduli space

Let us also give an example which has an (anomaly free) GLSM description with non-

compact moduli space. For this we consider CICY 7555, which is very similar to CICY

7834 discussed above. Its configuration matrix reads

X ∈

P1 1 1 0

P1 2 0 0

P4 1 2 2


(3,61)

∣∣∣∣∣∣∣∣
~z1 = [z1,0 : z1,1]

~z2 = [z2,0 : z2,1]

~z3 = [z3,0 : z3,1 : z3,2 : z3,3 : z3,4] .

(5.26)

We furthermore consider the two-term monad 0→ V → A
f→ B → 0 with

A = OX(2, 1, 0)⊕OX(1, 0, 2)⊕OX(0, 1, 0)⊕OX(0, 0, 1)⊕OX(0, 0, 1) ,

B = OX(2, 2, 1)⊕OX(1, 0, 3) .
(5.27)

Again, this example satisfies all consistency conditions.

5.3.1 The geometric computation

The restriction of the monad bundle to the first P1 has been discussed in (5.11). The

Pfaffian is hence determined by the polynomial

δ = f̃
(1,1)
1,1 (y)

˜̃
f

(1,1)
1,1 (y)f

(2,2)
0,1 (y) , (5.28)

with y = (~z2, ~z3) and

f̃
(1,1)
1,1 (y) =

10∑
i=1

β
(1,1)
i mi

1,1(y) ,
˜̃
f

(1,1)
1,1 (y) =

10∑
i=1

β̃
(1,1)
i mi

1,1(y) , f
(2,2)
0,1 (y) =

5∑
i=1

β
(2,2)
i mi

0,1(y) .

(5.29)
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Z1,2 Z3,4 Z5,6,7,8,9 P1 P2 P3 A1 A2 A3 A4 A5 B1 B2 S Ξ

U(1)1 1 0 0 -1 -1 0 2 1 0 0 0 -2 -1 1 -1

U(1)2 0 1 0 -2 0 0 1 0 1 0 0 -2 0 0 0

U(1)3 0 0 1 -1 -2 -2 0 2 0 1 1 -1 -3 -1 1

Table 3. GLSM charges of the monad bundle on CICY 7555.

Next, we find the 32 curves in the curve class of the first P1, insert their position into δ

and consider the sum

32∑
i=1

λiδi . (5.30)

Note that δi contains 500 terms trilinear in the moduli β. We find that out of these 500

terms, only 31 are linearly independent. Hence, there does exist an assignment for the λi
such that all contributions cancel.

5.3.2 The GLSM computation

The GLSM model for this example is summarized in table 3. We find that all GLSM

anomalies cancel, so this example has an anomaly-free GLSM description. From table 3

we note that the spectator field S has charge +1 relative to the first U(1) factor. Hence,

it satisfies the non-compactness criteria in eq. (4.14) and has a zero mode on the first P1,

which decompactifies the instanton moduli space. This means that the general vanishing

results of [8, 11, 12] cannot be directly applied here. Nevertheless, our geometric analysis

has shown that a cancellation of the 32 contributions from the various curves in the first

curve class is possible.

6 Conclusion

In this paper, we have considered two main tasks which arise in the context of heterotic

instanton superpotential calculations. Firstly, we have developed geometric methods to

calculate instanton superpotentials for different realizations of the bundle and for cases

with a complicated structure of the bundle moduli space. Secondly, we have analyzed how

the results of such geometric calculations relate to the vanishing theorems of refs. [8, 11, 12].

We have shown how to compute Pfaffians, as a function of bundle moduli, for different

bundle constructions, specifically for extension bundles, double extensions bundles and for

monads. A technical difficulty is the explicit description of the bundle moduli. While the

aforementioned bundle constructions involve obvious classes of polynomials whose coeffi-

cients can serve as bundle moduli these are usually an over-parametrization. Removing

this over-parametrization is essential for a reliable calculation of the Pfaffians as a function

of bundle moduli and we have shown how to carry this out explicitly.

If all Pfaffians contributing to a particular second homology class are linearly inde-

pendent as a function of the bundle moduli, then the corresponding term in the instanton
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superpotential must be non-zero. Our ability to compute the functional dependence of

Pfaffians means that we can explicitly apply this criterion. We have carried this out for

a large number of examples, some of which have been described in this paper, with a

somewhat surprising outcome. Even though these examples appear to be satisfying the

conditions underlying the vanishing theorems [8, 11, 12], in many cases the Pfaffians turn

out to be linearly independent and, hence, the instanton superpotential must be non-zero.

We have proposed that this apparent contradiction is resolved by taking into account

compactness of the instanton moduli space, which is one of the more subtle requirements

for the vanishing theorems to be applicable. Currently, the only explicit criterion for com-

pactness of the instanton moduli space is due to Bertolini and Plesser [13] and is formulated

within the framework of GLSMs. Hence, in order to test our proposal, we have studied the

relation between geometric models (based on monad bundles) and their GLSM description.

A significant technical difficulty is that the GLSM anomaly conditions are stronger

than the geometric ones and that they depend on the specific realization of the geometric

model. For most geometric realizations the associated GLSM is anomalous and it is not

clear to us when alternative realizations with a non-anomalous GLSM exist. In practice, we

have dealt with this by considering a large number of geometric models and by extracting

the relatively small sub-set which does have a non-anomalous GLSM realization.

For this sub-set we have shown that there is no contradiction between the geometric

calculation and the vanishing theorems. To summarize this in more details, let us first

consider the models within this sub-set with a compact instanton moduli space. For such

cases, the instanton superpotential must be zero from the vanishing theorems and this is

indeed consistent with the geometric approach, since the Pfaffians always turn out to be

linearly dependent. The results for models with a non-compact instanton moduli space

are somewhat unexpected. It turns out all these models have linearly dependent Pfaffians

as well. For such cases, neither the GLSM nor the geometric approach tell us directly

whether the instanton superpotential is zero or non-zero. In particular, the geometric

approach fails to make a definite prediction due to the unknown pre-factors λi of the

Pfaffians. However, linear dependence of the Pfaffians is a very non-trivial feature, given

their complicated dependence on the bundle moduli. On this basis we have argued that the

instanton superpotential for these cases is likely to vanish, a feature which is not explained

by the vanishing theorems.

It would be desirable to work out the relation between geometric instanton calculations

and vanishing theorems more systematically than we have been able to achieve in this paper.

This may well require a better understanding of how geometric models can be converted

into anomaly-free GLSMs.
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