
ar
X

iv
:h

ep
-t

h/
94

10
13

0v
2 

 2
3 

D
ec

 1
99

4
CERN-TH.7364/94

TWO-LOOP QUARK SELF-ENERGY IN A NEW FORMALISM

(I) OVERLAPPING DIVERGENCES

GEORGE LEIBBRANDT1

Theoretical Physics Division, CERN, CH-1211 Geneva 23

and

JIMMY WILLIAMS2

ABSTRACT

A new integration technique for multi-loop Feynman integrals, called the matrix

method, is developed and then applied to the divergent part of the overlapping

two-loop quark self-energy function iΣ in the light-cone gauge n·Aa(x) = 0, n2 =

0. It is shown that the coefficient of the double-pole term is strictly local, even off

mass-shell, while the coefficient of the single-pole term contains local as well as

nonlocal parts. On mass-shell, the single-pole part is local, of course. It is worth

noting that the original overlapping self-energy integral reduces eventually to 10

covariant and 38 noncovariant-gauge integrals. We were able to verify explicitly

that the divergent parts of the 10 double covariant-gauge integrals agreed precisely

with those currently used to calculate radiative corrections in the Standard Model.

Our new technique is amazingly powerful, being applicable to massive and

massless integrals alike, and capable of handling both covariant-gauge integrals

and the more difficult noncovariant-gauge integrals. Perhaps the most important

feature of the matrix method is the ability to execute the 4ω-dimensional mo-

mentum integrations in a single operation, exactly and in analytic form. The

method works equally well for other axial-type gauges, notably the temporal

gauge (n2 > 0) and the pure axial gauge (n2 < 0).
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1. Introduction

Traditional perturbation theory with its emphasis on Feynman diagrams

continues to play a central role in quantum field theory. The success of the

perturbative approach hinges decisively on the accurate computation of multi-

loop Feynman integrals. Of course, there exists a vast variety of such integrals,

but here we shall only distinguish between covariant-gauge Feynman integrals

and noncovariant-gauge integrals. As the name implies, covariant-gauge Feynman

integrals occur in theories quantized in a covariant gauge, such as the Fermi gauge

or the unitary gauge. Noncovariant-gauge integrals, by contrast, arise whenever

a noncovariant gauge is implemented, such as the powerful light-cone gauge [1]

or the infamous Coulomb gauge [2]. While both types of integrals are known to

require patience and a healthy respect for detail, it is also true that noncovariant

integrals remain as popular as skunks at a garden party, as seen from the small

fraction of higher-loop calculations in QCD and Yang-Mills theory [3-8].

According to the literature, multi-loop integrals, such as
∫

d2ωq
∫

d2ωk f(q, k),

have been evaluated almost exclusively by the nested method [9-14], in which

the four-momentum integrations are carried out sequentially (initial exponential

parametrization of the propagators is assumed). For instance, for the double

integral mentioned above, one first integrates over d2ωk, then over d2ωq (or con-

versely). Dimensional regularization will be used throughout this paper, with 2ω

denoting the dimensionality of complex space-time. We have no intention of re-

viewing here the dominant characteristics and various idiosyncrasies of the nested

approach, except to say that it has been used and abused with varying degrees

of success.

Instead, we should like to propose an alternative procedure to the nested

method, called the matrix integration technique, in which the two momentum
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integrals in
∫

d2ωq
∫

d2ωk f(q, k) are integrated over 4ω-dimensional space in a

single operation. Perhaps the most appealing feature of this method is the ability

to perform the momentum integration exactly and in closed form, thereby guar-

anteeing from the outset a certain amount of what might be called “calculational

streamlining”. In the course of our investigation we shall encounter several ex-

amples of this “streamlining”. It turns out that the matrix technique works for

covariant and noncovariant gauges alike, and regardless whether the integrals are

massive or massless.

The purpose of our integration program may now be stated as follows:

1. To develop for two-loop integrals an alternative approach to the nested

method, called the matrix integration technique.

2. To apply this technique to the complete two-loop quark self-energy function

in the light-cone gauge n·Aa(x) = 0, n2 = 0.

3. To derive, if possible, the necessary counterterms and use these to renormal-

ize the theory to two-loop order.

4. To extend the matrix technique to other axial gauges, notably to the tem-

poral gauge defined by n ·Aa(x) = 0, n2 > 0, and to the pure axial gauge

n·Aa(x) = 0, n2 < 0.

As indicated above, the testing ground for our matrix technique will be the quark

self-energy function to two loops, depicted graphically in Figures 1 and 2. For

pedagogical reasons, we have decided to report our results in two separate papers.

In paper I, we shall discuss various mathematical tools and then apply these to

compute the divergent portion of the overlapping quark self-energy (Fig. 1). The

remaining two-loop graphs, including the non-trivial rainbow diagram (Fig. 2(a)),

will be treated in paper II, where we shall also study the counterterms required

for renormalization.
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The plan of paper I is as follows. In Section 2 we define the structure of

the overlapping quark self-energy function and review some standard formulas

needed for one-loop calculations. In Section 3, we summarize the main features

of the matrix method, including reduction of the integrand to Gaussian form and

the evaluation of 4ω-dimensional Gaussian integrals. The parameter integrations

are carried out in Sections 4 and 5. But in order to prepare the reader for

certain technical subtleties, we shall first make a short detour to introduce some

terminology.

For each factor in the denominator of the integrand of
∫

d2ωq
∫

d2ωk f(q, k),

there will be a Schwinger parameter, αj say (j = 1, 2, . . .), with an infinite domain

of integration; i.e., αj ǫ [0,∞]. For the overlapping diagram discussed in this

article, we transform the set of parameters {αj} to a more “user-friendly” set S,

containing two types of parameters: one type I parameter (A), with an infinite

domain, and up to six type II parameters (λ, β,G, b, h, a), with finite domains.

We shall demonstrate in Section 4 that integration over the lone type I parameter

leads to a simple pole, and in Section 5 that one more simple pole (and hence

a double pole overall) emerges from integration over one of the finite type II

parameters. The paper concludes in Section 6 with a short discussion.

2. Basic Tools

(a) Notation and review of the light-cone prescription

In Yang-Mills theory, the light-cone gauge is characterized by

nµAa
µ(x) = 0, n2 = 0, µ = 0, 1, 2, 3, (2.1)

where nµ = (n0, ~n) defines a fixed axis in four-space [1]. We use a (+,−,−,−)

metric and employ dimensional regularization in a space-time of 2ω dimensions.
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The relevant SU(3)c color Lagrangian density reads [15]

L = Lint − lim
λ→0

1
2λ

(n·Aa)2, n2 = 0, (2.2)

Lint = −1
4
F a

µνF
aµν +

∑

k

iψ
k

α(γµD
µ
αβ +mkδαβ)ψk

β , (2.3)

where ψα and Aa
µ represent fermion and gluon fields, respectively, γµ are 4× 4

Dirac gamma-matrices, a = 1, 2, . . . , 8 is the group index, α, β are color indices,

λ is the gauge parameter, k = u, d, . . . is the quark flavor index, and mk are

quark rest masses. Moreover,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (2.4a)

is the field strength (g is the QCD coupling constant), and

Dαβ,µ = δαβ∂µ − igT
a
αβA

a
µ (2.4b)

denotes the covariant derivative ( ∂µ ≡ ∂/∂xµ). T a
αβ are the generators of the

gauge group SU(3) which obey the commutation relations

[T a, T b] = ifabcT c, (2.4c)

fabc being antisymmetric structure constants. In the light-cone gauge, the La-

grangian density (2.2) leads to the gluon propagator

Gab
µν(q) =

−i δab

q2 + iǫ

(

gµν −
qµnν + qνnµ

q ·n

)

, ǫ > 0. (2.5)

The spurious poles of the factor (q ·n)−1 will be handled by the n∗
µ-prescription

[16-17]:
1

q ·n
= lim

ǫ→0

q ·n∗

q ·n q ·n∗ + iǫ
, ǫ > 0, (2.6)

with nµ = (n0, ~n) and n∗
µ = (n0,−~n).
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(b) The overlapping quark self-energy

Application of the Feynman rules for QCD, with the quark-quark-gluon ver-

tex factor igT a
αβγ

µ, the quark propagator i/(q/ −m), and the gluon propagator

(2.5), yields the following expression for the two-loop overlapping quark self-

energy function in the light-cone gauge (Fig. 1):

I0 = ig4T b
DAT

a
CDT

b
BCT

a
ABI, (2.7)

I =

∫

M

∫

M

d4qd4k

(2π)8
γµ (p/− q/+m) γτ (p/− k/− q/+m) γν (p/− k/+m) γσ

q2 [(p− q)2 −m2] [(p− k − q)2 −m2] [(p− k)2 −m2] k2

×

(

gµν −
nµqν + nνqµ

n·q

)(

gστ −
nσkτ + nτkσ

n·k

)

, (2.8)

where m is the quark mass, p the quark 4-momentum,
∫

M
denotes integration

over Minkowski space, and where the five iǫ terms have been omitted. Evaluation

of the integral I by means of the matrix method is the main objective of this

article.

To begin with, we observe that I in Eq. (2.8) diverges at the following three

types of limits:

(i) |q| and/or |k| → ∞ ;

(ii) q and/or k → zeros of the quadratic factors in the denominator of Eq.

(2.8);

(iii) q ·n → 0 and/or k ·n → 0 .

The first two types of divergence are handled by dimensional regularization and

Wick rotation. The third type of divergence (iii) is symptomatic of axial-type

gauges, and requires application of the n∗
µ-prescription (2.6) to the spurious poles

of (q ·n)−1 and (k ·n)−1. Since the n∗
µ-prescription permits a Wick rotation

(iq4 = q0, ik4 = k0, ip4 = p0), we may Wick-rotate the entire integrand from
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Minkowski space to Euclidean space.

Next we apply exponential parametrization to every quadratic factor Fj

(j = 1, 2, . . .) in the denominator of the rotated integrand:

1

Fj

=

∫ ∞

0

dαj exp (−αjFj) , Fj > 0 , (2.9)

thereby replacing the product of quadratic factors in the denominator by a sum

of quadratic terms in the exponent. Completing the square in this exponent,

we can then integrate over the momentum variables by means of the generalized

Gaussian formula:

∫

d2ωq exp (−Aq2) =
( π

A

)ω

, A > 0. (2.10)

(c) Two-loop integrations: the traditional approach

Although the methods described in Section 2(b) are applicable to any multi-

loop integral, the ever-increasing technical difficulties have drastically restricted

the number of explicit computations. Here is a brief look at some typical prob-

lems, encountered already in double integrals such as
∫

d2ωq
∫

d2ωk f(q, k).

Two-loop integrals have traditionally been computed by the so-called nested

method. As alluded to in the Introduction, the basic idea behind the nested

method is to integrate over the loop momenta one loop at a time, i.e., to integrate

over k as completely as possible, before attempting integration over q. In many

two-loop cases the k-integral is so complicated, however, that we cannot fully

compute it, unless we express the result in the form of a series, such as the Laurent

series
∑

j (ω−2)j Tj(n, p, q;m). Each of the functions Tj must then be multiplied

by the remaining q-dependent factors in the original integrand, and the resulting
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expressions integrated over 2ω-dimensional q-space. One hopes, of course, that

only the first few (i.e., small j) terms of the Laurent series will contribute to the

pole parts of the final result. Unfortunately, no such luck prevails in general, as

may be seen from the following typical, albeit simplified, example:

∫ ∞

1

q1−ω q2ω−4 dq →

∞
∑

j=0

(

(2ω − 4)j

j!

∫ ∞

1

q1−ω (ln q)j dq

)

. (2.11)

Integration of the j-th term on the right-hand side by parts j times yields
∑

j 2j ,

whereas direct evaluation of the left-hand side yields (2−ω)−1. The inconsistency

stems from the fact that the exponential series for q2ω−4 does not converge

uniformly as |q| → ∞.

In order to improve the behaviour for large values of |q|, we could try to

express the result of the k-integration as a series in powers of 1/q2. One may

always obtain such a series by applying the binomial formula to the integrand

before integrating over the last one or two Schwinger parameters associated with

the k-integration. On the surface, this strategy looks promising, but on closer

inspection we sometimes find that the resulting series fails to converge for certain

combinations of values of q and the unintegrated Schwinger parameters. Some

of the UV divergences of the integral I, for instance, occur precisely in regions

where the binomial series diverges.

These simple examples serve as a potent reminder that (1) the divergent

terms for overlapping loops do not arise merely from the divergent and finite

terms (j ≤ 0) of the individual loops, and that (2) care must be exercised in

choosing series which converge uniformly over the entire region of integration.

We shall see in Sections 4 and 5 that point (2) is also crucial in the context of the

matrix method, where similar convergence issues arise, albeit in vastly simplified

form.

7



3. The Matrix Method

(a) Basics

In this section we propose an alternative procedure to the nested method,

called the matrix integration technique, or matrix method for short. In the matrix

method we regard q-space and k-space as subspaces of a single 4ω-dimensional

momentum space and proceed as in the case of one-loop integrals. In other words,

we Wick-rotate q0 and k0, use the n∗
µ-prescription (2.6) for (q·n)−1 and (k·n)−1,

and apply the exponential parametrization (2.9) to all denominator factors. The

two-loop integral I in Eq. (2.8) for the overlapping diagram in Figure 1 then

assumes the form:

∫

E

d2ωq

∫

E

d2ωk f(q, k) =

∫ ∞

0

dα1

∫ ∞

0

dα2 . . . J [P (q, k)] ≡ IE [f ] , (3.1)

where:

f(q, k) =
i2(−1)4 γµ (p/− q/−m) γτ (p/− k/− q/−m) γν (p/− k/−m) γσ

(2π)4ω q2 [(p− q)2 +m2] [(p− k − q)2 +m2] [(p− k)2 +m2] k2

×
(n·qδµν − nµqν − nνqµ)

n·q

(n·kδστ − nσkτ − nτkσ)

n·k
(in this case); (3.2)

J [P (q, k)] ≡

∫

E

d2ωq

∫

E

d2ωk P (q, k) exp(− z⊤Mz + 2B⊤z − C) ; (3.3)

P (q, k) ≡ the numerator of f , multiplied by −q ·n∗/n2
0 and/or

− k ·n∗/n2
0 from the n∗

µ-prescription (as applicable);

z ≡ (k4, q4, k3, q3, . . . )
⊤ = a 4ω-component column-vector (⊤ ≡ transpose);

M is a 4ω × 4ω matrix; B is a 4ω-component column-vector; C is a scalar;

and
∫

E
denotes integration over Euclidean space. Since Mij is the coefficient of

zizj in the exponent of the integrand in Eq. (3.3), we may always symmetrize M
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(“zi” refers to the ith component of z).

In the case of the integral I, with f given by Eq. (3.2), let us take α1, . . . , α7

to be the parameters corresponding to the factors n·q, q2, [(p− q)2 +m2], [(p−

k−q)2 +m2], [(p−k)2 +m2], k2, and n·k, respectively. We then find that M, B,

and C take particularly simple forms when we change the variables of integration

from {α1, . . . , α7} to the more “user-friendly” set S = {A; λ, β,G, b, h, a}, where

A ≡ α1 + α2 + α3 + 2α4 + α5 + α6 + α7 ,

G ≡ α4/A , b ≡ (α4 + α5)/A ,

β ≡ (α3 + α4)/A , h ≡ (α4 + α5 + α6)/A ,

λ ≡ (α2 + α3 + α4)/A , a ≡ (α4 + α5 + α6 + α7)/A .







































(3.4)

As explained in the Introduction, A is a type I parameter with an infinite domain,

while λ, β,G, b, h, a are type II parameters with finite domains. In terms of these

parameters,

M = A



























a G
G 1− a

a G
G 1− a

h G
G λ

h G
G λ



























, B = A



























bp4

βp4

bp3

βp3

bp2

βp2

bp1

βp1



























,

C = A (b+ β −G) (p2 +m2) ,



































































(3.5)

where n1 = n2 = 0 for simplicity. Note that the lower half of M has 2ω − 2

pairs of rows, and the right-hand half 2ω − 2 pairs of columns, so that

√

det(M) = A2ωD‖D
ω−1
⊥ , (3.6)

where D‖ ≡ a(1− a)−G
2 , D⊥ ≡ λh−G

2 . (3.7)
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(b) Momentum Integration

Our first major task is to evaluate the momentum-space integral J [P ] in Eq.

(3.3), P being a polynomial in the components of q and k. Differentiating Eq.

(3.3) partially with respect to Bi , we obtain

∂J [P ]

∂Bi

= 2 J [ziP ]. (3.8)

Once J [1] is known, we can derive J [P ] for any polynomial P by repeated appli-

cation of formula (3.8).

To evaluate J [1], we first diagonalize the quadratic form in the exponent of

the integrand in Eq. (3.3). Since M is symmetric, there exists a matrix R such

that R⊤R = 1 , and RMR⊤ is diagonal. Letting z = R⊤y + M−1B in Eq.

(3.3), and choosing P = 1, we obtain

J [1] = exp (B⊤M−1B − C)

∫

E

exp (−y⊤RMR⊤y) d4ωy . (3.9)

With RMR⊤ diagonal, the above integral is just a product of one-dimensional

Gaussian integrals, so that

J [1] =
π2ω exp (B⊤M−1B− C)

√

det(M)
, (3.10)

det(R) and det(R⊤) having cancelled each other. Applying formula (3.8) repeat-

edly to Eq. (3.10), we get

J [zi] = mi J [1] , (3.11a)

J [zizj ] = [mimj + (M
−1

2
)ij ] J [1] , (3.11b)

J [zizjzk] = [mimjmk +mi(
M

−1

2
)jk +mj(

M
−1

2
)ik +mk(M

−1

2
)ij ] J [1] , (3.11c)

...

where m ≡M−1B, and ∂mi/∂Bj = (M−1)ij .
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When M and B are given by Eqs. (3.5), D‖ and D⊥ by Eqs. (3.7), and p‖

and p⊥ by

p‖ ≡ (0, 0, p3, p4) =
n∗·p n+ n·p n∗

n∗·n
, (3.12a)

p⊥ ≡ (p1, p2, 0, 0) = p− p‖ , (3.12b)

we find m = (r4, s4, r3, s3, . . . )
⊤, (3.13)

with r = r‖ + r⊥ =

(

(1− a)b−Gβ

D‖

)

p‖ +

(

λb−Gβ

D⊥

)

p⊥ , (3.14a)

s = s‖ + s⊥ =

(

aβ −Gb

D‖

)

p‖ +

(

hβ −Gb

D⊥

)

p⊥ . (3.14b)

(For the sake of clarity, we have dropped the Lorentz indices on p‖, p⊥, n, n
∗,

r, r‖, r⊥, s, s‖, and s⊥.) Substituting from Eqs. (3.5) and (3.13) into Eqs. (3.10)

and (3.11), and exploiting the linearity of J [P ], we obtain the useful momentum-

space integrals given in Appendix A.

The off-diagonal entries in M originate from the q ·k term in the exponent

of the integrand in Eq. (3.3). In the integral I, this term comes, of course, from

the parametrization of the denominator factor [(p− k− q)2 +m2], which in turn

comes from the internal line shared by the two loops in Figure 1. Note that in

the absence of such a shared line, the integral I would factor into two separate

one-loop integrals. By diagonalizing M, it might appear that we have effectively

disentangled the overlapping loops, but that is not the case. All we have done is

shift the problem to the parameter integrations. To see this, we observe that the

integrands of these integrations still contain the off-diagonal elements of M by

virtue of the factors M−1 and
√

det(M) in Eqs. (3.10) and (3.11). Parameter

integrations will be discussed in Sections 4 and 5.
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(c) Reduction of the integrand

We observe in Eqs. (3.11) that the complexity of J increases dramatically

with the degree of its argument P , P being the numerator of the integrand f in

Eq. (3.1) multiplied by −q·n∗/n2
0 and/or −k·n∗/n2

0 from the n∗
µ-prescription if

applicable. It is desirable, therefore, to reduce the degree of P as much as possible

before integration. For I, the initial degree of P is 7, but we can reduce this

number to 3 by executing the following trivial operations before Wick-rotation:

1. We completely expand the numerator of the integrand in Eq. (2.8) into a

sum of products. We then drop all terms which are shown by power counting

to be UV-convergent, since we are only interested in the divergent terms. We

recall that the n∗
µ-prescription is consistent with power counting [1], and that

Weinberg’s Theorem asserts that a two-loop integral is UV-convergent if the

net power of the integrand in each of q, k, and both q and k together, is

less than zero [18]. For I, the result is that terms containing more than one

factor of m and/or p/ may be dropped.

2. In the remaining terms, we rearrange the non-commuting Dirac matrix

factors with the help of the relation [γµ, γν]+ = 2gµν , so that most terms

with more than one matrix factor cancel with one another. Some terms

involving q/k/n/ remain, but in these terms we may replace q/k/ by 1
2
(q/k/+k/q/) =

q·k because of the symmetry between q and k in Eq. (2.8). Also note that

γµγµ = 2ω, and that n2 = 0 in the light-cone gauge.

3. In each of the remaining terms, we cancel as many factors as possible with

factors in the denominator of the integrand. (In some cases, identities such as

2q ·k = p2 −m2 − [(p− q)2 −m2] + [(p− k − q)2 −m2]− [(p− k)2 −m2] ,

2p ·q = p2 − m2 − [(p − q)2 − m2] + q2 , etc. are helpful.) The resulting

12



integrands will have fewer denominator factors than were present originally

in Eq. (2.8), but Eqs. (3.5) to (3.14) are still valid, provided we set the α

parameters which correspond to absent factors to zero in Eqs. (3.4), and

omit the integrations over these parameters from Eq. (3.1). (We see from

Eq. (2.9) that this procedure is equivalent to inserting factors of exp(0) in the

integrand in Eq. (3.3). The advantage of this strategy is obvious: it allows us

to use one common expression for J for all integrals with the same P , even

though the integrands of all these integrals will have different denominators.)

4. Finally, we reduce the number of independent terms by interchanging q and

k in selected terms.

The above four steps were carried out by means of a computer program

designed by one of the authors (J.W.). Application of these steps, followed by

Wick-rotation, transforms the integral I into the sum of 53 integrals, represented

by the 53 non-blank entries in Tables 1 to 6. Each of the 53 integrals is equal to

an entry in one of the tables times the Euclidean-vector expression at the left-

hand side of its row of the table, divided by (2π)4ω times the denominator at

the bottom of the table, and integrated over 4ω-dimensional qk-space.

The symbols n, q, Q, ∧, K, and k at the bottoms of the tables represent

denominator factors in accordance with the following scheme:

n q Q ∧ K k n

n·q q2 [(p− q)2 +m2] [(p− k − q)2 +m2] [(p− k)2 +m2] k2 n·k

(3.15)

Thus, an “n” on the left side of the denominator represents n ·q, while an “n”

on the right represents n·k. For example, the entry 4− 4ǫ in the fifth row and

second-last column of Table 1 corresponds to the Euclidean-space integral
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(4− 4ǫ) n·p

(2π)4ω

∫

E

∫

E

q/ d2ωq d2ωk

n·q q2 [(p− q)2 +m2] [(p− k − q)2 +m2] k2
, (3.16)

where ǫ ≡ 2− ω ; ǫ occurs in the integrand only because γµγµ = 2ω (see step

2 above).

The zeros and ones at the right-hand sides of some table entries are explained

in the Key following Table 1. The two entries marked 00 in Table 2 may be

ignored, since it can be demonstrated by the nested method (without the use

of series) that the corresponding integrals cancel each other exactly. The three

stars (*) in Tables 4 and 6 indicate integrals whose contributions to the divergent

parts of I vanish due to symmetric integration. Hence only 48 integrals require

evaluation. All necessary momentum-space integrals J [P ] are given in Appendix

A, leaving only the integrations over the parameters still to be done.

Table 1: Terms of I with 5 denominator factors including q ·n .

——————–——————–———————–——————–——————–————————————–——————–———————–——————–——————–——————
‖ | | | ‖ |

n/ (p2+m2) 2 + 4ǫ 0 −2 + 2ǫ 0 4− 4ǫ 0

‖ | | | ‖ |
——————–——————–———————–——————–——————–————————————–——————–———————–——————–——————–——————‖ | | | ‖ |
mn·k 8− 8ǫ 4 0

0 8− 8ǫ 0
0 −8 + 8ǫ 0

‖ | | | ‖ |
——————–——————–———————–——————–——————–——————

‖ | | | ‖ |p/ n·k 8− 8ǫ −4 0
0 8− 8ǫ 0

0 −8 + 8ǫ 0

‖ | | | ‖ |
——————–——————–———————–——————–——————–——————

‖ | | | ‖ |
n·p k/ −4 + 4ǫ 20− 8ǫ 0

0 −4 + 4ǫ 0
0 4− 4ǫ 0

‖ | | | ‖ |
——————–——————–———————–——————–——————–————————————–——————–———————–——————–——————–——————

‖ | | | ‖ |
n·p q/ 4− 4ǫ 1 −4 1 4 + 8ǫ 0

0 4− 4ǫ 0
0 −4 + 4ǫ 0

01‖ | | | ‖ |
——————–——————–———————–——————–——————–——————‖ | | | ‖ |
n/ p·q 1 −4 1

0
0

0
0

0
01‖ | | | ‖ |

——————–——————–———————–——————–——————–————————————–——————–———————–——————–——————–——————
‖ | | | ‖ |n/ k ·q 1 1

0
0

0
0 −4 + 4ǫ 0

01‖ | | | ‖ |
——————–——————–———————–——————–——————–——————

‖ | | | ‖ |
n·k q/ 4ǫ 1 1 4− 4ǫ 0

0 −8 + 8ǫ 0
0 4− 4ǫ 0

01‖ | | | ‖ |
——————–——————–———————–——————–——————–——————

‖ | | | ‖ |
n·k k/ −4 + 4ǫ −4 + 4ǫ 0

0
00

0
00

0
00‖ | | | ‖ |——————–——————–———————–——————–——————–————————————–——————–———————–——————–——————–——————

‖ | | | ‖ |
‖ nq ∧Kk | n Q∧Kk | nqQ∧K | nqQ∧ k ‖ nqQ Kk |

14



Key to a typical entry:

– value of a at which
∫

J1 diverges. (See Section 4.)
————— /
| |←
4− 4ǫ 0

01| |←— values of a at which
∫

J0 diverges. 00 indicates that
—————
↑

the degree is –1 at a = 0. (See Section 4(b).)
|
|
— coefficient of the term ( ǫ ≡ 2− ω ).

Table 2: Terms of I with 4 denominator factors including q ·n .

—————–—————–—————–—————–—————–—————–———‖ | | | ‖ | |
n/ 2ǫ 1 −2ǫ 01 – 2 – 2ǫ 0 – 4 – 2ǫ – 2+2ǫ 00 2 – 2ǫ 00‖ | | | ‖ | |

—————–—————–—————–—————–—————–—————–———
‖ | | | ‖ | |
‖ n ∧Kk | n Q Kk | n Q∧ k | nq ∧K ‖ nqQ∧ | nqQ K |

Table 3: Covariant-gauge terms of I.

——————————————————————————————————————————————————————————————————————————————
‖ | | | ‖ |

m 2 –2ǫ+2ǫ2 1 1 8 – 8ǫ2 0 2 –2ǫ+2ǫ2 0 –2 +2ǫ –2ǫ2 01‖ | | | ‖ |
———————————————————————————————————————

‖ | | | ‖ |
p/ 4 –2ǫ+2ǫ2 1 1 8 – 8ǫ – 8ǫ2 0 4 –2ǫ+2ǫ2 0 –4 +2ǫ –2ǫ2 01‖ | | | ‖ |———————————————————————————————————————

‖ | | | ‖ |
q/ 4 – 4ǫ 1 – 8 +8ǫ 1 – 8+4ǫ+4ǫ2 0 – 8 +4ǫ2 0 4 – 4ǫ 01‖ | | | ‖ |

——————————————————————————————————————————————————————————————————————————————
‖ | | | ‖ |‖ q ∧Kk | Q∧Kk | qQ∧K | qQ∧ k ‖ qQ Kk |

Table 4: Terms of I with 5 denominator factors including q ·n and k ·n .

———————————————————————————————–
‖ | ‖ | ‖n/ n·p 4 0 −4 0 8 * −4 *
‖ | ‖ | ‖

———————————————————————————————–
‖ | ‖ | ‖
‖ nqQ K n | nqQ∧ n ‖ n Q∧K n | nq ∧K n ‖

Table 5 Table 6

——————————————– —————————————–
| | | |

n·k k/ (p2 +m2) 4− 4ǫ 0 n/ n·p (q ·k)2 4 *
| | | |——————————————– —————————————–
| | | |
| nqQ∧Kk | | nqQ∧Kkn |
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4. Finding the Divergences

(a) Integration over infinite-parameter space

In order to complete the parameter change from {αj} to {A;λ, β,G, b, h, a},

we have to apply the transformation (3.4) to the integrations on the right-hand

side of Eq. (3.1) for each of our 48 integrals. Integrals containing all seven “fac-

tors” n, q, Q, ∧, K, k, n in their denominators then transform as follows:

IE [f ] =

∫ ∞

0

dα1 . . .

∫ ∞

0

dα7 J [P ]

=

∫ 1

2

0

dG

∫ 1−G

G

da

∫ 1−a

G

dλ

∫ a

G

dh

∫ λ

G

dβ

∫ h

G

db

∫ ∞

0

A6 dAJ [P ] . (4.1)

But let’s suppose now that a certain denominator factor is missing from the

simplified integrand f in Eq. (3.1). In that case, as mentioned in Section 3(c),

we must set the corresponding α parameter to zero in Eqs. (3.4), and omit

integration over this parameter in Eq. (3.1). To see the effect of these changes

on the transformed integral (4.1), consider the example (3.16), in which f =

q//(nqQ∧k). Since the fifth and seventh denominator factors are absent in this

case, we put α5 = α7 = 0 to get

IE [f ] =

∫

E

d2ωq

∫

E

d2ωk
q/

nqQ∧ k

=

∫ ∞

0

dα1

∫ ∞

0

dα2

∫ ∞

0

dα3

∫ ∞

0

dα4

∫ ∞

0

dα6 J

[

−n∗·q q/

n2
0

]

α5 = α7 = 0

=

∫ 1

2

0

dG

∫ 1−G

G

da

∫ 1−a

G

dλ

∫ λ

G

dβ

[

JA(λ, β,G, b, h, a)

]

b→ G
h→ a

, (4.2)

with JA ≡

∫ ∞

0

A4 dAJ

[

−n∗·q q/

n2
0

]

= −

∫ ∞

0

dA
A4

n2
0

γµ J
[

n∗·q qµ
]

. (4.3)
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In the next few pages, we shall concentrate on the detailed evaluation of the

integral (4.2).

In view of Eqs. (A.4) and (A.8), we find that JA in Eq. (4.3) becomes

JA = −
π4−2ǫ

n2
0

∫ ∞

0

dA
A2ǫ e−AH

D‖D
1− ǫ
⊥

(

n∗·s s/ +
an/∗

2AD‖

)

. (4.4)

Integration over A is straightforward. Note that Eq. (4.4) shows the entire A-

dependence of the integrand, since r, s, D‖, D⊥, and H have been defined so

as to be independent of A. Using Eqs. (3.14), together with

∫ ∞

0

tx e−t dt = Γ(x+ 1) , Re(x+ 1) > 0 , (4.5)

we find that

[

JA

]

b→ G
h→ a

= −
π4−2ǫ

n2
0

[

Γ(2ǫ) J0 + Γ(1 + 2ǫ) J1 + Γ(2 + 2ǫ) J2

]

, (4.6)

where

J0 =
n/∗aH−2ǫ

2D2
‖D

1− ǫ
⊥

, J1 =
n∗·p (aβ −G2)2

D2
‖D

1− ǫ
⊥ H

(

p/‖

D‖
+
p/⊥
D⊥

)

H−2ǫ , (4.7)

and J2 = 0. Similar results may be obtained for the other integrals in Tables 1

to 6; only the expressions for J0, J1, and J2 vary.

As explained in the Introduction, the first pole term Γ(2ǫ) J0 in Eq. (4.6)

arises from integration over the type I parameter A. This divergence may be

traced back to the fact that the original integral I is UV-divergent with respect

to q and k taken together. Additional UV subdivergences will emerge when the

J0 and J1 terms are integrated over the finite parameters λ, β,G, b, h, and a

(called type II parameters in the Introduction). These subdivergences arise from

the two loops taken separately.
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In view of the appearance ofD‖, D⊥, andH in Eq. (4.7), exact integration of

J0 and J1 over the finite parameters would pose a major challenge. Fortunately,

however, we are only interested in contributions to I which diverge as ω → 2;

i.e., in the terms with negative indices in the Laurent series

I(ǫ) = I−t(p, n;m)ǫ−t + I1−t(p, n;m)ǫ1−t + . . . , (4.8)

where t is an integer which, in our case, happens to be 2. The divergences occur

only at certain boundaries of the region of integration in parameter space. We can

extract the divergent terms exactly by integrating the first one or two terms of

suitably chosen series which converge to J [P ] near these boundaries. In choosing

these series, we must be careful to avoid the types of problems which plague the

nested method.

In the case of the J0 term, one boundary at which the parameter integrations

diverge as ω → 2 is just A = 0; this fact explains why integration over A

generates the divergent factor Γ(2ǫ) in this term. Of course, the presence of this

factor implies that the coefficient I−1 in Eq. (4.8) will depend on the finite part

of the integral of J0 over the remaining parameters. It would seem, therefore,

that the J0 terms will have to be integrated over the entire region of integration

Φ of these parameters.

Fortunately, things are not quite as bad as they seem, since the most com-

plicated part of the J0 term is the factor H−2ǫ. If we use the expansion

H−2ǫ = e−2ǫ lnH = 1 − 2ǫ lnH + 2ǫ2(lnH)2 − . . . , (4.9)

it would appear that we only need to keep the first term of the series when inte-

grating over the whole region Φ, since the common factor of 2ǫ in the other terms

will cancel the divergence arising from the factor Γ(2ǫ) in Eq. (4.6). However, it

was just this kind of reasoning that led to the catastrophe in the nested method
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exemplified by Eq. (2.11). To avoid a similar catastrophe here, we must verify

that
∫

Φ
J0 is convergent at all zeros and poles of H before we may use the series

(4.9). It follows from definition (A.9) that H has no poles in Φ, but H does go to

zero when b + β −G → 0. In order to determine whether the integral of any J0

term diverges at any of these zeros as ω → 2, and in order to enable us to find

all divergent contributions to the final result I, we must systematically determine

the location in finite-parameter space of every subdivergence of every J0, J1, and

J2 integral. This task will be tackled in the next subsection.

(b) Subdivergences

Divergences in the finite-parameter integrations, as ω → 2, could potentially

occur at the zeros of any of the three factors D‖, D⊥, and H which appear in the

denominators of the J0, J1, and J2 terms. These zeros occur on certain bound-

aries of the integration region Φ, such as a = 0, λ = h = G, etc. Specifically,

D‖ → 0 linearly if a→ 0, a→ 1, or a,G→ 1
2
,

D⊥ → 0

{

quadratically if both λ, h→ 0 ,

or else linearly if λ→ 0, h→ 0, or λ, h→ G ,















(4.10a)

(cf. Eqs. (3.7) and (4.1)). To locate the zeros of H, we observe that the exponent

of the integrand in Eq. (3.3) is less than or equal to zero by construction, and

equal to −AH when y = 0 (cf. Eqs. (A.9) and (3.9)). Hence H ≥ 0 even if the

mass m vanishes, while for m 6= 0,

H → 0 linearly, if and only if both b, β → 0 . (4.10b)

Depending on the specific form of the integrand, a given finite-parameter

integral could conceivably diverge at the intersection of some particular subset
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of the above boundaries, but not at any other points. Accordingly, we must

consider all possible intersections of these boundaries for every term of every

finite-parameter integrand. The set of possibilities which needs to be examined is

severely constrained by two chains of inequalities, which follow from Eqs. (3.4):

a ≥ h ≥ b ≥ G ≥ 0 and 1− a ≥ λ ≥ β ≥ G ≥ 0 . (4.11)

If any particular parameter in either of these chains goes to zero, then all param-

eters to its right in the chain must also approach zero.

In order to determine whether one of our integrals is divergent at a particular

boundary of Φ, we observe that the integral of a rational function of the param-

eters diverges at some point in finite-parameter space only if the degree of the

integrand (including the measure dGda . . . ) is less than or equal to zero at this

point. The degree of the integrand may be calculated according to the following

rules:

1) A linear function of a parameter has degree 1 if it goes to zero at the point

in question; otherwise the function has degree 0.

2) The degree of a product (quotient) is the sum (difference) of the degrees of

its parts.

3) The degree of a sum or difference, in the numerator, is the minimum of the

degrees of its parts. For example, if f → 0 linearly and g → 0 quadratically,

then f+g → 0 linearly. (If the parts have equal degree, this rule may predict

divergences which eventually cancel each other.)

4) The degrees of the denominator factors D‖, D⊥, and H are given by Eqs.

(4.10) for all boundaries except those at which the degrees are zero.

5) The degree of the measure is the dimensionality of finite-parameter space

minus the dimensionality of the boundary in question (not counting dimen-

sions associated with absent parameters, such as b and h in Example (4.2)).
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For instance, at the boundary a = 0 , inequalities (4.11) imply that G must

also be zero; hence the degree of the measure dGda dλ dβ at this boundary

is 4 − 2 = 2 . To see why, consider a transformation of a and G to polar

co-ordinates.

As an example, consider the three terms comprising J0 and J1 in Eqs. (4.7).

If we multiply these terms by dGda dλ dβ to complete the integrands, we find

that the degrees of these integrands are as shown in Tables 7 and 8. Each number

in these tables represents the degree of the integrand at the boundary at which

the parameters, shown above it and to the left, go to zero. From these tables we

see that all three terms in Eqs. (4.7) have subdivergences at the boundary where

a→ 0 but not β → 0 or λ→ 0.

Table 7: Degree of J0 Table 8: Degrees of J1 terms

at various boundaries. at various boundaries.

—————————— —————————— ——————————
| G β λ 1− a | | G β λ 1− a | | G β λ 1− a |
| | | | | |

G | 1 2 2 1 | G | 1 3 3 1 | G | 1 3 2 1 |
a | 0 1 1 | a | 0 2 2 | a | 0 2 1 |

When tables, similar to Tables 7 and 8, are constructed for every term of

every finite-parameter integral which arises in the evaluation of I, it is found that

subdivergences occur only at the following two boundaries of Φ:

1) a→ 0 and not β → 0 (corresponding to divergent k integration).

2) a→ 1 and not b→ 0 (corresponding to divergent q integration).

Each integral which diverges at one or both of these boundaries is marked in

Tables 1 to 6 with 0 and/or 1, as explained in the Key. Note that neither of

these types of divergence occurs at a boundary where b and β both go to zero.
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In particular, we see from Eq. (4.10b) that there are no subdivergences at zeros

of H. Therefore, it is safe to use the series (4.9) in all cases, as we shall do from

now on.

To calculate the divergent contributions to I which arise at either of the

boundaries a = 0 or a = 1 , we expand each integrand Ji (i = 0, 1, 2) as a series

in powers of the parameters which go to zero at that boundary, and keep only

those terms whose integrals diverge. (We justify this procedure by using the five

rules given above to show that the integral of the difference between Ji and the

terms we keep is convergent at all boundaries in every case.) In all but two of

the cases, the degree of the original integrand is zero at the subdivergence, so

that only the leading term of the series is needed. For each of the other two cases

(marked 00 in Table 2), the degree of the J0 integrand is −1, and two terms

would be needed. Fortunately, we are saved from having to integrate these terms,

since these two exceptional integrals cancel each other exactly (cf. Section 3(c)).

5. Finite-Parameter Integration

(a) Integrations at subdivergences

Employing the two series expansions discussed in Section 4, we can now

complete the finite-parameter integrations to the extent necessary to obtain ex-

act expressions for the coefficients I−1 and I−2 in Eq. (4.8). Proceeding with

Example (4.2), we first substitute the series for H−2ǫ in Eq. (4.9) into Eqs. (4.7).

We then use Eq. (4.6) and the identity Γ(z + 1) = zΓ(z) to obtain

[

JA

]

b→ G
h→ a

= −
π4−2ǫ

n2
0

[

Γ(2ǫ) Y0 + Γ(1 + 2ǫ) Y1 + Γ(2 + 2ǫ) Y2

]

+O(ǫ),

(5.1)
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where Y0 =
n/∗ a

2D2
‖D

1− ǫ
⊥

, (5.2a)

Y1 =
n∗·p (aβ −G2)2

D2
‖D

1− ǫ
⊥ H

(

p/‖

D‖
+

p/⊥
D⊥

)

−
n/∗ a lnH

2D2
‖D

1− ǫ
⊥

, (5.2b)

and Y2 = 0. Similar results may be obtained for the other integrals in Tables 1

to 6; only the expressions for Y0, Y1, and Y2 vary. It remains to integrate these

expressions over the finite parameters. Since Y1 and Y2 are not multiplied by

divergent Γ-functions, they contribute to I−1 only through the subdivergences

in their finite-parameter integrals. The single Y2 integral has no subdivergences,

and may be ignored. The O(ǫ) term in Eq. (5.1) may also be ignored, since there

are no subdivergences at the zeros of H, as explained in Section 4(b).

Returning to our example in Eqs. (5.2), we now compute the divergent part

of the integral of Y1 over the finite parameters β, λ, a and G (cf. Eq. (4.2)). We

recall from Section 4(b) that all subdivergences of Eq. (4.2) occur at the boundary

a = G = 0. Therefore, we expand Y1 as a series in the parameters a and G, and

integrate only the divergent leading term. To derive this term, we simply replace

H by its leading term H0 ≡ Ha→0 , and drop G2 and (1− a) from D‖, D⊥, and

from the numerator in Eq. (5.2b). In this way we obtain

Y1 = aǫ−2E +O(aǫ−1), (5.3)

where E ≡
n∗·p β2

λ1− ǫH0

(

p/‖ +
p/⊥
λ

)

−
n/∗ lnH0

2λ1− ǫ . (5.4)

Applying Eqs. (A.9), (3.14), and (3.7), and recalling that a = h in our example,

and that 0 ≤ b ≤ a (cf. inequality (4.11)), we find

H0 = p2
‖ β

(

R − β −
βS

λ

)

,
where R ≡ (p2 +m2)/p2

‖ ,

and S ≡ p2
⊥/p

2
‖ .







(5.5)
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Integration of Eq. (5.3) over β, λ, a, and G in accordance with Eq. (4.2) yields

∫

Φ

Y1 =

∫ 1

2

0

dG

∫ 1−G

G

da

∫ 1−a

G

dλ

∫ λ

G

dβ aǫ−2 E + finite terms ,

=

∫ 1

2

0

dG

∫ 1−G

G

aǫ−2 da (L0 − L1) + finite terms , (5.6)

where L0 ≡

∫ 1

0

dλ

∫ λ

0

dβ E , (5.7a)

L1 ≡

∫ 1

1−a
dλ

∫ λ

G

dβ E +

∫ G

0

dβ

∫ 1

β
dλ E , (5.7b)

and E is defined by Eq. (5.4). Integral (5.7a) is convergent even for ω = 2 (ǫ = 0),

and may be evaluated in the ǫ = 0 case with the help of formulas (B.9), (B.8), and

(B.5) from Appendix B. The two integration regions in Eq. (5.7b) are entirely

inside the region in Eq. (5.7a), and shrink in proportion to a. Consequently,

L1 → 0 as a→ 0; hence the integral of L1 over a and G may be absorbed into

the finite terms in Eq. (5.6). L0 may then be factored out of the integral, since it

is independent of a and G. The a and G integrations are easily completed: they

produce the divergent factor ǫ−1, plus a finite term, so that Eq. (5.6) becomes

∫

Φ

Y1 =
1

ǫ

∫ 1

0

dλ

∫ λ

0

dβ Eǫ=0 + finite terms . (5.8)

The Y1 terms arising from the other integrals in Tables 1 to 6 may be in-

tegrated in similar fashion. After convergent terms have been discarded, each

integral factors into a trivial divergent integral, times a finite integral which can

be evaluated at ǫ = 0 with the help of the formulas from Appendix B. Adding

the results of all Y1 integrations, we finally obtain the total contribution to the

divergent part of I from all Y1 terms (in Minkowski space):
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IY1
=

Γ(4− 2ω)

(4π)2ω

[

24n/

(

m2 − p2

n·p

) [

L2

(

p2

p2 −m2

)

− L2

(

p2 +B

p2 −m2

)]

+

N · ( 8, 22,−39, 89, 0 ) +

[

m2

p2
+

(

m4

p4
− 1

)

ln

(

1−
p2

m2

)

− ln(m2)

]

N · ( 0, −8, 4, −4, 0 ) +

[(

m2

p2
− 1

)

ln

(

1−
p2

m2

)

− ln(m2)

]

N · ( 8, 0, 0, 0, 24 ) +

[(

m2 − p2

B + p2

)

ln

(

B +m2

m2 − p2

)

+ ln(B +m2)

]

N · ( 0,−16, 16,−32, 24 )

]

,

(5.9)

where B ≡ −
n·p n∗·p

n2
0

, L2(z) ≡

∫ 1

0

lnx dx

x− 1/z
;

the vector N is given by: N ≡

(

m, p/,
n·p n/∗

n·n∗
,
n∗·p n/

n·n∗
,
p2 n/

n·p

)

. (5.10)

(b) Integrations over all parameter-space

Finally, we must integrate the Y0 terms over the finite parameters λ, β, G,

b, h, and a (cf. Eqs. (5.1) and (4.2)). Excluding the Γ(2ǫ) factor produced by the

A integration, the integral of a Y0 term will generally include a divergent term

proportional to ǫ−1, plus a finite term which is independent of ǫ, plus terms

which go to zero as ǫ → 0. Due to the Γ(2ǫ) factor, the divergent term will

contribute to I−2 (cf. Eq. (4.8)), while the finite term will contribute to I−1.

Since we need both I−2 and I−1, we must evaluate both the divergent and finite

parts of the integral of Y0. The divergent part comes from integration of Y0 at

its subdivergences, while the finite part comes from integration over the whole
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region Φ. Since the subdivergences are part of the integral over the whole region,

we can extract both the divergent part and the finite part by integrating Y0 over

all of Φ.

The functional form of the Y0 terms is simpler than that of the Y1 terms,

because the former involve only the first term of the series in Eq. (4.9) and

are, therefore, independent of H. However, when the denominator factor ∧ is

present in the original integrand f(q, k) (i.e., when G 6= 0), integration of the Y0

terms is still complicated by the presence of the factors D‖ = a(1− a)−G2 and

D⊥ = λh−G2 (see, for instance, Eq. (5.2a)). In the integration of the Y1 terms,

we simplified these factors by dropping all terms except those of lowest degree in

{a,G} or {1 − a,G}. This procedure is, unfortunately, of no use here, because

higher-order terms contribute to I−1 via the finite part of the integral of Y0. Our

new strategy is, therefore, as follows: we first simplify the D‖ and D⊥ factors

by changing the integration variables from {G, a, λ, β, b} to {V, U, X, τ, t},

according to the following definitions:

G = V a , a =
1

U + V 2 + 1
, λ = a(X + V 2) , β = τa , b = ta . (5.11)

Note that this change of variables does not involve the parameter h, and

is, therefore, inapplicable to any integral containing the factor n ·k in the de-

nominator of the original integrand f(q, k). This restriction is not as severe as

it might seem, because we may always interchange q and k before integrating,

as mentioned in Section 3(c). Hence the transformation (5.11) may be applied

to all integrals except those with both n ·k and n ·q in the denominator of f .

Fortunately, all such integrals of interest here (see Table 4) are harmless anyway,

since they give rise to Y0 terms which are proportional to n∗·n∗, and hence vanish

in the light-cone gauge.
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Under the change of variables (5.11), the boundaries a = 0 and a = 1 (at

which all subdivergences occur) are transformed to U → ∞ and U = V = 0,

respectively, while the integrations in Eq. (4.1) are transformed according to:

∫ 1

2

0

dG

∫ 1−G

G

da

∫ 1− a

G

dλ

∫ λ

G

dβ

∫ a

G

db ,

↓ ↓ ↓ ↓ ↓

∫ 1

0

dV

∫ ∞

V −V 2

dU ad

∫ U

V −V 2

dX

∫ X+V 2

V

dτ

∫ 1

V

dt ,

(5.12)

where d is the number of factors in the denominator of the original integrand

f , ad is the Jacobian determinant of the transformation, and parameter integra-

tions corresponding to absent denominator factors are to be omitted, as already

explained in Section 4(a).

Returning to our example, we now integrate Eq. (5.2a) over the new parame-

ters. From Eqs. (5.11) and (3.7), we deduce D‖ = a2U and D⊥ = a2X , and since
∫

db does not appear in Eq. (4.2),
∫

dt is absent from the transformed integral:

∫

Φ

Y0 =

∫

Φ

n/∗ a

2D2
‖D

1− ǫ
⊥

=

∫ 1

0

dV

∫ ∞

V −V 2

dU a5

∫ U

V −V 2

dX

∫ X+V 2

V

dτ
n/∗ a−5+2ǫ

2U2X1− ǫ ,

=
n/∗

2

∫ 1

0

dV

∫ ∞

V −V 2

dU a2ǫ
[

Uǫ−1

1 + ǫ
+

(V − V 2)1+ ǫ

(1 + ǫ) ǫ U2
−
V − V 2

ǫ U2− ǫ

]

. (5.13)

Since the old parameter a is equal to the complicated function (U + V 2 + 1)−1,

the new expressions a2U and a2X for D‖ and D⊥ may not seem to represent

a significant improvement over the old ones. However, when all factors of a in

the transformed integrand, including the Jacobian ad, are collected, it turns out

that the net power of a is equal to 2ǫ in every case. This fact suggests that we

may be able to obtain the divergent and finite parts of the Y0 integrals by writing

(U + V 2 + 1)−2ǫ in series form, and keeping only the first one or two terms.

27



In order to avoid the catastrophe of Eq. (2.11), we need series which converge

uniformly over the whole domain of the U, V integrations. For U > 2, the binomial

series

(U + V 2 + 1)−2ǫ = U−2ǫ
[

1 −
2ǫ

1

(V 2 + 1)

U
+

2ǫ

1

(2ǫ+ 1)

2

(V 2 + 1)2

U2
− . . .

]

(5.14a)

is suitable, since its convergence accelerates with increasing U . On the other hand

for U ≤ 2, an exponential series is appropriate:

(U + V 2 + 1)−2ǫ = 1 − 2ǫ ln(U + V 2 + 1) + 2ǫ2 (ln(U + V 2 + 1))2 − . . . .

(5.14b)

In practice, one may avoid splitting up the integration region by using Eq. (5.14a)

for integrals which diverge as U → ∞ (e.g.: the first term in brackets in Eq.

(5.13)), and Eq. (5.14b) for integrals which either diverge for finite U , or which

do not diverge at all (e.g.: the other two terms). This strategy is valid, because

in those parts of the integration region where an integral converges, the finite

part of the integral may always be found by setting ǫ = 0, either before or after

integration. If we set ǫ = 0 in Eq. (5.14a) or (5.14b), all terms except for the

first one go to zero, and the two series become identical.

It turns out that, even at the points in the region of integration where a Y0

integral diverges, only the first term of the appropriate series contributes to the

divergent and finite parts of the integral. To see why, we recall from Section 4(b)

that the degree of the integrand of every divergent finite-parameter integral is

zero at the point in parameter-space where the divergence occurs; in other words,

every integral diverges like
∫

dx/x at x = 0; if the degree were greater even

by one, the integral would not diverge. In the series (5.14a), all terms but the

first are of higher degree in 1/U than the factor (U + V 2 + 1)−2ǫ, so that the
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integrals involving these terms will remain finite as U →∞. The accompanying

factors of ǫ in Eq. (5.14a) ensure that these terms do not even contribute to

the finite part of the Y0 integral as ǫ → 0. Hence we may drop all terms of

the series, except the first one. A similar argument applies to the series (5.14b),

where ln(U + V 2 + 1)→ 0 linearly as U, V → 0.

The preceding analysis tells us that the complicated factor (U +V 2 +1)−2ǫ,

appearing in the transformed integrands of the Y0 integrals, may always be re-

placed, either by U−2ǫ or by 1. Once this replacement has been made, integration

of the Y0 terms over t, τ, X, and U is trivial, while final integration over V is

easily accomplished with the help of the formula

∫ 1

0

V C(1− V )D dV =
Γ(C + 1) Γ(D + 1)

Γ(C +D + 2)
; (5.15)

here C and D are linear functions of ǫ.

The results of the integration of all Y0 terms are shown in Appendix C. When

these results are multiplied by the appropriate coefficients and then added, the

total contribution to the divergent part of I from all Y0 terms reads as follows (in

Minkowski space):

IY0
=

Γ(4− 2ω)

(4π)2ω
N ·

(

( 4, 4,−6, 14, 0 )

2− ω
+ ( 8,−4, 11, 3, 0 )

)

, (5.16)

where N has already been defined in Eq. (5.10). To obtain the grand total of

all divergent parts of I, we simply add IY0
from Eq. (5.16) to IY1

from Eq. (5.9).

Thus (cf. Eq. (2.7))

I0 = ig4 T b
DAT

a
CDT

b
BCT

a
AB I

= ig4 T b
DAT

a
CDT

b
BCT

a
AB [IY0

+ IY1
+ finite terms ]. (5.17)
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6. Concluding Remarks

In this paper we have developed a powerful new integration technique for

multi-loop integrals, called the matrix method, and used it to compute the di-

vergent part of the overlapping two-loop fermion self-energy function iΣ in the

light-cone gauge. The overlapping self-energy diagram (Fig. 1) is the most chal-

lenging of the two-loop diagrams, especially in a noncovariant gauge such as the

light-cone gauge. (The contributions from Figs. 2(a) to 2(d) are calculated in the

sequel to this paper.) For completeness, we remind the reader of the one-loop

result (Fig. 3) in the light-cone gauge [15]:

iΣ1-loop =
g2

12π2(2− ω)

(

p/+ 2m+ 2
n∗·p n/− n·p n/∗

n·n∗

)

+ finite terms. (6.1)

The main results for the overlapping self-energy function (cf. Fig. 1) may be

summarized thus:

(i) The total divergent contribution, given by the sum of Eqs. (5.9) and (5.16),

contains both simple and double poles. The double-pole term from Eq. (5.16)

reads

Γ(4− 2ω)

(4π)2ω(2− ω)

(

4m+ 4p/− 6
n·p n/∗

n·n∗
+ 14

n∗·p n/

n·n∗

)

, (6.2)

which is seen to be local, even off mass-shell. The contributions to [iΣ]
p2 =m2

from results (6.1) and (6.2) are, therefore, strictly local. The coefficient of

the single pole, on the other hand, has also non-local terms, as seen from

Eq. (5.10). (Both types of poles are local on mass-shell.) The locality of

the double-pole term (6.2) strongly suggests that the complete fermion-mass

counterterm will likewise be local, but confirmation will depend on the results

from Figures 2(a) and 2(b).
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(ii) The overlapping fermion self-energy integral contains a maximum of seven

propagators. Detailed analysis of the singularity structure of the correspond-

ing seven-parameter integrals in the “user-friendly” set S = {A; λ, β,G, b,

h, a}, Eq. (3.4), reveals that the first simple pole originates from integration

over the infinite parameter A, while the second simple pole (and double pole

overall!) arises from integration over some of the finite parameters λ, β, G,

b, h, and a (subdivergences).

(iii) The matrix method is amazingly powerful, being applicable not only to mas-

sive and massless integrals, but also to covariant integrals, as depicted in Ta-

ble 3, and to noncovariant integrals, i.e., those containing the factors (k·n)−1

and/or (q ·n)−1 (Tables 1, 2, 4, 5, and 6). The success of the technique de-

rives, quite simply, from combining the 2ω-dimensional momentum vectors

qµ and kµ, and then integrating over 4ω-dimensional Euclidean space in a

single operation. It is this compact procedure which yields exact formulas

(at an intermediate stage), whose analytic structure simplifies the ensuing

parameter integrations tremendously. We note in passing that the matrix

method works equally well for axial-type gauges, notably the temporal gauge

(n2 > 0) and the pure axial gauge (n2 < 0).

(iv) Although it has not been possible to corroborate our final result against

other calculations (there just aren’t any!), we have nevertheless been able to

check all the covariant integrals listed in Table 11. And these agree exactly

with the divergent parts of the double covariant integrals currently used in

computing radiative corrections in the Standard Model [10,11]. Accordingly

we feel reasonably confident that our final answer for the overlapping integral

I in Eq. (2.7) is correct.
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Fig. 1 Two-loop overlapping quark self-energy function (solid lines denote quarks,

wavy lines gluons).

Fig. 2 Other two-loop diagrams for the quark self-energy.

Fig. 3 One-loop quark self-energy function computed in ref. [15].
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Appendix A: Useful momentum-space integrals.

The following formulas were derived from Eqs. (3.5) to (3.14). Note that

z ≡ (k4, q4, k3, q3, . . . )
⊤.

J [kµ] = rµ J [1], (A.1)

J [qµ] = sµ J [1], (A.2)

J [n∗ ·q kµ] =

(

n∗ ·s rµ −
Gn∗

µ

2AD‖

)

J [1], (A.3)

J [n∗ ·q qµ] =

(

n∗ ·s sµ +
an∗

µ

2AD‖

)

J [1], (A.4)

J [n∗ ·q n·k k/] =

(

n∗ ·s n·r r/ +
β n∗ ·p n/ + 2Gn2

0(r/+ r/‖)

2AD‖

)

J [1], (A.5)

J [n∗ ·q n·k q/] =

(

n∗ ·s n·r s/ +
b n·p n/∗ + 2Gn2

0(s/+ s/‖)

2AD‖

)

J [1], (A.6)

J [n∗ ·q q ·k] =

(

n∗ ·s s·r +
b n∗ ·p + O(G)

2AD‖

)

J [1], (A.7)

where J [1] =
( π

A

)4−2ǫ e−AH

D‖D
1− ǫ
⊥

, (ǫ ≡ 2− ω), (A.8)

H ≡
C −B·m

A
= (b+ β −G)(p2 +m2)− (br + βs)·p . (A.9)

Since J is a linear functional, we can use J [qµ] to deduce integrals such as J [n∗·q]

and J [q/], etc.
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Appendix B: Formulas for Y1 integration

Integration of Y1 terms requires integration over finite parameters of ex-

pressions involving H0 ≡ Ha→0 and H1 ≡ Ha, h→1
. H0 is given by Eqs.

(5.5), which in turn were derived from Eq. (A.9). We may similarly derive

H1 = p2
‖ b (R− b− bS) , where R and S are the same as in Eqs. (5.5).

Formulas (B.1) to (B.11) may be obtained by elementary means. Since p2 =

p2
‖ + p2

⊥, it follows from Eqs. (5.5) that p2
‖ (R− S − 1) = m2.

∫ 1

0

dλ
[

lnH0

]

β=λ
= ln(m2)− 2 + (R−S) ln

[

R − S

R−S−1

]

, (B.1)

∫ 1

0

db lnH1 = ln(m2)− 2 +
R

S+1
ln

[

R

R−S−1

]

, (B.2)

2

∫ 1

0

db b lnH1 = ln(m2)− 1 +
R2

(S+1)2
ln

[

R

R−S−1

]

−
R

S+1
, (B.3)

∫ 1

0

dλ

∫ λ

0

dβ
β p2

‖

λH0

= L2

(

S + 1

R

)

− L2

(

S

R

)

, (B.4)

where L2(z) ≡

∫ 1

0

lnx dx

x− 1/z
.

Formula (B.4) was derived with the help of the substitution β = yλ , followed by

integration over λ and then integration by parts over y. The same substitution

is helpful in the derivation of some of the integrals (B.5) to (B.11) in Table 9.

In formulas (B.5) to (B.11), W ≡

(

ln(m2), 1, ln

[

R

R−S− 1

]

, (R−S) ln

[

R− S

R−S− 1

]

, L2

[

S+1

R

]

− L2

[

S

R

])

,

(B.12)
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so that, for example, the right-hand side of formula (B.5) is

ln(m2) − 4 + (R−S) ln

[

R − S

R−S− 1

]

+ RL2

[

S+1

R

]

− RL2

[

S

R

]

.

Table 9

——————————————–—————————————————

E

∣

∣

∣

∣

∣

∫ 1

0

dλ

∫ λ

0

dβ E

∣

∣

∣

lnH0

λ

∣

∣

∣

∣

∣

W·

(

1, −4 , 0 , 1 , R

)

(B.5)

∣

∣

∣

2
β lnH0

λ2

∣

∣

∣

∣

∣

W·

(

1, −3 ,
R2

S(S+1)
, 1−

R

S
, 0

)

(B.6)

∣

∣

∣

4
β lnH0

λ

∣

∣

∣

∣

∣

W·

(

1, S − 3R − 2 ,
−2R2

S+1
, 3R−S , 2R2

)

(B.7)

∣

∣

∣

β2 p2
‖

λ2H0

∣

∣

∣

∣

∣

W·

(

0, 0 ,
R

S(S+1)
, −

1

S
, 0

)

(B.8)

∣

∣

∣

β2 p2
‖

λH0

∣

∣

∣

∣

∣

W·

(

0, −1 ,
−R

S+1
, 1 , R

)

(B.9)

∣

∣

∣

2
β3 p2

‖

λ2H0

∣

∣

∣

∣

∣

W·

(

0,
R

S+1
− 1 ,

R2

S(S+1)2
, 1−

R

S
, 0

)

(B.10)

∣

∣

∣

2
β3 p2

‖

λH0

∣

∣

∣

∣

∣

W·

(

0,
R

S+1
+S−3R−

1

2
,
−R2(2S+3)

(S+1)2
, 3R−S , 2R2

)

(B.11)

∣

∣

————————————————–———————————————
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Appendix C: Results of Y0 integration

Each entry in the following tables, when multiplied by π2ωΓ(4− 2ω) times

the Euclidean-vector expression at the right-hand side of its row of the table,

gives the Y0 portion of the divergent part of the integral of the expression at

the left-hand side divided by the denominator at the bottom. Denominators are

represented in the notation of definitions (3.15), and ǫ ≡ 2− ω .

Table 10
————————————————————————————————————————————————————————————————————————————————————

‖ | | | ‖ ‖kµ –1 –1 – 1
2ǫ + 1

2
– 1

2ǫ + 1
2

0 n∗
µ/n·n

∗
‖ | | | ‖ ‖

——————————————————————————————————————————
‖ | | | ‖ ‖

qµ
1
ǫ + 1 1

ǫ + 1 1
ǫ − 1 1

ǫ − 1 2
ǫ − 2 n∗

µ/n·n
∗

‖ | | | ‖ ‖
——————————————————————————————————————————

‖ | | | ‖ ‖
n/ k ·q 1

ǫ − 1 n/n∗·p/n·n∗
‖ | | | ‖ ‖————————————————————————————————————————————————————————————————————————————————————
‖ | | | ‖ ‖1

2ǫ + 1 1
2ǫ + 1 1

ǫ − 1 1
2ǫ −

1
2

1
ǫ − 1 n/∗ n·p/n·n∗

‖ | | | ‖ ‖
————————————————————————————————————‖ | | | ‖ ‖

n·k q/ 2 6 2
ǫ − 1 2

ǫ + 1 0 – p/‖/8‖ | | | ‖ ‖
————————————————————————————————————
‖ | | | ‖ ‖

2 6 2
ǫ − 3 2

ǫ − 1 0 – p/⊥/8‖ | | | ‖ ‖
————————————————————————————————————————————————————————————————————————————————————

‖ | | | ‖ ‖
1 1

2ǫ + 1
2

n/n∗·p/n·n∗
‖ | | | ‖ ‖————————————————————————————————————
‖ | | | ‖ ‖

n·k k/ 11 9 – p/‖/8‖ | | | ‖ ‖
————————————————————————————————————‖ | | | ‖ ‖

5 3 – p/⊥/8‖ | | | ‖ ‖
————————————————————————————————————————————————————————————————————————————————————

‖ | | | ‖ ‖‖ nq ∧Kk | n Q∧Kk | nqQ∧K | nqQ∧ k ‖nqQ Kk ‖

Table 11
————————————————————————————————————————————————————————————————————————————————————

‖ | | | ‖ ‖1 1
ǫ + 1 1

ǫ + 1 1
ǫ + 1 1

ǫ + 1 2
ǫ 1

‖ | | | ‖ ‖
——————————————————————————————————————————

‖ | | | ‖ ‖
q/ 2

ǫ + 1 6
ǫ + 7 4

ǫ + 2 4
ǫ + 6 8

ǫ p//8‖ | | | ‖ ‖
————————————————————————————————————————————————————————————————————————————————————

‖ | | | ‖ ‖
‖ q ∧Kk | Q∧Kk | qQ∧K | qQ∧ k ‖ qQ Kk ‖

Table 12
————————————————————————————————————————————————————————————————————————

‖ | | ‖ ‖
n/ 1/ǫ 0 2/ǫ (4/ǫ) – 4 n/n∗·p/n·n∗

‖ | | ‖ ‖————————————————————————————————————————————————————————————————————————
‖ | | ‖ ‖
‖ n ∧Kk | nq ∧K | n Q∧ k ‖ n Q Kk ‖
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Appendix D: Computational summary of a typical overlapping integral.

We summarize the main steps in the computation of the double integral,

corresponding to the fifth row and second-last column of Table 1, Section 3(c):

IE [f ] ≡

∫

E

d2ωq

∫

E

d2ωk f , with f =
q/

nqQ∧ k
. (D.1)

Using definitions (3.15), we find that

IE [f ] =

∫

E

∫

E

q/ d2ωq d2ωk

n·q q2 [(p− q)2 +m2] [(p− k − q)2 +m2] k2
. (D.2)

1. First, we perform the exponential parametrization (2.9) with Schwinger pa-

rameters α1, . . . , α7 (α5 = α7 = 0); we then replace these parameters by

the “user-friendly” set {A;λ, β,G, b, h, a}, defined in Eqs. (3.4). Thus (cf.

Eq. (4.2)),

IE [f ] =

∫ ∞

0

dα1 . . .

∫ ∞

0

dα4

∫ ∞

0

dα6 J

[

−n∗·q q/

n2
0

]

α5 → 0
α7 → 0

, (D.3)

=

∫

Φ

∫ ∞

0

A4 dA J

[

−n∗·q q/

n2
0

]

b→ G
h→ a

, (D.4)

with J defined by Eq. (3.3), and

∫

Φ

≡

∫ 1

2

0

dG

∫ 1−G

G

da

∫ 1−a

G

dλ

∫ λ

G

dβ .

2. Next, we perform the 4ω-dimensional momentum integration in J with the

help of formulas (A.4) and (A.8). In this way we obtain (cf. Eq. (4.4)):

IE [f ] = −
π4−2ǫ

n2
0

∫

Φ

∫ ∞

0

dA

[

A2ǫ e−AH

D‖D
1− ǫ
⊥

(

n∗·s s/ +
an/∗

2AD‖

)

]

, (D.5)

with D‖, D⊥, r, s and H being defined in Eqs. (3.7), (3.14) and (A.9). (In

Eq. (D.5), and all subsequent equations, b→ G, h→ a, and ǫ ≡ 2− ω .)
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3. Integration over the infinite (type I) parameter A yields the first simple pole

(cf. Eq. (4.6)):

IE [f ] = −
π4−2ǫ

n2
0

∫

Φ

[

Γ(2ǫ) J0 + Γ(1 + 2ǫ) J1

]

, (D.6)

with J0 and J1 given in Eqs. (4.7). The term with Γ(2ǫ) diverges as ǫ → 0

(ω → 2). Additional subdivergences will arise from integration over Φ.

4. Both J0 and J1 include factors of H−2ǫ. According to Section 4(b), there

are no subdivergences at the zeros of H; therefore, we use the exponential

series for H−2ǫ given in Eq. (4.9) to get (cf. Eq. (5.1)):

IE [f ] = −
π4−2ǫ

n2
0

∫

Φ

[

Γ(2ǫ) Y0 + Γ(1 + 2ǫ) Y1 +O(ǫ)
]

, (D.7)

with Y0 and Y1 shown in Eqs. (5.2). As discussed in Section 5, we require

both the finite and divergent parts of
∫

Φ
Y0, but only the divergent part of

∫

Φ
Y1.

5(a). In this particular example, all subdivergences occur at a = G = 0. (In

general, according to Section 4(b), subdivergences may also occur at a = 1,

G = 0.) To find the divergent part of
∫

Φ
Y1, therefore, we integrate only the

portion of Y1 of least degree in {a,G} (cf. Eqs. (5.3) to (5.7)):

∫

Φ

Y1 =

∫ 1

2

0

dG

∫ 1−G

G

da

∫ 1−a

G

dλ

∫ λ

G

dβ [ aǫ−2 E +O(aǫ−1) ] , (D.8)

=

∫ 1

2

0

dG

∫ 1−G

G

aǫ−2 da

∫ 1

0

dλ

∫ λ

0

dβ E + finite terms , (D.9)

with E being defined in Eq. (5.4). Since E is independent of a and G,

∫

Φ

Y1 =
1

ǫ

∫ 1

0

dλ

∫ λ

0

dβ Eǫ=0 + finite terms . (D.10)
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5(b). Integration over λ and β with the help of Eqs. (B.9), (B.8), and (B.5) yields:

∫

Φ

Y1 =
W

ǫ
·

[

n∗·p p/‖

p2
‖

(

0, −1,
−R

S+1
, 1, R

)

−
n/∗

2
(1, −4, 0, 1, R)

+
n∗·p p/⊥
p2
‖

(

0, 0,
R

S(S+1)
,
−1

S
, 0

)

]

+ finite terms , (D.11)

with W being defined in Eq. (B.12), and R and S in Eqs. (5.5).

6(a). To integrate Y0 over Φ, we first change the integration variables from {a, G,

λ, β} to {U, V, X, τ} via Eqs. (5.11). From Eqs. (3.7) we deduce D‖ = a2U

and D⊥ = a2X , so that the integral of Eq. (5.2a) over Φ becomes (cf. Eq.

(5.13)):

∫

Φ

Y0 =

∫ 1

0

dV

∫ ∞

V −V 2

dU a5

∫ U

V −V 2

dX

∫ X+V 2

V

dτ
n/∗ a−5+2ǫ

2U2X1− ǫ ,

=
n/∗

2

∫ 1

0

dV

∫ ∞

V −V 2

dU a2ǫ
[

Uǫ−1

1 + ǫ
+

(V − V 2)1+ ǫ

(1 + ǫ) ǫ U2
−
V − V 2

ǫ U2− ǫ

]

, (D.12)

with a = (U + V 2 + 1)−1, according to Eqs. (5.11).

6(b). As explained in Section 5(b), we obtain the divergent and finite parts of
∫

Φ
Y0 by replacing a2ǫ with U−2ǫ in those terms whose integrals diverge as

U →∞, and with 1 in the other terms. Thus,

∫

Φ

Y0 =
n/∗

2

∫ 1

0

dV

[

(V − V 2)−ǫ

ǫ(1 + ǫ)
+

(V − V 2)ǫ

ǫ(1 + ǫ)
−

(V − V 2)ǫ

ǫ(1− ǫ)

]

+ O(ǫ) ,

=
n/∗

2

(

1

ǫ
− 1

)

+ O(ǫ) . (D.13)

The divergent part of IE [f ] may be obtained by combining Eqs. (D.7), (D.11),

and (D.13).
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