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1 Introduction to ∆ACP

The LHCb experiment has announced discovery of direct CP violation in singly Cabibbo

suppressed D decays [1],

∆ACP ≡ ACP(K+K−)−ACP(π+π−)

= (−1.54± 0.29)× 10−3. (1.1)

Here

ACP(f) ≡ Γ(D0 → f)− Γ(D0 → f)

Γ(D0 → f) + Γ(D0 → f)
. (1.2)

In ∆ACP effects of indirect CP violation approximately cancel out [2]. (Due to different

decay time acceptances between the K+K− and π+π− modes, a small residual effect of

indirect CP violation remains.) Thus, ∆ACP is a manifestation of CP violation in decay.

The updated world average for the direct and indirect CP violating contributions to this

asymmetry are [3]

∆Adir
CP = (−1.64± 0.28)× 10−3, (1.3)

Aind
CP = (+0.28± 0.26)× 10−3. (1.4)
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The singly Cabibbo suppressed D0 (D0) decay amplitudes Af (Af ) to a final CP

eigenstate f can be written as [2]

Af = ATf e
iφTf
[
1 + rfe

i(δf+φf )
]
, (1.5)

Af = ηCPA
T
f e
−iφTf

[
1 + rfe

i(δf−φf )
]
,

where ηCP = ±1 is the CP eigenvalue of f , the dominant singly Cabibbo suppressed

“tree” amplitude is denoted by ATf e
±iφTf , and rf parameterizes the relative magnitude of

all subleading amplitudes (often called “penguin” amplitudes), which carry different strong

(δf ) and weak (φf ) phases. Then

Adir
CP(f) = −

2rf sin δf sinφf
1 + 2rf cos δf cosφf + r2

f

. (1.6)

The Standard Model (SM) contribution to the individual asymmetries is CKM sup-

pressed by a factor of

ICKM ≡ 2 Im
(
VubV

∗
cb

VusV ∗cs

)
≈ 1.4× 10−3. (1.7)

Naively, there is a further loop suppression by a factor of order αs/π ∼ 0.1. One cannot

exclude an enhancement factor of order 10 from hadronic physics [4–7], in which case (1.3)

is accounted for by SM physics. Yet, it is not implausible that new physics (NP) dominates

∆ACP [8, 9] (indeed, QCD-based LCSR calculations [10] support the latter option.)

In the following we assume that hadronic factors do not significantly alter the mag-

nitude of the relevant effects; thus, NP is required to explain the measured ∆ACP. We

analyze the implications of eq. (1.3) on candidate models. We phrase our findings in terms

of which NP models can or cannot account for the measurement, assuming that the SM

contribution is negligible. Relaxing this assumption, the same implications can be conser-

vatively read as upper bounds on the NP model parameters.

In 2011, experimental evidence for ∆ACP [11] prompted several related studies [4, 5,

8, 12–14]. We provide an update to some of the relevant results, taking into account the

recent discovery with a central value smaller by a factor of ∼ 4 as well as all applicable

existing bounds.

We begin with an effective field theory (EFT) analysis in section 2. We follow with

specific examples of models in which the measured ∆ACP is explained: 2HDM in section 3,

the MSSM in section 4 and models with vector-like up-quarks in section 5. We conclude

in section 6.

2 Non-renormalizable operators

The relevant effects of new physics at a scale much higher than the electroweak breaking

scale can be represented by the following effective Hamiltonian [8]:

Heff−NP
|∆c|=1 =

GF√
2

∑
i=1,2,5,6

∑
q

(CqiQ
q
i + Cq′i Q

q′
i ) +

GF√
2

∑
i=7,8

(CqiQi + C ′iQ
′
i) + h.c., (2.1)
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where q = {d, s, b, u, c}, the list of operators includes

Qq1 = (ūq)V−A(q̄c)V−A, Q7 = − e

8π2
mcūσµν(1 + γ5)Fµνc,

Qq2 = (ūαqβ)V−A(q̄βcα)V−A, Q8 = − gs
8π2

mcūσµν(1 + γ5)T aGµνa c,

Qq5 = (ūc)V−A(q̄q)V+A,

Qq6 = (ūαcβ)V−A(q̄βqα)V+A, (2.2)

and the primed operators are related to the non-primed ones via A↔ −A and γ5 ↔ −γ5.

The SM and NP contributions to ∆ACP can be parameterized as

∆ACP ≈ ICKM
αs(mc)

π
Im(∆RSM) +

2

|VusVcs|
∑
i

Im(CNP
i )Im(∆RNP

i ), (2.3)

where ∆RSM,NP = RSM,NP
K +RSM,NP

π , and RSM,NP
K are the ratios of subleading amplitudes

to the leading SM amplitude, after factorizing out the CKM dependence and the Wilson

coefficient (the loop factor for RSM
K ). Thus the SM alone can explain the measured value

of ∆ACP for Im(∆RSM) ≈ 13. In the following we conversely adopt the naive expectation,

Im(∆RSM) ∼ Im(∆RNP) ∼ 2 (the factor of 2 is inspired by the U-spin limit, in which

ASM
K+K− ≈ −ASM

π+π− .) With this assumption, the measurement requires the existence of NP

with a Wilson coefficient satisfying

Im(CNP
i ) ∼ ∆ACP

18.2
∼ 9× 10−5, (2.4)

and the scale of NP can naively be estimated as . 37 TeV.

2.1 Constraints from D0 −D0 mixing

The Hamiltonian of eq. (2.1) is related to the effective Hamiltonian relevant for |∆c| =

2 transitions,

Heff
|∆c|=2 =

GF√
2

(
5∑
i=1

Ccui Q
cu
i +

3∑
i=1

Ccui
′Qcui

′

)
, (2.5)

where

Qcu1 = (ūc)V−A(ūc)V−A Qcu2 = (ūc)S−P (ūc)S−P (2.6)

Qcu3 = (ūαcβ)S−P (ūβcα)S−P Qcu4 = (ūc)S−P (ūc)S+P

Qcu5 = (ūαcβ)S−P (ūβcα)S+P .

The contributions of Heff
|∆c|=2 to D0−D0 mixing are computed using the following formula:

〈D̄0|Heff
|∆c|=2|D

0〉i =
GF√

2

5∑
j=1

5∑
r=1

(
b
(r,i)
j + ηc

(r,i)
j

)
ηaj × Ccui (µ)〈D̄0|Qcur |D0〉, (2.7)

where all relevant parameters and hadronic matrix elements are defined in ref. [15].
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f s− d 8d

Im(C
(f)
1,2 ) 3.6× 10−7 9.6× 10−4

Im(C
(f)′
5 ) 5.6× 10−8 1.5× 10−4

Im(C
(f)′
6 ) 2.0× 10−8 5.3× 10−5

Table 1. Upper bounds on CP violating ∆c = 1 operators from D0 −D0 mixing, at the hadronic

charm scale µ ≈ 2 GeV.

Using the up-to-date 95% C.L regions for the mixing parameters [3],

x12 ∈ [0.22, 0.63]% (2.8)

y12 ∈ [0.59, 0.75]%

φ12 ∈ [−2.5o, 1.8o],

we obtain the following bounds:

Im(Ccu1 ) . 1.6× 10−9; Re(Ccu1 ) . 3.6× 10−8, (2.9)

Im(Ccu4 ) . 1.7× 10−10; Re(Ccu4 ) . 4.0× 10−9,

Im(Ccu5 ) . 4.9× 10−10; Re(Ccu5 ) . 1.1× 10−8.

Following ref. [8], we can relate the two sets of Wilson coefficients via

Ccu1 = δCcu1 +
g2

32π2

∑
q

λq(C
q
2 − C

q
1) ln

µ2

m2
W

, (2.10)

Ccu4 = δCcu4 −
g2

16π2

∑
q

λqC
q
6
′
ln

µ2

m2
W

,

Ccu5 = δCcu5 −
g2

16π2

∑
q

λqC
q
5
′
ln

µ2

m2
W

.

We then change basis to Qs−di = Qsi −Qdi , Q8d
i = Qsi +Qdi −2Qbi , and take the counter-terms

to zero to arrive at the bounds on the ∆c = 1 operators, presented in table 1. We conclude

that the operators Q
(s−d)
1,2 , Q

(s−d)′
5,6 and Q

(8d)′
6 cannot account for ∆ACP.

2.2 Constraints from ε′/ε

Following ref. [8], we use the master formula for ε′/ε, evaluating the matrix elements induced

by the |∆s| = 1 operators at the large Nc limit. The NP contribution is then given by∣∣∣ε′
ε

∣∣∣
NP
≈ 102

∣∣∣Im[3.5C(3/2)
1 + 3.4C

(3/2)
2 − 1.7ρ2C

(3/2)
5 − 5.2ρ2C

(3/2)
6 (2.11)

−0.04C
(1/2)
1 − 0.12C

(1/2)
2 − 0.04ρ2C

(1/2)
5 + 0.11ρ2C

(1/2)
6

]∣∣∣,
where C

(3/2)
i = 1

2(−C(s−d)
i +C

(c−u)
i +C

(8d)
i ) + 5

4C
(b)
i , C

(1/2)
i = 1

2(C
(s−d)
i +C

(c−u)
i −C(8d)

i ) +
1
4C

(b)
i − C

(0)
i , and ρ = mK/ms. Taking the conservative bound |ε′/ε|NP < |ε′/ε|exp ≈
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f s− d c− u 8d b 0

Im(C
(f)
1 ) 4.8× 10−4 4.9× 10−4 4.8× 10−4 1.9× 10−4 2.1× 10−2

Im(C
(f)
2 ) 4.8× 10−4 5.0× 10−4 4.8× 10−4 2.0× 10−4 6.9× 10−3

Im(C
(f)
5 ) 3.6× 10−5 3.4× 10−5 3.6× 10−5 1.4× 10−5 7.4× 10−4

Im(C
(f)
6 ) 1.1× 10−5 1.1× 10−5 1.1× 10−5 4.6× 10−6 2.7× 10−4

Table 2. Upper bounds on CP violating ∆c = 1 operators from |ε′/ε|, at the hadronic charm scale

µ ≈ 2 GeV.

Allowed Marginal Disfavored

Q7,8, Q
′
7,8, Q

(8d)′
5 Q

(s−d)
1,2 ,

∀f Qf ′1,2, Q
(c−u,b,0)′
5,6 , Q

(0)
6 Q

(s−d)′
5,6 , Q

(8d)′
6 ,

Q
(c−u,8d,0)
1,2 , Q

(0)
5 Q

(b)
1,2 Q

(s−d,c−u,8d,b)
5,6 ,

Table 3. Classification of new physics operators Qi according to whether upper bounds on

Im(CNP
i ) from D0 − D0 mixing and ε′/ε are (i) much weaker than 9 × 10−5 (“allowed”), (ii)

of order 9× 10−5 (“marginal”), or (iii) much stronger than 9 × 10−5 (“disfavored”).

1.7× 10−3, the imaginary parts of the |∆s| = 1 Wilson coefficients are constrained. These

are related to the |∆c| = 1 coefficients of interest via

C
q(ds)
i = δC

q(ds)
i + Cqi

g2

32π2
ln

µ2

m2
W

. (2.12)

The resulting bounds on the |∆c| = 1 Wilson coefficients are presented in table 2.

Comparing these bounds to eq. (2.4), we conclude that the operators Q
(f)
5,6 with f ∈ {s −

d, c− u, 8d, b} cannot account for ∆ACP.

We note that the set of operators, {Q7,8, Q
′
7,8, ∀f Q

f ′
1,2, Q

(c−u,b,0)′
5,6 }, are relevant to nei-

ther D0 − D0 mixing nor |ε′/ε|, and therefore are unconstrained. Table 3 summarizes

which ∆c = 1 operators can contribute to ∆ACP at a level comparable to the current

measured value.

3 2HDM

As a first example of an explicit NP model that can account for the measurement of ∆ACP,

we consider a two-Higgs-doublet model (2HDM), where a second scalar doublet,

Φ ∼ (1, 2)−1/2 =

(
φ0

φ−

)
, (3.1)

is added to the SM. A contribution to ∆ACP arises if φ0 couples to uū and cū, generating

both D0 → K+K− and D0 → π+π−. Since all couplings besides uū and cū are irrelevant

to this analysis, we take a conservative approach, considering minimal examples where Φ

couples to uR and is aligned with a single down-type LH mass eigenstate. This allows us

– 5 –
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to evade tree-level scalar mediated FCNC in the down sector. Assuming alignment with

the quark doublet that has bL as its down-type quark, we have [12]

LΦ = −V (Φ) + 2λ
[
φ0ULiVibuR + φ−bLuR + h.c.

]
, (3.2)

where UL1,2,3 = uL, cL, tL. Thus, the neutral scalar φ0 couples uR to uL and cL:

λVcbφ
0c̄LuR+λVubφ

0
uūLuR. Integrating out the φ0 field, these couplings lead to the effective

four-quark coupling.

−8|λ|2

m2
φ0
VubV

∗
cb(ūRcL)(ūLuR) =

|λ|2

m2
φ0
VubV

∗
cbQ

u
6 . (3.3)

The contribution to ∆ACP, using eq. (2.3), can be written as

∆AφCP ≈
2
√

2

4|VusVcs|
G0

GF
Im(VubV

∗
cb)Im(∆Rφ) (3.4)

=

√
2

4

G0

GF
ICKM × Im(∆Rφ)

where

G0 ≡ 4|λ|2/m2
φ0 , (3.5)

and ICKM is defined in eq. (1.7). What is needed then to account for (1.3) is

G0

GF
' 3.3

Im(∆Rφ)
=⇒ Im(∆Rφ)G0 '

1

(160 GeV)2
. (3.6)

Thus, for Im(∆Rφ) ∈ {0.2− 2}, we need G
−1/2
0 = mφ0/(2|λ|) ∈ {70, 230}GeV.

3.1 Constraints from D0 −D0 mixing

The scalar exchange contributes to D0−D0 mixing via box diagrams. Requiring that this

contribution is not larger than the experimental constraints from ∆mD gives [12]

|λ|4

32π2

(
100 GeV

mφ0u

)2

(VubV
∗
cb)

2 < 7× 10−9, (3.7)

or, equivalently

|λ|2G0

GF
< 3× 103, (3.8)

so, taking into account (3.6), the new contribution is negligible, allowing for the required

G0/GF to explain ∆ACP.

– 6 –
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3.2 Constraints from ε′/ε

The same Yukawa couplings of φ0 that contribute to direct CP violation in D decays,

contribute unavoidably also to direct CP violation in K decays. The former effect comes

at tree level and modifies ∆ACP. The latter effect comes via box diagrams, involving φ0

and a W -boson, and modifies ε′/ε. Upon integration out of φ0 and W , we obtain the

following effective four-quark coupling:

√
2|λ|2GF
π2

(
fuu(xφ)− 2fut(xφ) + ftt(xφ)

)
V ∗tdVts|Vtb|2(d̄LuR)(ūRsL), (3.9)

where xφ ≡ m2
φ0/m

2
W , and the loop function is given by

fij(xφ) =
x2
i log xi

(1− xi)(xj − xi)(xφ − xi)
+

x2
j log xj

(1− xj)(xi − xj)(xφ − xj)

+
x2
φ log xφ

(1− xφ)(xi − xφ)(xj − xφ)
. (3.10)

Using the relation (d̄LuR)(ūRsL) = −1
8(d̄αsβ)V−A(ūβuα)V+A = −1

8Q
u(ds)
6 , we read off the

corresponding Wilson coefficient,

C
u(ds)
6 = −|λ|

2

4π2

(
fuu(xφ)− 2fut(xφ) + ftt(xφ)

)
V ∗tdVts|Vtb|2. (3.11)

Following ref. [16], we use

Re
(
ε′

ε

)
= − ω√

2|ε|

(
Im(A0)

Re(A0)
− Im(A2)

Re(A2)

)
, (3.12)

and

ImAφ2
ReA2

≈ 3

2

m2
K

m2
s(mc)−m2

d(mc)

Im[∆C6(mc) + 1
3∆C5(mc)]B

(2)
8 (mc)

0.363|V ∗usVud|
, (3.13)

where ∆Ci = Cui −Cdi . At the matching scale, our model generates ∆C6(mφ0) = Cu6 (mφ0),

and ∆C5(mφ0) = 0. Taking the conservative bound Re(ε′/ε)φ < Re(ε′/ε)Exp ≈ 1.66×10−3,

we reach the constraint

‘C
u(ds)
6 (mφ0) < 2.23× 10−7. (3.14)

Figure 1 presents the various constraints together with curves for which eq. (3.6) is satisfied

with three representative values taken for Im(∆Rφ). We conclude that ∆ACP can be

explained within this model, depending on the value of Im(∆Rφ). For Im(∆Rφ) ≈ 1, the

mass of the neutral scalar is bounded to be mφ . 235 GeV, while for Im(∆Rφ) ≈ 0.2 it

is bounded to be very light, and subject to further constraints. For Im(∆Rφ) & 1.5, the

mass is unconstrained.

– 7 –
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0 100 200 300 400 500
-1.5

-1.0

-0.5

0.0

0.5

1.0

mϕ(GeV)

L
o
g
1
0
[λ
]

Im(ΔR
ϕ ) = 2

Im(ΔR
ϕ ) = 1

Im(ΔR
ϕ ) = 0.2

excluded by ϵ '/ϵ

excluded by D
0- D

0 mixing

Figure 1. Excluded regions in parameter space due to D0 −D0 mixing and ε′/ε constraints. The

dashed lines depict the curves for which ∆ACP is explained for Im(∆Rφ) = 0.2, 1, 2. The dotted

vertical line marks the intersection, at mφ ' 235 GeV.

We note the following points:

• Two alternative choices for the Yukawa matrices such that only one down-type mass

eigenstate is involved exist, with Φ aligned with the doublet containing either dL or

sL. These suffer from large contributions to D0 −D0 mixing, and therefore cannot

account for ∆ACP.

• It may seem surprising that this model can account ∆ACP even though it contributes

via the operator Qc−u6 , disfavored by the EFT analysis. This is explained by the

existence of additional contributions within this model to ε/ε′, which interfere de-

structively. These are not taken into account in the EFT approach. Therefore this

model evades the EFT conclusions regardless of the mass scale of the new scalars.

• We note that mid-range masses for the charged scalar (450 GeV . mφ− . a few

TeV) are constrained by LHC dijet searches [17–19]. These would result in a further

constraint in the (|λ|,mφ0) plane, depending on the mass splitting between the neutral

and charged scalars. Charged scalar masses below 450 GeV or above a few TeV are

not constrained by these bounds.

4 MSSM

As a second example for candidate NP models to explain the measurement of ∆ACP, we

consider the MSSM. The dominant supersymmetric contribution to ∆ACP is likely to come

from loops involving gluinos and up-squarks. These contribute to the chromomagnetic

operators Q8 and Q′8, which are very weakly constrained by D0−D0 mixing and ε/ε′. The

dominant source of CP violation is likely to be the chirality-changing and flavor-changing

– 8 –
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mass-squared insertion [13],

δLR ≡ (δuLR)12 =
(M̃2u

LR)12

m̃2
, (4.1)

where m̃2 is the average up-squark mass, and M̃2u
LR is the left-right block in the 6 × 6

up-squark mass-squared matrix. In the approximation that only two squark generations

are involved, we can express this parameter in terms of the supersymmetric mixing angles,

(Ku
L,R)ij and the mass-squared splitting between the squarks, ∆m̃2

ij :

δLR =
∆m̃2

qL1qR2

m̃2
(Ku

L)12(Ku
R)22. (4.2)

One can estimate the supersymmetric contribution as [13]

∆ACP = 1.5× 10−3 Im(δLR)

2.5× 10−4

1 TeV

m̃
× Im(∆RSUSY). (4.3)

Thus in order to explain ∆ACP we require

Im(δLR) ≈ 2.5× 10−4 m̃

1 TeV
Im(∆RSUSY)−1. (4.4)

In MFV models [14],

δLR ∝
mc

m̃
(y2
sVusV

∗
cs + y2

bVubV
∗
cb) . 10−7, (4.5)

and the contribution is negligible. In Froggatt-Nielsen (FN) models [14, 20],

δLR ∼
ã

m̃

mc|Vus|
m̃

∼ 3× 10−4 ã

m̃

1 TeV

m̃
, (4.6)

where ã is the typical scale of the trilinear scalar coupling. When comparing eq. (4.6) to

eq. (4.4), it seems that FN-SUSY models are plausible candidates to account for ∆ACP.

One has to take into account, however, the FN relations with other entries of the squark

mass-squared matrices, and, in particular,

Im(δuLR)12

Im(δqLR)11
∼ mc|Vus|

mq
, (q = u, d). (4.7)

Assuming phases of order one (which we do to explain ∆ACP), the flavor-diagonal param-

eters are bounded by the EDM constraints. The resulting bounds are [14]

(δuLR)12 . 3× 10−4 m̃

TeV
(from (δuLR)11),

(δuLR)12 . 8× 10−5 m̃

TeV
(from (δdLR)11). (4.8)

Comparing to eq. (4.3), we see that within FN, Im(∆RSUSY) & 3 is required in order to

explain ∆ACP. In more elaborate flavor schemes (as in, for example, ref. [21]) it is possible

that eq. (4.4) is satisfied for Im(∆RSUSY) ≈ 2.
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5 Vector-like quarks

A third example for a model that may explain ∆ACP is a model exhibiting flavor changing Z

couplings. Models with extra non-sequential quarks generally induce such flavor changing

couplings for the Z boson. For example, the addition of vector-like up quarks in the

(3, 1,+2/3)
⊕

(3̄, 1,−2/3) representation induces flavor changing Z couplings of the form [2]

−LZ =
gUuij

2 cos θW
uLiγµuLjZ

µ + h.c. (5.1)

The relevant coupling for ∆ACP is Uucu, which also contributes at tree level to ∆mD, and

at loop level to ε′/ε.

5.1 Constraint from D0 −D0 mixing

The constraint from ∆mD can be calculated using the effective operators of ref. [8]. The

relevant ∆c = 2 operator is (ūLγ
µcL)2 = 1

4Q
cu
1 . Using eq. (2.9) for the current bound on

Re(Ccu1 ), we arrive at

|Uucu| . 2.8× 10−4. (5.2)

5.2 Constraints from ε′/ε

A contribution to ε′/ε arises via a W -loop, inducing the operators Q
u(ds)
1,5 =

(ūu)V∓A(s̄d)V−A. We calculate the relevant Wilson coefficients and arrive at

C
u(ds)
1 =

(3− 4s2
W )Ucu

96π2
≈ Ucu · 2.2× 10−3, (5.3)

C
u(ds)
5 =

s2
WUcuVcsV

∗
ud

24π2
≈ Ucu · 9.3× 10−4.

Using eq. (2.11), the constraint on these coefficients is given by

Im(C
(c−u)(ds)
1 ) . 9.8× 10−6; (5.4)

Im(C
(c−u)(ds)
5 ) . 7.1× 10−7,

The constraint on C
(c−u)(ds)
5 is more stringent, implying

Im(Ucu) . 7.6× 10−4. (5.5)

∆ACP arises in this model through the tree level annihilation diagram c̄u→ ūu, which

contributes to the ∆c = 1 four quark operators,

(ūLγµcL)(ūLγ
µuL) =

1

4
Qu1 , (5.6)

(ūLγµcL)(ūRγ
µuR) =

1

4
Qu5 .

The coefficients of these operators in this model are given by

Cu1 = Uucu

(
1

2
− 2

3
sin2 θW

)
, (5.7)

Cu5 = Uucu
2

3
sin2 θW .
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Using eq. (2.3), the contribution to ∆ACP can be written as

∆ACP ≈
2

|VusVcs|
(
Im(Cu1 )Im(∆RZ1 ) + Im(Cu5 )Im(∆RZ5 )

)
. (5.8)

when we have taken Im(∆RZ1 ) ≈ Im(∆RZ5 ) ≡ Im(∆RZ). Thus in order to explain the

measurement we require

Im(Uucu) ≈ 1.84× 10−4

(
2

Im(∆RZ)

)
, (5.9)

which (under the assumption of Im(∆RZ) ≈ 2) is allowed by eqs. (5.2), (5.5).

We note that this model is viable despite the fact that it induces the EFT-disfavored

operator Q
(c−u)
5 (see table 3), as its contibution to ∆ACP is subleading to that of the

operator Q
(c−u)
1 .

6 Discussion

We have addressed the question of how easily can the new measurement of ∆ACP be ex-

plained using benchmark NP models. We have followed the assumption that no significant

hadronic enhancements are present, and derived the constraints coming mainly from mea-

surements of D0 − D0 mixing and ε′/ε. We find that non-generic though still simple NP

models can account for the measured asymmetry.

Three candidate NP models were discussed — 2HDM, MSSM and vector-like up-

quarks. Our assumption of no significant hadronic enhancements is implemented by allow-

ing at most Im(∆RSM,NP) ≈ 2, in our eq. (2.3). We find that:

• Both a 2HDM where scalar (cū), (uū) couplings are present and models with vector-

like up-quarks inducing (cū) Z couplings can account for the measured asymmetry.

• The MSSM combined with flavor frameworks (MFV, FN) is unable to produce the

desired contribution (FN requires Im(∆RFN) & 3). The MSSM with a generic flavor

structure is unconstrained.

Ref. [6] studied the scenario where the SM accounts for ∆ACP with mild SU(3) break-

ing effects but a strong enhancement of ∆U = 0 transitions. They obtain two predictions:

U -spin invariant strong phases should be large, and ACP(K+K−) ≈ −ACP(π+π−). In-

terestingly, in all three models that we analyzed the new physics operators that account

for ∆ACP do not introduce new sources of U -spin breaking, and thus the latter prediction

does not favor the SM over these models.

In all three specific new physics models, the flavor structure is not in the minimal

flavor violation class, and in fact it is non-generic. Thus, it is difficult to make definite

predictions for the modification of other flavor changing and/or CP violating processes. Yet,

it is unlikely that the only significant modification would be to singly Cabibbo suppressed

charm decays. This situation motivates a broad flavor precision program, such as in the

LHCb and BELLE-II experiments.
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Of course, a direct search for the new degrees of freedom required by the various models

is also well motivated. The upper bound on the scale of new physics is model dependent,

and varies from few tens of TeV in the low energy EFT, to hundreds of GeV in the 2HDM.
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