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Abstract We present a lattice QCD determination of light
quark masses with three sea-quark flavours (Nf = 2 + 1).
Bare quark masses are known from PCAC relations in
the framework of CLS lattice computations with a non-
perturbatively improved Wilson-Clover action and a tree-
level Symanzik improved gauge action. They are fully
non-perturbatively improved, including the recently com-
puted Symanzik counter-term bA − bP. The mass renor-
malisation at hadronic scales and the renormalisation group
running over a wide range of scales are known non-
perturbatively in the Schrödinger functional scheme. In
the present paper we perform detailed extrapolations to
the physical point, obtaining (for the four-flavour theory)
mu/d(2 GeV) = 3.54(12)(9) MeV and ms(2 GeV) =
95.7(2.5)(2.4) MeV in the MS scheme. For the mass ratio
we have ms/mu/d = 27.0(1.0)(0.4). The RGI values in the
three-flavour theory are Mu/d = 4.70(15)(12) MeV and
Ms = 127.0(3.1)(3.2) MeV.

1 Introduction

The lattice regularisation of QCD provides a well-defined
procedure for the determination of the fundamental param-
eters of the theory (i.e. the gauge coupling and the quark
masses) from first principles. The aim of the present work
is the determination of the three lightest quark masses (i.e.
those of the up, down and strange flavours), in a framework
in which the up and down quarks are degenerate and all heav-
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ier flavours (i.e. charm and above), if present in the theory,
would be quenched (valence) degrees of freedom. This is
known as Nf = 2 + 1 lattice QCD. Moreover, QED effects
are ignored.

The three-flavour theory adopted in this paper is presum-
ably sufficient for determining light quark masses due to the
decoupling of heavier quarks [1–4]. Indeed, lattice world
averages of light quark massesmu/d,ms do not show a signif-
icant dependence on the number of flavours at low energies
for Nf ≥ 2 within present-day errors [5]. This also holds for
the more accurately known renormalisation group indepen-
dent ratio mu/d/ms. Recently, heavy-flavour decoupling has
been substantiated also non-perturbatively [6].

This paper is based on large-scale Nf = 2 + 1 flavour
ensembles produced by the Coordinated Lattice Simula-
tion (CLS) effort [7,8]. The simulations employ a tree-level
Symanzik-improved gauge action and a non-perturbatively
improved Wilson fermion action; see references [9–12]. The
sea quark content is made of a doublet of light degenerate
quarks mq,1 = mq,2, plus a heavier one mq,3. At the physical
point mq,1,mq,2 = mu/d ≡ 1

2 (mu + md) and mq,3 = ms.
The bare quark masses produced by CLS [7,8] need to

be combined with renormalisation and improvement coeffi-
cients in order to obtain renormalised quantities with O(a2)

discretisation effects. We use ALPHA collaboration results
for the quark mass renormalisation and Renormalisation
Group (RG) running [13] in the Schrödinger functional
(SF) scheme. Symanzik improvement is implemented for
the removal of discretisation effects from correlation func-
tions, leaving us with O(a2) uncertainties in the bulk and
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O(g4
0a) ones at the time boundaries. We find that correla-

tion functions extrapolations to the continuum limit are com-
patible with an O(a2) overall behaviour. The counter-terms
required for the improvement of the axial current are known
from refs. [14–16]. The present work has combined all these
elements, obtaining estimates of the up/down and strange
quark masses, as well as their ratio. These are expressed as
renormalisation scheme-independent and scale-independent
quantities, known as Renormalisation Group Invariant (RGI)
quark masses. Of course we also give the same results in the
MS scheme at scale μ = 2 GeV.

The bare dimensionless parameters of the lattice theory
are the strong coupling g2

0 ≡ 6/β and the quark masses
expressed in lattice units amq,1 = amq,2 and amq,3, with
a the lattice spacing. They can be varied freely in simula-
tions. Having chosen a specific discretisation of the QCD
action, its parameters must be calibrated so that three “input”
hadronic quantities (one for each bare mass parameter and
one for the lattice spacing) attain their physical values.
Other physical quantities can subsequently be predicted.
Such input quantities are typically very well-known from
experiment, but they also need to be precisely computed on
the lattice; examples are ground state hadron masses and
decay constants (mπ , fπ ,mK, fK, . . .). Since the majority
of numerical large-scale simulations do not yet include the
small strong-isospin breaking and electromagnetic effects,
the physical input quantities have to be corrected accord-
ingly. Following Ref. [8], we use the values of Ref. [17]

mphys
π = 134.8(3) MeV, mphys

K = 494.2(3) MeV,

f phys
π = 130.4(2) MeV, f phys

K = 156.2(7) MeV. (1.1)

The calibration of the lattice spacing, referred to as scale
setting, usually singles out a dimensionful quantity as refer-
ence scale fref [MeV]. Its dimensionless counterpart a fref

is computed on the lattice for fixed values of the bare
coupling at the point where the physical spectrum, such
as [amπ/(a fref)]g2

0
≡ mπ/ fref , is reproduced in the bare

parameter space (g2
0, amq,i ) of the lattice theory. In this

way, the lattice spacings a(g2
0) = [a fref ]g2

0
/ fref , and con-

sequently all computed observables, are obtained in physical
units. When simulations approach the point of physical mass
parameters while the lattice spacing is lowered, computa-
tional demands rapidly increase. In the present work results
are obtained at non-zero lattice spacings and at quark masses
which correspond to unphysical meson and decay constant
values. Thus our data need to be extrapolated to the contin-
uum limit and extra/interpolated to the physical quark mass
values. This is achieved with a joint chiral and continuum
extrapolation. The present work pays particular attention
to these extrapolations and interpolations and the ensuing
sources of systematic error.

So far we did not specify the reference scale fref . In
Ref. [8] the three-flavor symmetric combination f phys

πK =
2
3 ( f phys

K + 1
2 f phys

π ) = 147.6(5) MeV, (obtained from the phys-
ical input of Eqs. (1.1)) was used for calibration, and for the
determination of the hadronic gradient flow scale t0 [18]. 1

An artificial (theoretical) hadronic scale with mass dimen-
sion −2, t0 is precisely computable with small systematic
effects [19,20], and thus well-suited as intermediate scale on
the lattice. Its physical value determined from CLS ensem-
bles [8] reads

√
8t phys

0 = 0.415(4)(2) fm, (1.2)

at fixed

φ4 ≡
[
8t0(m

2
K + 1

2m
2
π )

]phys = 1.119(21), (1.3)

where the first error of
√

8t phys
0 is statistical and the second

systematic.
The theoretical framework of our work is explained

in Sect. 2. The definitions of bare current quark masses,
their renormalisation parameters and the O(a)-improvement
counter-terms are provided in standard ALPHA-collaboration
fashion. There is also a fairly detailed exposition of how
the so-called “chiral trajectory” (a line of constant physics –
LCP) is traced by Nf = 2 + 1 CLS simulations. In Sect. 3
we outline the computations leading to renormalised cur-
rent quark masses as functions of the pion squared mass.
These are computed in the SF renormalisation scheme at a
hadronic (low energy) scale. In Sect. 4 we perform the com-
bined chiral and continuum limit extrapolations in order to
obtain estimates of the physical up/down and strange quark
masses. Details of the ansätze we have used are provided in
Appendix A and in Appendix B. Our final results are gathered
in Sect. 5. Preliminary results have been presented in [21].

2 Theoretical framework

We review our strategy for computing light quark masses
with improved Wilson fermions. In what follows equations
are often written for a general number of flavours Nf . In
practice Nf = 2 + 1. Flavours 1 and 2 indicate the lighter
fermion fields, which are degenerate; at the physical point
their mass is the average up/down quark mass. Flavour 3
stands for the heavier fermion, corresponding to the strange
quark at the physical point.

1 The gradient flow scale t0 is defined by the implicit relation
{t2〈E(t)〉}t=t0 = 0.3, for the finite Yang–Mills energy density E(t)
at flow time t ; see Section 6 of Ref. [7].
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2.1 Quark masses, renormalisation, and improvement

The starting point is the definition of bare correlation func-
tions on a lattice with spacing is a and physical extension
L3 × T :

f i jP (x0, y0) ≡ − a6

L3

∑
x,y

〈Pi j (x0, x)P ji (y0, y)〉,

f i jA (x0, y0) ≡ − a6

L3

∑
x,y

〈Ai j
0 (x0, x)P ji (y0, y)〉, (2.1)

where the pseudoscalar density and axial current are

Pi j (x) ≡ ψ̄ i (x)γ5ψ
j (x) , (2.2)

Ai j
0 (x) ≡ ψ̄ i (x)γ0γ5ψ

j (x). (2.3)

The indices i, j = 1, 2, 3 label quark flavours, which are
always distinct (i �= j).

The bare current (or PCAC) quark mass is defined via the
axial Ward identity at zero momentum and a plateau average
between suitable initial and final time-slices ti < tf ,

mi j ≡ a

tf − ti + a

×
tf∑

x0=ti

[
1
2 (∂0 + ∂

∗
0) f i jA0

+ cAa∂0∂
∗
0 f

i j
P

]
(x0, y0)

2 f i jP (x0, y0)
,

(2.4)

with the source P ji positioned either at y0 = a or y0 =
T − a.2 The mass-independent improvement coefficient cA

is determined non-perturbatively [14]. The average of two
renormalised quark masses is then expressed in terms of the
PCAC mass mi j as follows:

miR + m jR

2
≡ mi jR = ZA(g2

0)

ZP(g2
0, aμ)

mi j

×
[
1 + (bA − bP)amq,i j + (b̄A − b̄P)aTr[Mq]

]

+ O(a2), (2.5)

where Mq ≡ diag(mq,1,mq,2, · · · ,mq,Nf ) is the matrix of
the sea quark subtracted masses, characteristic of Wilson
fermions. Given the bare mass parameter m0,i ≡ (1/κi −
8)/(2a), with κi the Wilson hopping parameter, these are
defined as

mq,i = 1/(2aκi ) − 1/(2aκcr) ≡ m0,i − mcr (2.6)

2 In our simulations we average correlation functions with the source
at y0 = a and (time-reversed) correlation functions with the source at
y0 = T − a. Since bare quantities are computed on lattices with open
boundary conditions in time, we do not use translation invariance for
the source position.

where mcr ∼ 1/a is an additive mass renormalisation aris-
ing from the loss of chiral symmetry by the regularisation
and κcr is the critical (chiral) point. The average of two sub-
tracted masses is then denoted by mq,i j ≡ 1

2 (mq,i +mq, j ) in
Eq. (2.5).

The axial current normalisation ZA(g2
0) is scale-indepen-

dent, whereas the current quark mass renormalisation param-
eter 1/ZP(g2

0, aμ) depends on the renormalisation scale μ.
The renormalisation condition imposed on the pseudoscalar
density operator P ji defines the renormalisation scheme for
the quark masses. The schemes used in the present work (SF
and MS) are mass-independent. Pertinent details will be dis-
cussed in latter sections.

The improvement coefficients bA − bP and b̄A − b̄P of
Eq. (2.5) cancel O(a) mass-dependent cutoff effects; they
are functions of the bare gauge coupling g2

0. The correspond-
ing counter-terms of Eq. (2.5) contain the subtracted masses
amq,i j and Tr[aMq], which require knowledge on the critical
mass mcr. This can be avoided by substituting these masses
with current quark masses and their sum. Their relationship
is [22],

mi j = Z

[
mq,i j + (rm − 1)

Tr[Mq]
Nf

]
+ O(a), (2.7)

where Z(g2
0) ≡ ZP/(ZSZA) and rm(g2

0) are finite normalisa-
tions. ZS is the renormalisation parameter of the non-singlet
scalar density Si j ≡ ψ̄ iψ j and rm/ZS is the renormalisa-
tion parameter of the singlet scalar density, which indirectly
defines rm; cf. Ref. [22]. In the above we neglect O(a) terms,
as they only contribute to O(a2) in the b-counter-terms of
Eq. (2.5). Substituting amq,i j → ami j in the latter expres-
sion, we obtain

mi jR(μhad) = ZA(g2
0)

ZP(g2
0, aμ)

mi j

[
1 + (b̃A − b̃P)ami j

+
{
(b̃A − b̃P)

1 − rm

rm
+ (b̄A − b̄P)

Nf

Zrm

}
aMsum

Nf

]

+ O(a2), (2.8)

where we define

b̃A − b̃P ≡ bA − bP

Z
,

Msum ≡ m12 + m23 + · · · + m(Nf−1)Nf + mNf 1

= ZrmTr[Mq] + O(a). (2.9)

To leading order in perturbation theory the difference bA−bP

is O(g2
0) and equals b̃A − b̃P. However, non-perturbative

estimates are likely to differ significantly, especially in the
range of couplings g0 considered here (1.56 � g2

0 � 1.76).
We will employ non-perturbative estimates of bA − bP

and Z ; cf. Ref. [23]. The term multiplying Msum contains
(1 − rm)/rm and (b̄A − b̄P). In perturbation theory rm =
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1 + 0.001158CF Nf g4
0 [24,25], (1 − rm)/rm ∼ O(g4

0) and
(b̄A − b̄P ) ∼ O(g4

0) [22]. A first non-perturbative study of
the coefficients b̄A and b̄P produced noisy results with 100%
errors [26]. Given the lack of robust non-perturbative results
and the fact that the term in curly brackets is O(g4

0) in per-
turbation theory, it will be dropped in what follows.

Once the quark mass averages m12R and m13R are com-
puted say, in the SF scheme at a scale μhad, the three renor-
malised quark masses can be determined. Since we are work-
ing in the isospin limit (mq,1 = mq,2), the lighter quark
mass is given by m12R. Then one can isolate m13R from the
ratio m13R/m12R in which, as seen from Eq. (2.8), the Msum

counter-term cancels out.
The ALPHA Collaboration is devoting considerable

resources to the determination of the non-perturbative evo-
lution of the renormalised QCD parameters (strong coupling
and quark masses) between a hadronic and a perturbative
energy scale (μhad ≤ μ ≤ μpt). Quark masses are renor-
malised at μhad ∼ O(ΛQCD) and evolved to μpt ∼ O(MW)

[13,27–36] in the SF scheme [37,38]. Both renormalisation
and RG-running are done non-perturbatively. At μpt pertur-
bation theory is believed to be reliably controlled and we may
safely switch to the conventionally preferred, albeit inher-
ently perturbative MS scheme.

We will be quoting results also for the scheme- and scale-
independent renormalisation group invariant (RGI) quark
masses M12 and M13 (corresponding to the current masses
m12 and m13) as well as the physical RGI quark masses Mu/d

and Ms derived from them. They are conventionally defined
in massless schemes [39] by

Mi ≡miR(μ)
[
2b0g

2
R(μ)

]− d0
2b0

× exp

{
−

∫ gR(μ)

0
dg

[
τ(g)

β(g)
− d0

b0g

]}
, (2.10)

for each quark flavour i . In our opinion, Mi is better suited
for comparisons either to experimental results or other the-
oretical determinations. Equation (2.10) is formally exact
and independent of perturbation theory as long as the renor-
malised parameters (gR,miR) and the continuum renormali-
sation group functions (i.e. the Callan–Symanzik β-function
and the mass anomalous dimension τ ) are known non-
perturbatively with satisfacory accuracy [13,33–36]. Their
computation in the SF scheme with Nf = 3 massless quarks
has been carried out in Ref. [13].

Our determination of the renormalised quark masses is
based on the bare current mass averages mi jR; cf. Eqs. (2.5)
and (2.8). The analogue of these expressions for the RGI
mass averages is given by

Mi j ≡ 1

2
(Mi + Mj ) = M

mR(μhad)
mi jR(μhad). (2.11)

Note that the ratio M/mR(μhad) is flavour-independent; cf.
Eq. (2.10). In Ref. [13] it has been computed in the SF scheme
for the Nf = 3 massless flavours at μhad = 233(8) MeV.

2.2 The chiral trajectory and scale setting

Our aim is to stay on a line of constant Physics within system-
atic uncertainties of O(a2), as we vary the bare parameters
of the theory (i.e. the gauge coupling g0 and the Nf = 2 + 1
quark masses). In particular, if the improved bare gauge cou-
pling

g̃2
0 ≡ g2

0

(
1 + 1

Nf
bg(g

2
0)aTr[Mq]

)
(2.12)

is kept fixed in the simulations, so does the lattice spacing,
with any fluctuations being attributed to O(a2)-effects. The
problem is that bg(g2

0) is only known to one-loop order in per-
turbation theory [40,41]; bPT

g = 0.012Nfg2
0. Thus, following

refs. [42,43], we vary the quark masses at fixed g2
0, ensuring

that the trace of the quark mass matrix remains constant:

Tr[Mq] = 2mq,1 + mq,3 = const. (2.13)

In this way the improved bare gauge coupling g̃2
0 is kept

constant at fixed β for any bg .3

This requirement leads to an unusual but unambiguous
approach to the physical point, shown in the (M12, M13)-
plane in the left panel of Fig. 1. Initially, one starts at the
symmetric point (amq,1 = amq,2 = amq,3 = amsym

q ) for
some fixed coupling β = 6/g2

0, and tunes the mass parameter
of the simulation in such a way that Tr[Mq] = Tr[Mq]phys to a
good approximation.4 This is achieved by varyingamsym

q until
(m2

K + 1
2m

2
π )/ fref takes its physical value. Since it is propor-

tional to Tr[Mq] at leading order in chiral perturbation theory
(χPT), it suffices as tuning observable. In subsequent simu-
lations, one successively lifts the mass-degeneracy towards
the physical point by decreasing the light quark masses while
maintaining the constant-trace condition. By doing so the
physical strange quark mass is approached from below as in
Fig. 1 (left panel). We call this procedure “the determination
of the chiral trajectory”.

Note that the improved renormalised quark mass matrix
MR is given by [22]

Tr[MR] = Zmrm

×
[
(1 + ad̄mTr[Mq])Tr[Mq] + admTr[M2

q ]
]

+ O(a2).

(2.14)

3 In Ref. [44] (cf. Sect. 5.3.2) it was estimated that when, in some
ensembles, Tr[Mq] is not constant, the resulting effect on the shift of
the lattice spacing is about 6 per mille. This estimate was based on the
1-loop value of bg , bA − bP and Z .
4 In practise one only tunes the bare quark mass am0, since amcr is
unknown a priori, but constant at fixed β.
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0

Mu/d

Msym

Mphys
13

3
2Msym

0 Mu/d Msym

M13

M12

M
ij

M12

0

Mu/d

Msym

Mphys
13

3
2Msym

0 Mu/d Msym

φ∗
2 φsym

2

m
ij

√ 8t
0

φ2

β = 3.40 : m12
√
8t0[φ4]

β = 3.46 : m12
√
8t0[φ4]

β = 3.55 : m12
√
8t0[φ4]

β = 3.70 : m12
√
8t0[φ4]

β = 3.40 : m13
√
8t0[φ4]

β = 3.46 : m13
√
8t0[φ4]

β = 3.55 : m13
√
8t0[φ4]

β = 3.70 : m13
√
8t0[φ4]

β = 3.40 : m12
√
8t0[φ̃4]

β = 3.46 : m12
√
8t0[φ̃4]

β = 3.55 : m12
√
8t0[φ̃4]

β = 3.70 : m12
√
8t0[φ̃4]

β = 3.40 : m13
√
8t0[φ̃4]

β = 3.46 : m13
√
8t0[φ̃4]

β = 3.55 : m13
√
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√
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0.00
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Fig. 1 The left panel shows an idealisation of the chiral trajectory for
renormalised RGI current quark masses M12 and M13 in the continuum.
The symmetric point (gray box) is defined by the trace of the renor-
malised RGI quark mass matrix, M12 = M13 = Msym = 1

3 Tr[M], and
the physical point is indicated by red circles, where Mphys

12 = Mu/d and

Mphys
13 = 1

2 (Mu/d +Ms). The right panel shows our data φi j ≡ √
8t0mi j

versus φ2 ≡ 8t0m2
π ∝ m12. Coloured (gray) points correspond to mass-

shifted (-unshifted) points in parameter space, cf. the discussion in the
text

Since the dm-counter-term is proportional to squared bare
masses, a constant Tr[Mq] does not correspond to a constant
Tr[MR]; the latter requirement is violated by O(a) effects.
This is an undesirable feature, as it implies that the chiral
trajectory is not a line of constant-physics. In practice these
violations have been monitored in Ref. [8] (Fig. 4, lowest
lhs panel), where Tr[MR] has been computed, at constant
Tr[Mq ], from the current quark masses with 1-loop pertur-
bative Symanzik b-coefficients. The violations appear to be
bigger than what one would expect from O(a) effects.

These considerations have led the authors of Ref. [8] to
redefine the chiral trajectory in terms of φ4 = const., where

φ4 ≡ 8 t0
(
m2

K + 1

2
m2

π

)
, (2.15)

and t0 is the gluonic quantity of the Wilson flow [18]; it
has mass dimension −2. Here mπ and mK are the lightest
and strange pseudoscalar mesons respectively; at the phys-
ical point these are the pion mphys

π and kaon mphys
K . Keeping

φ4 constant is a Symanzik-improved constant physics con-
dition. But φ4 is proportional to the sum of the three quark
masses only in leading-order (LO) chiral perturbation theory
(χPT). Thus, the improved bare coupling g̃2

0 now suffers
from O(amqTr[Mq ]) discretisation effects due to higher-
order χPT contributions. In practice, these turn out to be
small, as can be seen from Ref. [8] (Fig. 4, lowest rhs panel),
where Tr[MR] has been computed, at constant φ4. The vio-
lations appear to be at most 1% and thus the variation of the
O(a) bg-term in g̃2

0 can be ignored.

Obviously, one must also ensure, through careful tuning,
that the chosen φ4 = const. trajectory passes through the
point corresponding to physical up/down and strange renor-
malised masses (i.e. quark masses that correspond to the
physical pseudoscalar mesons mphys

π and mphys
K ). This is done

by driving φ4 to its physical value φ
phys
4 = 8t0[(mphys

K )2 +
(mphys

π )2/2] through mass shifts [8]. The aim is to express the
computed quantities of interest (in our case the quark masses)
as functions of

φ2 ≡ 8 t0 m
2
π , (2.16)

with φ4 held fixed at φ
phys
4 , and eventually extrapolate them

to φ
phys
2 = 8t0(m

phys
π )2.

The determination of the redefined chiral trajectory is not
straightforward. One needs to know the value ofφphys

4 . The lat-
ter is obtained from t0 and the pseudoscalar masses (corrected
for isospin-breaking effects) quoted in Eq. (1.1). But since
the value of t0 is only approximately known, one starts with
an initial guess t̃0, which provides an initial guess φ̃4. At each
β, the symmetric point with degenerate masses (κ1 = κ3) is
tuned so that the computed t0/a2, amπ and amK combine as
in Eq. (2.15) to give a value close to φ̃4. The other ensembles
at the same β have been obtained by decreasing the degener-
ate (lightest) quark mass mq,1 = mq,2, while increasing the
heavier mass mq,3 so as to keep Tr[Mq] constant. Thus they
do not correspond exactly to the same φ̃4. Small corrections
of the subtracted bare quark masses (or hopping parameters)
are introduced, using a Taylor expansion discussed in Sect.
IV of Ref. [8], in order to shift φ4 to the reference value φ̃4

and correct analogously the measured PCAC quark masses
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and other quantities of interest such as the decay constants.
The procedure is repeated for each β and the same value φ̃4

at the starting symmetric point.
All shifted quantities are now known at φ̃4 as functions of

φ2. Defining the combination of decay constants

fπK ≡ 2

3

(
fK + fπ

2

)
, (2.17)

the dimensionless
√

8t̃0 fπK is computed for all φ2 and
extrapolated to φ̃2 = 8t̃0(m

phys
π )2. The extrapolated

√
t̃0 fπK ,

combined with the experimentally known f phys
πK , gives a bet-

ter estimate of t̃0, and thus of φ̃4. As described in Sect. V
of Ref. [8], this procedure can be recursively repeated and
eventually the physical value of t0 is fixed through f phys

πK ; the
value in Eq. (1.2) from Ref. [8] leads to

φ
phys
4 = 1.119(21), (2.18)

φ
phys
2 = 0.0804(8). (2.19)

The main message is that once PCAC quark masses are
shifted onto the chiral trajectory defined by the constant φphys

4 ,
they only depend on a single variable, namely φ2.

In analogy to the definitions (2.15) and (2.16), we also
define rescaled dimensionless bare current quark masses and
their renormalised counterparts at scale μhad

φi j ≡ √
8 t0 mi j , φi jR(μ) ≡ √

8 t0 mi jR(μ). (2.20)

The redefined chiral trajectory is shown in Fig. 1 (right
panel), where the light-light and heavy-light dimensionless
mass averages (φ12R and φ13R respectively) are plotted as
functions of φ2. Extrapolating in φ2 to φ

phys
2 amounts to the

simultaneous approach of the light and heavy quark masses to
the corresponding physical up/down and strange values. All
other physical quantities are then also at the physical point.
Section 4 is dedicated to these extrapolations.

3 Quark mass computations

We base our determination of quark masses on the CLS
ensembles for Nf = 2 + 1 QCD, listed in Table 1. The bare
gauge action is the Lüscher–Weisz one, with tree-level coef-
ficients [11]. The bare quark action is the Wilson, Symanzik-
improved [10] one. The Clover term coefficient csw has been
tuned non-perturbatively in Ref. [12]. Boundary conditions
are periodic in space and open in time, as detailed in Ref. [45].

For details on the generation of these ensembles see Ref.
[7]. As seen in Table 1, results have been obtained at four
lattice spacings in the range 0.05 � a/fm � 0.086. For each
lattice coupling β = 6/g2

0, gauge field ensembles have been
generated for a few5 values of the Wilson hopping param-

5 We note in passing that for the ensemble with β = 3.46 we only have
results for degenerate quark masses.

eters κ1 = κ2 and κ3. The light pseudoscalar meson (pion)
varies between 200 and 420 MeV. The heaviest value corre-
sponds to the symmetric point where the three quark masses
and the pseudoscalar mesons are degenerate. The strange
meson (kaon) varies between 420 and 470 MeV. Given that
our lightest pseudoscalars are relatively heavy (200 MeV),
the chiral limit ought to be taken with care.

The bare correlation functions f i jP , f i jA of Eqs. (2.1) are
estimated with stochastic sources located on time slice y0,
with either y0 = a or y0 = T − a. From them the cur-
rent quark masses m12,m13 are computed as in Eq. (2.4),
with the O(a)-improvement coefficient cA determined non-
perturbatively in Ref. [14]. The exact procedure to select the
plateaux range in the presence of open boundary conditions
has been explained in Refs. [7,44,46].

Having obtained the bare current quark massesm12,m13 at
four values of the coupling g2

0, we construct the renormalised
dimensionless quantities m12R(μhad) and m13R(μhad); cf.
Eq. (2.8). For this we need the ratio ZA(g2

0)/ZP(g2
0, μhad)

and the Symanzik b-counter-terms. Results for the axial
current normalisation ZA(g2

0) are available in Ref. [47],
from a separate computation based on the chirally rotated
Schrödinger Functional setup of Refs. [48–50]. The com-
putation of ZP(g2

0, μhad) in the SF scheme, for μhad =
233(8) MeV, was carried out in Ref. [13] for a theory with
Nf = 3 massless quarks and the lattice action of the present
work. The ZP results, shown in Eqs. (5.2) and (5.3) of Ref.
[13], are in a range of inverse gauge couplings which covers
the β ∈ [3.40, 3.85] interval of the large volume simulations
of Ref. [8], from which our bare dimensionless PCAC masses
are extracted.

Besides the ratio ZA/ZP, we also need the improvement
coefficient (b̃A−b̃P), which multiplies the O(a) counter-term
proportional to ami j in Eq. (2.8). To leading order in pertur-
bation theory b̃A − b̃P = −0.0012g2

0. Non-perturbative esti-
mates based on a coordinate-space renormalisation scheme
have been provided for Nf = 2 + 1 lattice QCD in Ref. [26].
More accurate non-perturbative results have been subse-
quently obtained by the ALPHA Collaboration, using suit-
able combinations of valence current quark masses, mea-
sured on ensembles with Nf = 3 nearly-chiral sea quark
masses in small physical volumes [16,23]. Also these simu-
lations have been carried out in an inverse coupling range that
spans the interval β ∈ [3.40, 3.85] of the large volume CLS
results of Ref. [8]. They are expressed in the form of ratios
RAP and RZ, from which (bA −bP) and Z are estimated; thus
(b̃A − b̃P) = RAP/RZ. In Ref. [23], results are quoted for
two values of constant Physics, dubbed LCP-0 and LPC-1. In
LCP-0, RAP and RZ are obtained with all masses in the chiral
limit. In LCP-1, one valence flavour is in the chiral limit (so
it is equal to the sea quark mass), while a second one is held
fixed to a non-zero value. The physical volumes are always
kept fixed. In Ref. [23], Eqs. (5.1), (5.2) and (5.3) refer to
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Table 1 Details of CLS
configuration ensembles,
generated as described in
Ref. [7]. In the last column,
ensembles are labelled by a
letter, denoting the lattice
geometry, a first digit for the
coupling and a further two digits
for the quark mass combination

β
a

fm
L/a T/L κ1 κ3

mπ

MeV

mK

MeV
mπ L Label

3.40 0.086 32 3 0.13675962 κ1 420 420 5.8 H101

32 3 0.136865 0.136549339 350 440 4.9 H102

32 3 0.136970 0.136340790 280 460 3.9 H105

48 2 0.137030 0.136222041 220 470 4.7 C101

3.46 0.076 32 3 0.13688848 κ1 420 420 5.2 H400

3.55 0.064 32 4 0.137000 κ1 420 420 4.3 H200

48 8/3 0.137000 κ1 420 420 6.5 N202

48 8/3 0.137080 0.136840284 340 440 5.4 N203

48 8/3 0.137140 0.136720860 280 460 4.4 N200

64 2 0.137200 0.136601748 200 480 4.2 D200

3.70 0.050 48 8/3 0.137000 κ1 420 420 5.1 N300

64 3 0.137123 0.1367546608 260 470 4.1 J303

LCP-0 results, while those in Eqs. (5.1), (5.4) and (5.5) refer
to LCP-1; differences are due to O(a) discretisation effects.

We have opted to use the LCP-0 values of b̃A − b̃P in the
present work. The covariance matrices of the fit parameters
of RAP as well as those of RZ are provided in Ref. [23]. We
assume that the covariance matrix between fit parameters of
RAP and RZ is nil. This is justified a posteriori, by repeat-
ing the analysis with LCP-1 values, as a means to estimate
the magnitude of systematic errors arising from our choice.
Moreover, we have also compared our LCP-0 results to those
obtained from different fit functions, used in the preliminary
analysis of Ref. [16], as well as from the perturbative esti-
mate b̃A − b̃P. We find that the contribution arising from such
variations is below ∼ 1% of the total error on renormalised
quark masses at the physical point.

As discussed in Sect. 2, the complicated Symanzik
counter-term in curly brackets, multiplyingaMsum in Eq. (2.8),
is O(g4

0a) in perturbation theory. As there are no robust non-
perturbative estimates of its magnitude at present, we will
drop this term, assuming that the O(g4

0a) effects it would
remove are subdominant compared to O(a2) uncertainties.

As already explained in Sect. 2.2, our analysis is based on
the rescaled dimensionless quantities defined in Eqs. (2.15),
(2.16), and (2.20). At each β value and for each gauge field
configuration, we have results for t0/a2, am12 and am13 from
Refs. [7,8], from which φ12 and φ13 are obtained. The error
analysis is carried out using the Gamma method approach
[51–54] and automatic differentiation for error propagation,
using the library described in Ref. [55]. This takes into
account all the existing errors and correlations in the data
and ancillary quantities (renormalisation constants, improve-
ment coefficients, etc.), and estimates autocorrelation func-
tions (including exponential tails) to rescale the uncertainties
correspondingly. Following [8], the estimate of the exponen-
tial autocorrelation times τexp used in the analysis is the one
quoted in [7], viz.,

τexp = 14(3)
t0
a2 . (3.1)

We have checked that without attaching exponential tails sta-
tistical errors are 40–70% smaller in our final results. The
full analysis has been crosschecked by an independent code
based on (appropriately) binned jackknife error estimation.
Note that one of the strengths of data analysis based on the
Gamma-method is that each Monte Carlo ensemble is treated
independently, and the final statistical uncertainty is deter-
mined as a sum in quadratures of the statistical fluctuations
for each ensemble. This allows to trace back which frac-
tion of the statistical variance comes from each ensemble or
ancillary quantities, such as renormalisation constants (see
References 5–7 in [55]). This feature will be exploited in the
error budgets provided below.

The starting values for φ12R and φ13R on which the analy-
sis is based are shown in Table 2, where renormalised quark
masses are in the SF scheme at a scale μhad = 233(8) MeV.
By suitably fitting these quantities as functions of φ2, and
extrapolating to φ

phys
2 , we obtain the results for physical

up/down and strange quarks at scale μhad, as detailed in
Sect. 4. Only then do we convert them to the RGI masses, by
multiplying them with the RG-running factor [13]

M

mR(μhad)
= 0.9148(88), (3.2)

with the error added in quadrature; cf. Eq. (2.11).
Before presenting our chiral fits in Sect. 4, we conclude

this section with a comment on finite-volume effects. Current
quark masses are not expected to be affected by finite-volume
corrections, since their values are fixed by Ward identities. On
the other hand, meson masses, decay constants, and the ratio
t0/a2 are expected to suffer from such effects. This can be
directly checked in the ensembles H200 and N202, obtained
at β = 3.55 with degenerate masses and corresponding to
volumes of about 2 fm and 3 fm respectively. A glance at the
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Table 2 Rescaled
dimensionless current quark
masses φ12 and φ13,
renormalised in the SF scheme
at μhad, for each CLS ensemble
used in our analysis. Note that
for simulation points H102,
H105, C101 more than one
independent ensembles exist,
which have been run with
different algorithmic setups; we
keep those separate before fits.
All points have been shifted to
the target chiral trajectory as
described in the text, and the
quoted errors contain both
statistical uncertainties and the
contribution from
renormalisation and the mass
shift

β Ensemble t0/a2 φ2 φ12 φ13 φ12/φ13

3.40 H101 2.857(13) 0.747(18) 0.0917(26) 0.0917(26) 1

H102r001 2.877(19) 0.547(20) 0.0673(27) 0.1047(28) 0.643(10)

H102r002 2.883(18) 0.549(19) 0.0667(28) 0.1039(29) 0.642(10)

H105 2.886(11) 0.346(20) 0.0416(25) 0.1167(27) 0.357(15)

H105r005 2.896(38) 0.355(20) 0.0420(33) 0.1160(34) 0.362(19)

C101 2.900(19) 0.238(24) 0.0279(31) 0.1236(27) 0.226(21)

C101r014 2.899(14) 0.233(20) 0.0273(26) 0.1223(30) 0.222(17)

3.46 H400 3.656(20) 0.747(18) 0.0923(28) 0.0923(28) 1

3.55 N202 5.161(23) 0.747(18) 0.0978(26) 0.0978(26) 1

N203 5.138(16) 0.526(19) 0.0684(27) 0.1128(26) 0.606(10)

N200 5.155(16) 0.356(18) 0.0455(25) 0.1232(25) 0.369(13)

D200 5.171(16) 0.189(20) 0.0237(27) 0.1232(29) 0.176(17)

3.70 N300r002 8.592(41) 0.747(18) 0.0988(29) 0.0988(30) 1

J303 8.628(40) 0.278(20) 0.0364(31) 0.1326(39) 0.274(19)

relevant entries of Table II of Ref. [8] shows that quark masses
do not change as the volume is varied, while meson masses
and decay constants vary by about 2.5%, which corresponds
to differences of about 2−3.5σ .6 Standard SU(3) χPT NLO
formulae are available for masses and decay constants [56];
t0/a2 does not suffer from finite-volume effects up to NNLO
corrections [20]. In particular, the χPT-predicted effects for
meson masses are below the percent level, since the lattice
spatial size in units of the inverse lightest pseudoscalar meson
mass is in the range [3.9, 5.8]. On the other hand, by directly
comparing the values in Table 2 obtained at the same lat-
tice spacing and sea quark masses but different volumes (cf.
Ref. [44]), it is seen that the finite-volume effects on t0/a2

and m2
π are comparable and come with opposite signs. As

a result, they largely cancel in φ2, the variable in which
chiral fits are performed. Decay constants, which generally
suffer from larger finite-volume effects than meson masses,
enter our computation indirectly only – firstly through NLO
terms in chiral fits, where the finite-volume correction is sub-
leading, and secondly through the physical value of

√
8t0

determined in [8], where these corrections have already been
taken into account. We therefore expect that the quantities
most affected by finite-volume effects are the rescaled cur-
rent quark masses φ12, φ13, due to the presence of

√
8t0/a in

their definition. As mentioned above, these are much smaller
than our statistical uncertainty, cf. Table 2. In the rest of
our analysis we will therefore neglect this source of uncer-
tainty.

6 The ensemble H200 is only used in this context in the present work.
Since at β = 3.55 we have results at two larger volumes (N202/203/200
and D200), we do not use H200 results in our analysis.

4 Extrapolations to physical quark masses

Having obtained the dimensionless renormalised current
mass combinations φ12R and φ13R at each β as functions
of φ2, we now proceed with the determination of the physi-
cal values φud and φs. This is done in fairly standard fashion
through fits and extrapolations. To begin with, we note that
the two lighter degenerate quark masses are simply given by
φ12, whereas the heavier strange one is obtained from the
difference7

φh = 2 φ13 − φ12. (4.1)

It is then possible to perform simultaneous fits of φ12 and
φh as functions of φ2 and the lattice spacing, subsequently
extrapolating the results to φ

phys
2 of Eq. (2.19) and the contin-

uum limit, so as to obtain φud and φs. Variants of this method
consist in simultaneous fits and extrapolations of either φ13

or φ12 on one hand and their ratio φ12/φ13 on the other. These
turn out to be advantageous, as does a certain combination of
ratios involving φ12, φ13, φ2, and φ4, for reasons discussed
below. We recall in passing that in the ratio φ12/φ13 all renor-
malisation factors cancel.

We use fits based in chiral perturbation theory (χPT fits)
which are expected to model the data well close to the chiral
limit φ2 = 0. Recall that we have performed Nf = 2 + 1
simulations on a chiral trajectory; starting from a symmet-
ric point where all quark masses are degenerate, we increase
the mass of the heavy quark while decreasing that of the light
one, until the physical point is reached. Since both masses are
varying, it is natural to use SU(3)L ⊗SU(3)R chiral perturba-

7 Henceforth all quark masses will be renormalised. In order to simplify
the notation, we shall drop the subscript R from φ12R, φ13R in this
section, in Appendix A and in Appendix B.
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tion theory, which bears explicit dependence on both masses.
This works when all three quark masses in the simulations
are light enough for say, NLO χPT with three flavours to pro-
vide reliable fits. In Ref. [57] it is stated that this is the case
for their data, obtained with domain wall fermions, as long
as the average quark mass satisfies amavg < 0.01. As seen in
Table 2 of Ref. [8], our PCAC dimensionless quark masses
am12 and am13 also satisfy this empirical constraint. The real
test comes about a posteriori, when the SU(3)L ⊗ SU(3)R

NLO ansätze are seen to fit our results well.
In Appendix A and Appendix B, ansätze for NLO χPT and

discretisation effects are adapted to our specific parametri-
sation in terms of φ2 and φ4. For the current quark masses
these are

φ12 = φ2

[
p1 + p2φ2 + p3K

(
L2 − 1

3
Lη

)]

+ a2

8t0
[C0 + C1φ2] , (4.2)

φ13 = φK

[
p1 + p2φK + 2

3
p3KLη

]

+ a2

8t0

[
C̃0 + C̃1φ2

]
, (4.3)

where φK = (2φ4 − φ2)/2. The constants p1, p2, p3 and
K are related to standard χPT parameters in Eqs. (A.8)-
(A.11), whereas the chiral logarithms L2 and Lη are defined
in Eq. (A.12). For justification of the ansatz used for the dis-
cretisation effects, see comments after Eqs. (B.8) and (B.9).
We stress again that φ12 and φ13 are functions of φ2 only, φ4

being held constant. They have common fit parameters p1,
p2 and p3.

Using the above expressions and consistently neglecting
higher orders in the continuum χPT terms, we obtain the
ratio of PCAC masses (cf. Eqs. (A.13) and (B.11))

φ12

φ13
= 2φ2

2φ4 − φ2

[
1 + p2

p1

(
3

2
φ2 − φ4

)
− K̃

(L2 − Lη

)]

+ a2

8t0
(2φ4 − 3φ2)

[
D0 + D1φ2

]
. (4.4)

As discussed in Appendix B, the form of the cutoff effects
respects the constraint φ12/φ13 = 1 at the symmetric point
mq,1 = mq,3, which is exact at all lattice spacings by con-
struction.

For the combination defined in Eq. (A.14), we have

4φ13

2φ4 − φ2
+ φ12

φ2
= 3p1 + 2p2φ4 + p3K

(L2 + Lη

)

+ a2

8t0

[
G0 + G1φ2

]
. (4.5)

An alternative to NLO χPT fits is the use of power series,
based simply on Taylor expansions around the symmetric
point mq,1 = mq,2 = mq,3, for which φ

sym
2 = 2φ

phys
4 /3:

φ12 = s0 + s1(φ2 − φ
sym
2 ) + s2(φ2 − φ

sym
2 )2

+a2

t0

[
S0 + S1(φ2 − φ

sym
2 )

]
, (4.6)

φ13 = s0 + s̃1(φ2 − φ
sym
2 ) + s̃2(φ2 − φ

sym
2 )2

+a2

t0

[
S0 + S̃1(φ2 − φ

sym
2 )

]
. (4.7)

Note that imposing the constraint φ12 = φ13 at the symmetric
point implies that s0 and S0 are common fit parameters. These
expansions are expected to give reliable results in the higher
end of the φ2 range, underperforming close to the chiral limit.
They are thus complementary to the chiral fits, which are
better suited for the small-mass regime. In this sense the two
approaches may provide a handle to estimate the systematic
uncertainties due to these fits and extrapolations.

We explore various fit variants, in order to unravel the
presence of potentially significant systematic effects. They
are encoded as follows:

• Fitted quantities and ansätze:
[chi12] Fit of φ12 data only, using the χPT ansatz.
[chi13] Fit of φ13 data only, using the χPT ansatz.
[tay12] Fit of φ12 data only, using the Taylor expan-
sion ansatz.
[tay13] Fit of φ13 data only, using the Taylor expan-
sion ansatz.
[chipc] Combined fit to φ12 and φ13, using χPT.
[chirc] Combined fit to φ13 and φ12/φ13, using χPT.
[chirr]Combined fit to the ratio φ12/φ13 and the com-
bination 2φ13/φK + φ12/φ2 using χPT.
[tchir] Combined fit to φ13 and the ratio φ12/φ13,
using the Taylor expansion for φ13 and χPT for φ12/φ13.

• Discretisation effects:
[a1] Fits with terms ∝ a2/t0 only.
[a2] Fits with terms ∝ a2/t0 and ∝ φ2a2/t0.

• Cuts on pseudoscalar meson masses:
[420] Fit all available data, including the symmetric
point; i.e. data satisfies mπ � 420 MeV.
[360] Fit excluding the symmetric point; i.e. data sat-
isfies mπ � 360 MeV.
[300] Fit only points for which mπ ≤ 300 MeV.

Any given fit will thus be labelled as[xxxxx][yy][zzz],
using the above tags.

The results obtained with the various fit methods at the
physical point (cf. Eq. (2.19)) are expressed in physical units

by dividing them out by
√

8t phys
0 . Multiplication by the fac-

tor of Eq. (3.2) subsequently gives the RGI mass estimates
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Fig. 2 Results for the RGI light
(Mu/d ) and averaged
(Mphys

13 = (Mu/d + Ms)/2) quark
masses from independent fits to
either M12 or M13. Results are
converted to MeV by dividing

out with
√

8t phys
0 . Dotted lines

indicate the central value of the
latest FLAG average [5] for
reference

shown in Figs. 2 and 3. We comment on the various fit
ansätze:
Independent fits of φ12 and φ13: comparing light quark
masses Mu/d (upper panel of Fig. 2) from [chi12][a1]
and [chi12][a2] we find that they are sensitive to the
presence of a discretisation term ∝ a2/t0, albeit within
∼ 1 − 2σ . This difference is attenuated when the more
stringent mass cutoff [chi12][300] is enforced, mainly
because the error increases as less points are fitted. The same
qualitative conclusions are true for the Taylor expansion fits
[tay12] of the light quark mass. On the other hand, the
lower panel of Fig. 2 shows that the average quark mass
Mphys

13 is not sensitive to the details of the fit ansätze. This
is not surprising, given that our simulations have been per-
formed in a region of rather heavy pions 220 MeV ≤ mπ ≤
420 MeV, with data covering the physical point Mphys

13 , while
Mu/d requires long extrapolations. The conclusion is that
independent fits are reliable for φ13 but less so for φ12, and
so we discard their results.
Combined fits to φ12 and φ13: Fig. 3 shows that the fits
[chipc][a1] and [chipc][a2] give results which are
sensitive to the ansatz employed for the cutoff effects. This is
more pronounced for Mu/d and the ratio Ms/Mu/d, but per-
sists also for Ms. Moreover, fits [chipc][a1][420] and
[chipc][a1][360] display visible differences when
compared to fits of the [chipc][a2] variety; the latter
agree with results obtained from different fit ansätze. For

these reason we have also discarded results from this analy-
sis.
Combined fits to φ13 and φ-ratios: As previously ex-
plained, we have explored three ansätze, namely [chirc],
[chirr], and [tchir]. In all cases Fig. 3 shows that
there is no significant dependence of the results from the
details of these fits, except for a very slight fluctuation of the
[tchir][a1][420] results for Ms. Preferring to err on
the side of caution, we also discard [tchir] fits.

A few general points concerning the fit analysis deserve
to be highlighted:

• In all our fits the χ2/dof is well below 1. This is
partly because our data are correlated – both from the
fact that there are common renormalisation factors and
improvement coefficients, and because we are including
the contribution to the χ2 from the fluctuations of the
meson masses (horizontal errors). Therefore, while the
goodness-of-fit is in general satisfactory, we will refrain
from quoting the corresponding p-values, since they are
not really meaningful.

• Unsurprisingly, the inclusion of a second discretisation
term ∝ φ2(a2/t0) in the fits contributes to an increase
of the error. This term is often compatible with zero,
and almost always so within ∼ 2σ , suggesting that fits
[a1] are safe. As stated previously, exceptions are fits
[chi12] and [chipc], where inclusion of this term
has a strong effect.
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Fig. 3 Results for the RGI light
(Mu/d) and strange (Ms) quark
masses, and their ratio, from the
simultaneous fits [chipc],
[chirc], [chirr], and
[tchir]. Results are
converted to MeV by dividing

out with
√

8t phys
0 . Dotted lines

indicate the central value of the
latest FLAG average [5] for
reference

• Within large uncertainties, the coefficients of the leading
cutoff effects (i.e. those ∝ a2/t0) depend on the fitted
observable, and are larger for φ13 than for φ12.

• The power-series fits [tay12] and [tay13] behave
remarkably well. Results from [tay12] vanish within
errors in the chiral limit, except for fits going up to the
symmetric point, which are sometimes incompatible with
naught by 2–3 σ . This is evidence that our data are not
precise enough to capture the impact of chiral logs. Fits
[tay13] to φlh are very stable, and impressively bet-
ter than those obtained with the χPT ansatz. Indeed, if
one considers fits [texp1] and [texp2], which are
safest from the point of view of error estimation, all the
fits considered provide compatible results for M13 within
one sigma. Notice, furthermore, that the constant terms
of [tay12] and [tay13] are generally in good agree-

ment, signalling the consistency of the approach. It is also
interesting to note that the coefficient of the quadratic
term is very small and always compatible with zero within
1σ (save for two cases where it vanishes within 2σ ).

• Fits [chirc] and [chirr] appear to be the stablest.
• NLO χPT appears to be suffering around and above

400 MeV.

5 Final results and discussion

Following the analysis of Sect. 4, we quote as final results
those obtained from the following procedure:

• The central values are those of a combined fit to the
ratio φ12/φ13 and the quantity 2φ13/φK +φ12/φ2, using
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Fig. 4 Illustration of the chiral+continuum fit from which our central values are obtained. The grey band is the continuum limit of our fit, and the
full black point corresponds to our extrapolation to the physical point

NLO χPT, with pseudoscalar meson masses less than
360 MeV and a discretisation term proportional to a2/t0
(i.e., fit [chirr][a1][360]). The error from this fit
will appear as the first uncertainty in the results below.
The fit is illustrated in Fig. 4.

• We estimate systematic errors from the spread of cen-
tral values of all other [chirr] and [chirc] fits, for
all pion mass cutoffs, and for both [a1] and [a2]. The
spread is intended to be the difference between the cen-
tral value, obtained as described in the previous item,
and the most distant central value of all other [chirr]
and [chirc] fits. This is the second error of the results
below. Recall that [chirc] are combined fits to φ13 and
the ratio φ12/φ13, using NLO χPT.

• Discard other fits, including [chipc], considered too
unstable.

• All results have been obtained using the Symanzik b̃-
parameters computed in the LCP-0 case (see discussion in
Sect. 3). Using LPC-1 results instead, has very marginal
effects on the error.

• In Sect. 3 we have also argued that for the quantities under
consideration finite volume effects are negligible.

The resulting RGI masses are

Ms = 127.0(3.1)(3.2) MeV,

Mu/d = 4.70(15)(12) MeV. (5.1)

The quark mass ratio is obtained from

Ms

Mu/d
= 2

φll/φlh
− 1. (5.2)

Table 3 Contributions to the squared errors of our final quantities from
different sources

Mu/d Ms Ms/Mu/d

Stat+chiral+cont 56% 40% 86%

Fit systematics 39% 52% 14%

Renormalisation < 1% < 1% n/a

Running 5% 8% n/a

O(a) impr Negligible Negligible Negligible

Finite volume Negligible Negligible Negligible

Dependence on renormalisation is only implicit, from the
joint fit with φ13. The same procedures as above yield

Ms

Mu/d
= 27.0(1.0)(0.4). (5.3)

The above results for RGI masses refer to the Nf = 2 + 1
theory.

It is customary in phenomenological studies to report light
quark masses measured in the Nf = 2 + 1 lattice theory in
the MS scheme at 2 GeV, referred to the more physical QCD
with four flavours. This entails using Nf = 3 perturbative
RG-running from 2 GeV down to the charm threshold, fol-
lowed by Nf = 4 perturbative RG-running back to 2 GeV;
see for example Ref. [5]. We use 4-loop perturbative RG-
running and the value for the ΛMS

QCD parameter computed by

the ALPHA Collaboration in Ref. [34] to obtain8

msR(2 GeV) = 95.7(2.5)(2.4) MeV,

8 In converting our results to MS we have taken into account the uncer-
tainty in the matching factor coming from the error on ΛMS

QCD, as well

as the covariance of the latter with our determination of Mi .
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Fig. 5 Contributions to the statistical+chiral extrapolation+continuum limit uncertainties from each ensemble included in our analysis, for our
preferred fit [chirr][a1][360]

mu/dR(2 GeV) = 3.54(12)(9) MeV. (5.4)

The mass ratio is obviously the same as in Eq. (5.3). We note
in passing that switching to the four-flavour theory has a very
small effect on MS results, since at 2 GeV the matching factor
is mR(Nf = 4)/mR(Nf = 3) = 1.002.

The error budget for our computation is summarised in
Table 3 and Fig. 5. Uncertainties are completely dominated
by our chiral fits. We have separated these errors into two
contributions; see first two lines of Table 3. The first error
is that of our best fit [chirr][a1][360], and includes
the statistical errors as well as the error from combined fits
in φ2 and a. The second uncertainty is the one arising upon
varying the fit ansätze and their φ2 range. All other errors
are clearly seen to be subdominant. It is worth noting that, as
expected, the largest contribution to the uncertainty comes
from the ensembles with the lightest sea pion masses, espe-
cially the one with the finest lattice spacing. It is then clear
that decreasing our errors would require more chiral ensem-
bles, and more extensive simulations at light masses.

The current FLAG 2019 [5] world averages from Nf =
2 + 1 simulations, in the MS scheme, reportedly quoted for
the Nf = 4 theory as explained above, are:

msR(2GeV) = 92.03(88)MeV,

mu/dR(2GeV) = 3.364(41)MeV. (5.5)

The strange mass estimate is based on the results of Refs.
[58–63], while the up/down one is based on Refs. [58–61,64].
For the quark mass ratio, based on Refs. [58–60,63], FLAG
quotes

msR

mu/dR
= 27.42(12)MeV. (5.6)

Our results for the strange and light quark masses agree with
those of FLAG within 1.7σ and 1.2σ respectively and thus
exhibit good compatibility albeit with bigger errors.
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Appendix A Chiral perturbation theory expansions

We adapt standard χPT expressions to our specific parametri-
sation of the data, stemming from our choice of chiral tra-
jectory. We start, for example, from Eqs. (B5) and (B6) of
Ref. [57], which are NLO chiral expansions of the light and
strange pseudoscalar mesons mπ and mK in terms of light
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and strange quark masses m1 = m2 and m3. These series are
inverted, so that quark masses are functions of meson masses.
The PCAC quark mass combinations m12 = (m1 + m2)/2
and m13 = (m1 + m3)/2 are then formed and everything
is re-expressed in terms of the dimensionless quark masses
φ12, φ13 and the dimensionless quantities φ2 and φ4, so that
we arrive at

φ12 = φ2

2B0
√

8t0
·

{
1 − 16

8t0 f 2
0

(2L8 − L5)φ2

− 32

8t0 f 2
0

(2L6 − L4)φ4 − 1

24π28t0 f 2
0

×
[

3

2
φ2 ln

(
φ2

8t0Λ2
χ

)
− 1

2
φη ln

(
φη

8t0Λ2
χ

)] }
,

(A.1)

and

φ13 = 2φ4 − φ2

4B0
√

8t0
·

{
1 − 8

8t0 f 2
0

(−2L8 + L5)φ2

− 16

8t0 f 2
0

(4L6 + 2L8 − 2L4 − L5)φ4

− 1

24π28t0 f 2
0

φη ln

(
φη

8t0Λ2
χ

)}
, (A.2)

where B0, f0, Lk(k = 4, 5, 6, 8) are standard χPT parame-
ters and

φη ≡ 8t0
4m2

K − m2
π

3
= 4φ4 − 3φ2

3
. (A.3)

The NLO LECs Li and B0 are implicitly renormalised at
scale Λχ . It is also useful to consider the ratio

φ12

φ13
= 2φ2

2φ4 − φ2

{
1 − 24

8t0 f 2
0

(2L8 − L5)

[
φ2 − 2

3
φ4

]

− 1

16π2(8t0 f 2
0 )

[
φ2 ln

(
φ2

8t0Λ2
χ

)

−φη ln

(
φη

8t0Λ2
χ

)]}
, (A.4)

which does not require renormalisation. Note that at the sym-
metric point (φ2 = 2φ4/3) the current quark masses of
Eqs. (A.1) and (A.2) respect the constraint φ12 = φ13, while
the ratio (A.4) is exactly 1. Note that the sum of ratios

4φ13

2φ4 − φ2
+ φ12

φ2
= 3

2B0
√

8t0

×
{

1 − 16

8t0 f 2
0

(
4

3
L8 − 2

3
L5 + 4L6 − 2L4

)
φ4

− 1

48π2(8t0 f 2
0 )

[
φ2 ln

(
φ2

8t0Λ2
χ

)

+φη ln

(
φη

8t0Λ2
χ

)]}
, (A.5)

has the remarkable advantages of depending on just one com-
bination of NLO LECs, and of being free of polynomial
dependence on φ2.

We next rewrite Eqs. (A.1) and (A.2) in forms which are
suitable for combined fits, with common coefficients for φ12

and φ13, obtaining

φ12 = φ2

[
p1 + p2φ2 + p3K

(
L2 − 1

3
Lη

)]
, (A.6)

φ13 = 2φ4 − φ2

2

[
p1 + p2

(
φ4 − φ2

2

)
+ 2

3
p3KLη

]
,

(A.7)

where the coefficients p1, p2, and p3 relate to LECs as fol-
lows:

p1 = 1

2B0
√

8t0

[
1 − 32

8t0 f 2
0

(2L6 − L4)φ4

]

≈ 1

2B0
√

8t0

[
1 − 32

8t0 f 2
πK

(2L6 − L4)φ4

]
, (A.8)

p2 = − 1

2B0
√

8t0

16

8t0 f 2
0

(2L8 − L5)

≈ − 1

2B0
√

8t0

16

8t0 f 2
πK

(2L8 − L5), (A.9)

p3 = − 1

2B0
√

8t0
. (A.10)

We also define

K ≡ (8t016π2 f 2
0 )−1 ≈ (8t016π2 f 2

πK )−1, (A.11)

with fπK given by Eq. (2.17). The chiral logarithms are

L2 ≡ φ2 ln φ2, Lη ≡ φη ln φη. (A.12)

The following points should be kept in mind:

• We are using only configurations along the φ4 = constant
chiral trajectory. Terms proportional to φ4 are thus reab-
sorbed into constant fit terms.

• Our expressions are linear in fit parameters, rather than
non-linear factors in which LECs appear explicitly.
Determination of LECs is beyond the scope of the present
work.

• By replacing f 2
0 by f 2

πK in the above definition of K ,
the coefficients of chiral logarithms are completely fixed
relative to the LO value; cf. Eqs. (A.1) and (A.2). This
eliminates one fit parameter, pushing its effect to NNLO
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LECs. In practice, the fact that terms with φ4 are reab-
sorbed into the LO terms nullifies the effect in some fits,
e.g., those for φ12 and φ13. A second advantage of this
choice is that the resulting ansätze are fully linear in the
fit parameters. See also Eq. (2.5) in [8] and comments
therein on the reasons that f0 ≈ fπK and for preferring
fπK to f0.

• We conveniently set the renormalisation scale to Λχ =
1/

√
8t0 � 476 MeV, simplifying the chiral logs. There

is no need to reabsorb ln(8t0Λ2
χ ) terms in fit parame-

ters. This is an unconventional choice, as common prac-
tice consists in providing results for LECs at Λχ = mρ

or Λχ = 4π f0. Consequently, NLO LECs eventually
obtained with our methodology may only be compared
to results in the literature after some extra work.

Using the above expressions and consistently neglecting
higher mass orders, we obtain for the ratio (A.4) of PCAC
masses

φ12

φ13
= 2φ2

2φ4 − φ2

[
1 + p2

p1

(
3

2
φ2 − φ4

)
− K̃

(L2 − Lη

)]
.

(A.13)

For the combination (A.5) we have

4φ13

2φ4 − φ2
+ φ12

φ2
= 3p1 + 2p2φ4 + p3K

(L2 + Lη

)
.

(A.14)

With φ4 held constant, the quantities of Eqs. (A.6), (A.7),
(A.13), and (A.14) are functions of φ2 only. We use these
expressions to fit our data, after adding O(a2) terms which
model leading discretisation effects that have been neglected
throughout this “Appendix”.

Appendix B Discretisation effects

In order to parametrise the discretisation effects of the quan-
tities we fit, we first examine φi j ; cf. Eqs. (2.5) and (2.20). It
can be written in the very general form

φi j = φcont
i j + f

(
a,

mi + m j

2
,
mi − m j

2
, Tr[Mq]

)
, (B.1)

where φcont
i j is the continuum quantity and the function f

contains the discretisation effects which in general depend on
the lattice spacing a, the quark masses mi , m j , and the trace
of the mass matrix Tr[Mq]. As we have discussed in Sect. 2,
we will ignore O(g4

0Tr[Msum]) discretisation effects and only
consider the influence of O(a2) uncertainties. Also φi j has to
be symmetric with respect to the exchange of quarks, i ↔ j .
We can thus parametrise f as follows:

f
(
a,

mi + m j

2
,
mi − m j

2
, Tr[Mq]

)

= c0
a2

t0
+ c1

a2

t0

√
8t0

(
mi + m j

2

)
+ c2

a2

t0

√
8t0Tr[Mq ]

+ c3
a2

t0
8t0

(
mi + m j

2

)2

+ c4
a2

t0
8t0

(
mi − m j

2

)2

+ c5
a2

t0
8t0Tr[M2

q ] + c6
a2

t0
8t0(Tr[Mq])2

+ c7
a2

t0

√
8t0

(
mi + m j

2

)√
8t0Tr[Mq] + O(a3). (B.2)

A further simplification is brought about by neglecting the
dependence of c0, . . . , c7 on the bare coupling g2

0.
Next we write the function f in terms of φ2, recalling

that a constant φ4 constrains the relation between the heavier
(strange) and light quark masses. This is done by first express-
ing the current quark masses on the rhs of the above equation
in terms of φ12 and φ13, followed by using their LO χPT rela-
tions to φ2 and φ4. In particular, with β0 ≡ 1/(2B0

√
8t0),

we see from Eqs. (A.6), (A.7) that to LO:

φ12
LO= β0φ2, (B.3)

φ13
LO= β0

1

2
(2φ4 − φ2), (B.4)

√
8t0

(
m1 − m3

2

)
φ12 − φ13

LO= β0

(
3

2
φ2 − φ4

)
, (B.5)

√
8t0Tr[Mq] = √

8t0[2m1 + m3] LO= 2β0φ4, (B.6)

8t0Tr[M2
q ] = 8t0[2m2

1 + m2
3] = 2φ2

12 + φ2
h

LO= 2β2
0 [3φ2

2 + 2φ2
4 − 4φ4φ2]. (B.7)

Inserting the above LO expressions in Eq. (B.2) we obtain,
after some straightforward algebra, that for two light quarks
the discretisation function has the form

f12(a, φ2) ≡ f (a,m1, 0, Tr[Mq])

= a2

8t0

[
C0 + C1φ2 + C2φ

2
2

] + O(a3), (B.8)

where Ck (with k = 0, 1, . . . ) depend on the constants β0,
φ4, and the coefficients cl , suitably rescaled by factors of 8t0
(with l = 0, 1, . . . ). Similarly, for the heavier and a light
quark we obtain

f13(a, φ2) ≡ f (a,m1,m3, Tr[Mq])

= a2

8t0

[
C̃0 + C̃1φ2 + C̃2φ

2
2

] + O(a3). (B.9)

Note that, although in general coefficients Cn and C̃n are
not the same, in the case of m3 = m1 (symmetric point)
f13 = f12 trivially.

The very fact that we have used LO χPT to obtain the
last two expressions (cf. Eqs. (B.3)–(B.7)) allows us to drop
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O(a2φ2
2) contributions of f12 and f13. Moreover, standard

power-counting schemes in Wilson χPT [65,66] suggest
that terms of O(a2) enter at the same order as O(m2

π ),
which would imply that the terms of O(a2φ2) should also
be dropped. We will nevertheless keep this term and explore
its impact.

For the ratio of φ12 and φ13 we have that

φ12

φ13
= φcont

12 + f12(a, φ2)

φcont
13 + f13(a, φ2)

= φcont
12

φcont
13

+ f12

φcont
13

− f13φ
cont
12

(φcont
13 )2

+ · · · . (B.10)

We write the discretisation functions f12 and f13 as in
Eqs. (B.8) and (B.9) and then express coefficientsC0,C1, C̃0,

C̃1, . . . in terms of the original coefficients ci of Eq. (B.2).
After some algebra we end up with

φ12

φ13
= φcont

12

φcont
13

+ a2

8t0

2φ4 − 3φ2

(2φ4 − φ2)2

[
D0 + D1φ2 + D2φ

2
2

]

+ O(a3). (B.11)

The coefficients D0, D1, D2, . . . depend on the ci ’s. The fac-
tor 2φ4 − φ2 in the discretisation term vanishes at the sym-
metric point φ2 = 2φ4/3. This confirms that at the symmetric
point the ratio φ12/φ13 is 1 by construction, for any lattice
spacing. In analogy to the arguments exposed above for f12

and f13, we drop the D2φ
2
2 term in our fits. Moreover, the

variation of the denominator (2φ4 − φ2)
2 is relatively mild,

ranging between ∼ 2 and ∼ 4.6 as φ2 varies between ∼ 0.1
and ∼ 0.8 in our simulations. To simplify matters, we reab-
sorb this O(1) term in re-definitions of D0 and D1.

Finally, for the combination of Eq. (A.14), we straightfor-
wardly parametrise the discretisation errors in a way analo-
gous to f12 and f13; see Eq. (4.5).
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