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The effect of anisotropic stress and non-adiabatic pressure perturbations on the

evolution of the comoving curvature perturbation
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We derive the equation for the evolution of the curvature perturbation on the comoving time
slice, Rc, in the presence of anisotropic and non-adiabatic terms in the energy-momentum tensor of
matter fields. The equation is obtained by manipulating the perturbed Einstein’s equations in the
comoving time slice. It could be used to study the evolution of the comoving curvature perturbations
for systems with an anisotropic energy-momentum tensor, such as in the presence of vector fields, in
the presence of entropy, such as in a multi-field system, or in modified gravity theories. As a simple
application, after checking that the comoving time slice for a multi-field system does not coincide
with the uniform field time slice in general, we use the equation in the case of two minimally coupled
scalar fields and derive a closed set of equations for the curvature and entropy perturbations on the
comoving time slice.

I. INTRODUCTION

The theory of cosmological perturbations is very useful
to study the early stages of the Universe, especially dur-
ing inflation, that is, an exponential expansion phase of
the Universe which the standard cosmological model hy-
pothesizes to explain observations such as anisotropies in
the cosmic microwave background radiation (CMB). One
quantity which is particularly important in this context
is the curvature perturbation on the comoving slice, Rc.
In single field slow-roll inflation models this quantity is
conserved on super-horizon scales[1, 2], which has im-
portant implications on the relation between primordial
perturbations and late-time observables such as the CMB
anisotropies. For a globally adiabatic system in a single
field model this quantity may not be conserved [3]. Other
possible causes of the super-horizon evolution of pertur-
bations could be anisotropic stress or non-adiabatic pres-
sure components of the energy-momentum tensor.
In this short note we derive the equations for the cur-

vature perturbation on the comoving time slice, Rc, in-
cluding two terms, namely anisotropic stress and non-
adiabatic pressure terms, showing that they act, as ex-
pected, as source terms which can be relevant even on
super-horizon scales. Our approach is quite generic and
can be applied to any system which can be described
by an energy-momentum tensor of the form we use, not
only to a multi-scalar system but also a system with
vector fields. The derivation is based on manipulating
the Einstein equations in order to obtain an equation in-
volving only Rc, the anisotropic stress and non-adiabatic
pressure terms and background quantities. The equation
can be used to study phenomenologically the effect of
anisotropic stress tensor and non-adiabaticity without as-

suming any specific model. One useful application could
be to study models which violate the non-Gaussianity
consistency relation [4] that was derived in fact based
on the assumption of the conservation of the comoving
curvatue perturbation on superhorizon scales.

II. EVOLUTION OF COMOVING CURVATURE

PERTURBATIONS

The Einstein equations in a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background are

3H2 = a2 ρ , (1)

2(H′ −H2) = −a2 (ρ+ P ) . (2)

Here a prime denotes a derivative with respect to the
conformal time η and H stands for the conformal Hubble
parameter defined by H = a′/a. ρ and P represent the
background energy density and pressure of the matter
field respectively. We use the units in which 8πG = c = 1.
Scalar perturbations on a spatially flat FLRW metric

can be written as

ds2 = a2
[
−(1 + 2A)dη2 + 2∂iBdxidη+

+
[
(1 + 2R)δij + 2∂i∂jE

]
dxidxj

]
, (3)

where the Latin indices run from 1 to 3. The correspond-
ing energy-momentum tensor takes the form :

T 0
0 = −(ρ+ δρ) , T 0

i =
ρ+ P

a
ui ,

T i
j = (P + δP )δij +Πi

j , (4)
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where

ui = a ∂i(v +B) , (5)

Πi
j = δik∂k∂jΠ−

1

3

(3)

∆ Πδij , Πi
i = 0 . (6)

In the above equations Πi
j is the anisotropic stress,

v is the velocity potential, Π is the anisotropy poten-

tial and we have defined
(3)

∆≡ δij∂i∂j . Note that any
energy-momentum tensor can be decomposed according
to Eq. (4), making all the results derived from it com-
pletely general and applicable to any system with a well
defined energy-momentum tensor, including muti-fields,
and modified gravity theories.
The curvature perturbation on the comoving slice Rc

is a gauge-invariant quantity defined as the curvature
perturbation R evaluated on the hypersurfaces in which
v+B vanishes. The spatial Fourier expansion of the lin-
early perturbed Einstein equations on the comoving slice
[5] takes the form :

2k2(Rc −Hσc) = a2δρc , (7)

R′

c −HAc = 0 , (8)

2(H′ −H2)Ac = a2
[
δPc − (2k2/3)Πc

]
, (9)

σ′

c + 2Hσc −Ac −Rc = a2Πc , (10)

where σ = E′ −B is the scalar shear. In general we can
decompose the pressure perturbation as

δPc = c2s(η) δρc + Γc , (11)

where we can interpret cs and Γc as the adiabatic sound
speed and the non-adiabatic part of the pressure per-
turbation respectively. For a minimally coupled single
scalar field model cs = 1 and Γc is zero, but in general
one would expect that Γc could be non-vanishing. Our
goal is to derive an equation for Rc in the presence of
both anisotropic stress Πi

j and non-adiabatic pressure
Γc perturbations.
First we use Eq. (8) to express Ac in terms of Rc,

Ac =
R′

c

H
. (12)

We substitute this Ac and δPc given in Eq. (11) into
Eq. (9), and solve it for δρc :

δρc =
1

c2s

(
2

3
k2Πc − Γc −

ρ+ P

H
R′

c

)
. (13)

We then insert this into Eq. (7) to get an expression for
σc :

σc =
1

H

[
Rc −

a2

2k2c2s

(
2

3
k2Πc − Γc −

ρ+ P

H
R′

c

)]
.

(14)

Finally we substitute Ac and σc given by Eqs. (12) and
(14) respectively, into Eq. (10) to obtain

R′′

c + 2
z′

z
R′

c − c2s
(3)

∆ Rc +
H

ρ+ P
Yc = 0 , (15)

where we have defined

z2 ≡
a4(ρ+ P )

c2sH
2

, (16)

Yc ≡

[
log

(
a4

Hcs2

)]′ (
2

3

(3)

∆ Πc + Γc

)

+ 2Hc2s
(3)

∆ Πc +
2

3

(3)

∆ Π′

c + Γ′

c . (17)

This is the main result of this paper. As expected, for
adiabatic (Γc = 0) and isotropic perturbations (Πc = 0)
the above equation takes the well-known form :

R′′

c + 2
z′

z
R′

c − c2s
(3)

∆ Rc = 0 . (18)

Since eq.(15) has been derived assuming the most gen-
eral scalar perturbations of the energy-momentum ten-
sor, it can be applied to any system which satisfies the
Einstein’s equations. While we have explicitly used the
Einstein’s equation, it is possible to rewrite the gravita-
tional field equation in this form even in modified grav-
ity theories by identifying the deviation from the Ein-
stein’s tensor as an effective energy momentum tensor,
Gµν = Tmatter

µν + T eff
µν . As a consequence eq.(15) can also

be applied to modified gravity theories, but in this case
the effective anisotropic stress and non-adiabatic pres-
sure terms can be functions of metric perturbations, and
further manipulation is required to obtain an equation
only involving Rc and matter fields .

III. CURVATURE PERTURBATION FOR

SCALAR FIELDS

Given the generality of the form of the energy momen-
tum tensor used in the derivation of Eq. (15) it can be
applied to a wide class of physical scenarios, including
multi-field systems. Let us consider the case of two min-
imally coupled scalar fields with Lagrangian

L = −

2∑

n=1

Xn − 2V (Φ1,Φ2) , (19)

where Xn = gµν∂µΦn∂νΦn and Φn(x
µ) = φn(η) +

δφn(x
µ). The perturbed energy-momentum tensor, with-

out gauge fixing, is given by

δρ =
φ′

1δφ
′

1 + φ′

2δφ
′

2 −A(φ′

1
2 + φ′

2
2)

a2
+ V1δφ1 + V2δφ2 ,

δP =
φ′

1δφ
′

1 + φ′

2δφ
′

2 −A(φ′

1
2 + φ′

2
2)

a2
− V1δφ1 − V2δφ2 ,

Π = 0 , δT 0
i = ∂i

(
−
φ′

1δφ1 + φ′

2δφ2

a2

)
, (20)

where we denote the partial derivatives as Vn =
(∂V/∂Φn)(φ1, φ2).
The field perturbations transform under an infinitesi-

mal time translation η → η + δη

δ̃φ1 = δφ1 − φ′

1δη , δ̃φ2 = δφ2 − φ′

2δη . (21)
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The time translation δηc necessary to define the co-
moving slices can be found by imposing the condition

(δT 0
i)c ∝ φ′

1δφ̃1 + φ′

2δφ̃2 = 0, giving

δηc =
φ′

1δφ1 + φ′

2δφ2

φ′

1
2 + φ′

2
2

. (22)

Note that the uniform field time slicing, also known as
the unitary time slicing, in general does not coincide with
the comoving time slicing except for the case of a single
field or the case with δφ2 ∝ δφ1. The comoving curvature
perturbation for the two scalar fields system is given by

Rc = R−Hδηc = R−H
φ′

1δφ1 + φ′

2δφ2

φ′

1
2 + φ′

2
2

. (23)

The gauge invariant field perturbations in the comoving
slices now can be defined

U1 = δφ1 − φ′

1

φ′

1δφ1 + φ′

2δφ2

φ′

1
2 + φ′

2
2

, (24)

U2 = δφ2 − φ′

2

φ′

1δφ1 + φ′

2δφ2

φ′

1
2 + φ′

2
2

, (25)

and similarly for the pressure and energy perturbations
in the comoving slices we get

δρc =
φ′

1U
′

1 + φ′

2U
′

2 −Ac(φ
′

1
2 + φ′

2
2)

a2
+ V1U1 + V2U2 ,

(26)

δPc =
φ′

1U
′

1 + φ′

2U
′

2 −Ac(φ
′

1
2 + φ′

2
2)

a2
− V1U1 − V2U2 .

(27)

Note that all the above quantities are gauge invariant by
construction.
Combining Eqs. (24), (25) and the background field

equations of motion we find

φ′

1U
′

1 + φ′

2U
′

2

a2
= V1U1 + V2U2 = −

φ′

1
2 + φ′

2
2

4a2
Θ , (28)

where we have defined the function Θ according to

Θ =

[
∂

∂η

(
φ′

1
2 − φ′

2
2

φ′

1
2 + φ′

2
2

)](
δφ1

φ′

1

−
δφ2

φ′

2

)
. (29)

Assuming a classical field trajectory parameterized as
φ2 = φ2(φ1) we can write Θ in this form

Θ = −4
d2φ2

dφ2
1

[(
dφ2

dφ1

)2

+ 1

]
−2(

dφ2

dφ1

δφ1 − δφ2

)
(30)

From the above expression we can see that in order for Θ
to be different from zero the trajectory has to have non
vanishing first and second derivatives, i.e. there must be
some turn in the field space.
After replacing Eqs. (8) and (28) into Eqs. (26) and

(27) we get

δρc = −
φ′

1
2 + φ′

2
2

a2H
R′

c −
φ′

1
2 + φ′

2
2

2a2
Θ , (31)

δPc = −
φ′

1
2 + φ′

2
2

a2H
R′

c . (32)

It follows from Eqs. (31) and (32) that

δPc = δρc +
φ′

1
2 + φ′

2
2

2a2
Θ , (33)

and comparing this with Eq. (11) we obtain the sound
speed and the entropy perturbations

c2s(η) = 1 , Γc =
φ′

1
2 + φ′

2
2

2a2
Θ . (34)

From these relations we can find a closed system of equa-
tions to describe the evolution of Rc and Γc

R′′

c + 2
z′

z
R′

c−
(3)

∆ Rc = −
a2H

(φ′

1
2 + φ′

2
2)
Yc , (35)

Γ′′

c + acΓ
′

c−
(3)

∆ Γc + bcΓc = dcR
′

c , (36)

where

z2 =
a2(φ′

1
2 + φ′

2
2)

H2
, (37)

Yc =

[
log

(
a4

H

)]′
Γc + Γ′

c , (38)

and the coefficients {ac, bc, dc} in Eq.(36) are given in the
appendix.
Eq. (35) is in agreement with [6], confirming that

Eq. (15) is general and can also be applied to multi-field
systems once the entropy has been appropriately defined.
Note that the approach we adopted to derive Eq. (36)
does not require the decomposition of field perturbations
in components parallel and perpendicular to the classical
field trajectory as done in [7], but is just based on the
fundamental definition of non-adiabatic pressure given
in Eq. (11). For multi-field systems the presence of en-
tropy perturbations is a consequence of the fact that the
comoving slices and the uniform field slicies do not co-
incide, contrary to the single field case. In general in
order to use Eq. (15) it is first necessary to compute the
energy momentum tensor in the comoving slices with a
procedure similar to the one shown above for two fields.

IV. CONCLUSIONS

We have derived a general equation for the evolution of
the curvature perturbation on the comoving time slicing
taking into account the effect of anisotropic and non-
adiabatic stress perturbations. The equation can be ap-
plied also to multi-field systems. This approach does not
require the decomposition of field perturbations in com-
ponents parallel and perpendicular to the classical field
trajectory, but is based just on the fundamental defini-
tion of non-adiabatic pressure.
As an application we have derived a closed system of

equations for the curvature and entropy perturbations in
the comoving time slice for two minimally coupled scalar
fields. The equations are consistent with the ones ob-
tained using the flat time slice [7]. In future it will be
interesting to apply the equation to more generic sys-
tems where both anisotropic stress and non-adiabatic
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pressure perturbations are present, such as multi-fields
vector models, modified gravity theories, or a combina-
tion of the two.
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Appendix A: The coefficients of the equation for Γc

ac = 2H− 2a2
φ′

1V1 + φ′

2V2

φ′

1
2 + φ′

2
2

+ 2
φ′

1φ
′

2(V11 − V22)− (φ′

1
2 − φ′

2
2)V12

φ′

1
V2 − φ′

2
V1

, (1)

bc = −6a2H
φ′

1V1 + φ′

2V2

φ′

1
2 + φ′

2
2

+ 2a2
2(φ′

1V1 − φ′

2V2)V12 − (φ′

1V2 + φ′

2V1)(V11 − V22)

φ′

1
V2 − φ′

2
V1

+ 2

[
(φ′

1
2 − φ′

2
2)V12 − φ′

1φ
′

2(V11 − V22)

φ′

1
V2 − φ′

2
V1

]2

+ φ′

1φ
′

2

φ′

1V111 − φ′

2V222

φ′

1
V2 − φ′

2
V1

−
φ′

1(φ
′

1
2 − 2φ′

2
2)V112 + φ′

2(2φ
′

1
2 − φ′

2
2)V122

φ′

1
V2 − φ′

2
V1

, (2)

dc =
4a2 (φ′

1V2 − φ′

2V1)
2

H (φ′

1
2 + φ′

2
2)

. (3)

Appendix B: The equation for the entropy

perturbations in terms of γ ≡ φ′

2δφ1 − φ′

1δφ2

It is convenient to introduce a quantity

γ ≡ φ′

2δφ1 − φ′

1δφ2 . (1)
In terms of this quantity we get

U1 =
φ′

2

φ′

1
2 + φ′

2
2
γ , U2 = −

φ′

1

φ′

1
2 + φ′

2
2
γ . (2)

δρc = −
φ′

1
2 + φ′

2
2

a2H
R′

c − 2
φ′

1V2 − φ′

2V1

φ′

1
2 + φ′

2
2

γ , (3)

Θ =
4a2(φ′

1V2 − φ′

2V1)

(φ′

1
2 + φ′

2
2)2

γ , (4)

Γc = 2
φ′

1V2 − φ′

2V1

φ′

1
2 + φ′

2
2

γ . (5)

Finally we can write the equation of motion for γc

γ′′ + αcγ
′−

(3)

∆ γ + βcγ = δcR
′

c , (6)

where

αc = 6H+ 2a2
φ′

1V1 + φ′

2V2

φ′

1
2 + φ′

2
2

, (7)

βc = 10H2 + 10a2H
φ′

1V1 + φ′

2V2

(φ′

1
2 + φ′

2
2)

+ a2(V11 + V22)

−(φ′

1

2 + φ′

2

2) +
2a4

(φ′

1
2 + φ′

2
2)2

[
4V1V2φ

′

1φ
′

2 +

+(φ′

1

2 − φ′

2

2)(V 2

1 − V 2

2 )
]
, (8)

δc = 2a2
φ′

1V2 − φ′

2V1

H
. (9)

[1] A. E. Romano, S. Mooij, and M. Sasaki, Phys. Lett.B755,
464 (2016), arXiv:1512.05757.

[2] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle,
Phys. Rev. D62, 043527 (2000), arXiv:astro-ph/0003278.

[3] A. E. Romano, S. Mooij, and M. Sasaki, Phys. Lett.B761,
119 (2016), arXiv:1606.04906.

[4] J. M. Maldacena, JHEP 05, 013 (2003), arXiv:astro-
ph/0210603.

[5] K. A. Malik and D.Wands, Physics Reports 475, 1 (2009),
arXiv:0809.4944.
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