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Abstract. The Compact Muon Solenoid (CMS) experiment dedicates signifi-
cant effort to assess the quality of its data, online and offline. A real-time data
quality monitoring system is in place to spot and diagnose problems as promptly
as possible to avoid data loss. The a posteriori evaluation of processed data is
designed to categorize it in terms of their usability for physics analysis. These
activities produce data quality metadata. The data quality evaluation relies on
a visual inspection of the monitoring features. This practice has a cost in term
of human resources and is naturally subject to human arbitration. Potential
limitations are linked to the ability to spot a problem within the overwhelm-
ing number of quantities to monitor, or to the lack of understanding of detector
evolving conditions. In view of Run 3, CMS aims at integrating deep learning
technique in the online workflow to promptly recognize and identify anomalies
and improve data quality metadata precision. The CMS experiment engaged in
a partnership with IBM with the objective to support, through automatization,
the online operations and to generate benchmarking technological results. The
research goals, agreed within the CERN Openlab framework, how they matured
in a demonstration application and how they are achieved, through a collabora-
tive contribution of technologies and resources, are presented.

1 Introduction

Data Quality (DQ) assessment is an important aspect of every High Energy Physics (HEP)
experiment. In the era of the Large Hadron Collider (LHC)[1], and of its highly sophisticated
detectors, a prompt feedback on the quality of the recorded data is needed to maximize the
effectiveness of data taking efforts, and offline quality verification is required to guarantee
a good baseline for physics analysis. Following the CERN’s [2] long standing tradition of
collaboration with industry and research institutes, the CMS experiment[3] engaged into a
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partnership with IBM[4], within the CERN Openlab [5] framework, with the objective to
improve operations, detector understanding and to generate benchmarking technological
results. This document outlines, in 2, the particular physics requirements that govern the
choice and design of the CMS-IBM project, while 3 describes in some detail the properties
of the Machine Learning (ML) methods exploited in the two use cases CMS has studied.
The preliminary results, presented at the conference and summarized in 4, illustrate the
progresses achieved over the past few years and anticipate the way the future implementation
will take place in everyday operations.

2 The project

The CMS-IBM partnership was born with the goal to improve data quality monitoring opera-
tions in two ways: facilitate the current monitoring of the quality of each data taken and look
towards the automatic detection of anomalies in data.

The data collected by the CMS detector is monitored in real-time to guarantee its qual-
ity during the data taking, and to detect, as promptly as possible, deviations from normal
behavior.

The real-time effort uses as tool a Graphical User Interface (GUI)[6]. This CMS typi-
cal graphical setup is composed of a set of histograms, produced for each component of the
detector, in order to monitor key quantities and compare them to pre-defined reference dis-
tributions. Trained physicists monitor the produced histograms, mainly by visual inspection
and through a set of statistical tests (y2, Kolmogorov-Smirnov, etc) and report issues found.
So far, the current system, used in LHC Run 1 (2010-2012) and Run 2 (2015-2018), has
performed very well, but not without difficulties, that can be summarized as follow:

- it is expensive, in terms of human resources, about 250 people per year. The online
active monitoring is in fact organized in pace of 8-hour shifts covering 24/7 operations,
that happens smoothly only assuming shifters have received ample training and clear
instructions are regularly maintained;

- its effectiveness is limited by the volume budget, about 50 elements (2D histograms,
etc) that each shifter is expected to evaluate during a run. The amount of quantities,
that a human can process in a finite time interval, can prevent an accurate real-time
scrutiny;

- it makes assumptions on our level of understanding. To allow operations to be per-
formed by informed, but not specifically expert physicists, it is necessary to introduce
some a priori strategy, tailored towards some reference conditions and failure modes.
Being this influenced by the present understanding of the detector conditions it could
potentially imply a limitation in discovering problems.

CMS collaboration hence imagined a project that, making use of the most modern ML tech-
niques, could help reduce the operational flaws. We’re guiding the development of the demo
application to have three main properties:

- it will use intelligent deep learning technique to guarantee the present standards but at
the cost of less burn for human shifters.

- it will add a predictivity layer to the operations, being not customized toward only
few/specific scenarios.

- it will include time, as an extra dimension, being capable to proactively identify trend-
ing problems. For future development, the exploitation of sequence-based models,
such as Long-Short Term Memory (LSTM)[7] to track the detector’s time evolution
and the inclusion of integrated detector metadata (like subsystems readiness to take
data (Detector Control System LOW /HV voltage) are under investigation.
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The current rule based system relies on two types of histograms to monitor physics and
calibration quantities: Task and Client histograms. Task Histograms provide a purely statis-
tical description/picture of key quantities (mean, RMS, etc.) without making a judgement
about the quality of the data ( e.g. 2D 1/¢ map of reconstructed and calibrated signal (com-
monly called hits); Client Histograms analyze the output of Task histograms and compare
them against expected thresholds to provide an interpretation of the quality of the data.

With a ML-based quality monitoring, we aim to eliminate the need for hand-coded rules,
with the simplest choice of a supervised approach, based on quality labels provided by ex-
perts, that would learn rules and statistics directly from raw data; while with semi-supervised
learning of quality interpretation, we could potentially flag unusual looking features in Task-
histograms and interpret them accordingly in Client-histograms, eliminating the need for
hand-coded quality thresholds.

The success of the project will be to move from a rules-based assessment toward a super-
vised (and later unsupervised) interpretation of the data quality.

The data of two CMS sub detectors, Electromagnetic and Hadronic Calorimeter were
used for this work. State of the art of application development is discussed in the following.

IBM company is the industry partner of CMS experiment in this project and we believe
this partnership represents an evident benefit for all the developers and the analysis results.
We established a two-fold collaboration based on activities of knowledge transfer and prob-
lems solving and provision to the project of an IBM Minsky Power 8+ cluster, hardware
infrastructure, described in details in Table 1. The first built the substrate for a fast devel-
opment of the project, the latter is absolutely critical now we’re entering the consolidation

phase of the project.
ML IBM cluster infrastructure
login node compute nodes software
IBM S821LC (8001-12C) | IBM S822L.C for HPC (8335-GTB) CentOS 7.4 ppc6dle
8 P8 cores at 2.32 GHz 16 P8 cores at 3.26/3.86 GHz CernVM-FS
64 GB of DDR4 memory 4x NVIDIA P100 NVIDIA CUDA 9.1
3584 CUDA cores, 16 GB HBM2
8 TB HDD 4 TB HDD + 1.6 TB NVMe IBM PowerAl 1.5
IB EDR between nodes slurm
1 GbE (/ 10 GbE) 1 GbE to the CERN network IBM Spectrum Conductor
1 Xilinx ADM-PCIE-8K5 (CAPI) Deep Learning Impact

Table 1: ML IBM cluster infrastructure

3 Project Use cases and state of the Art
3.1 ECAL, a mature development

Physics at the LHC requires extremely high performance detectors. The CMS Electromag-
netic Calorimeter (ECAL)[3], has been designed to facilitate the discovery of the Higgs bo-
son and new physics in general, through the precise energy measurement of particles such as
electrons and photons. The CMS ECAL is an hermetic homogeneous calorimeter, cylindrical
shaped, made of ~61K lead tungstate (PbWO,) crystals mounted in the central barrel part,
closed by ~7K crystals in each of the two endcaps.

3.1.1 ECAL: supervised learning

We approached the DQ assesment problem in a simple intelligent way treating it as a typical
binary classification problem, where good data are clearly different from all the expected
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anomalies. In a preliminary phase, some time was spent to identify the most meaningful
quantities to target and to plan the necessary preparation of the supporting data. We took
as input the so-called rechit occupancy map, i.e. of the central part (barrel) of the CMS
detector, that is a crucial metric to monitor in order to guarantee the correct measurement
of the energy of electrons and photons. This distribution describes the energy deposition of
rechit data which is expected to be approximately constant in regions of constant 7, of the
order of 0.1 GeV during collisions. A large irregular distribution or an unusually large energy
range indicates potentially noisy trigger regions, bad data reconstruction, or issues with the
calibration.

A technical challenge has been to choose the data, apt for the exercise, and to format them
to emulate a typical online streaming rhythm/conditions. Each of the inspected distributions
are refreshed, in the online GUI application used for DQ, every 23 sec (commonly called
Iumisection, LS)!. We treated the single LS images as frozen frames of a streaming video
(e.g. data taking) and approached the problem as an anomaly detection problem on images.

For the preliminary exercise we had access to a dataset of ~40K samples of data, col-
lected by the CMS experiment in 2016/17, manually pre-scrutinized by a human certifier and
declared of good quality. Because the anomalies encountered, in the considered data taking
period, were so rare and limited in typology, we decided to artificially manufacture some ~8K
samples of poor quality data, enriched of potential danger, as described in the following.

We analyzed them applying a supervised method, consisting of an Artificial Neural Net-
work architecture with convolutional layers followed by dense layers, a rectifier is chosen as
activation function (REctified Linear Units [8]), except for the last layer where a normalized
exponential function (Softmax function)[9] is used. Further details can be found in Table 2.

We measure the classification performance quantifying the Area Under the Receiver Op-
erating Characteristic Curve (also known as ROC AUC)[10], using recall (True Positive Rate)
vs fall-out (True Negative Rate) as metrics; for a fall-out of 0.033 a recall of 0.9903 for train-
ing and validation set and 0.9944 for testing set respectively, is found. These excellent results
convince us that the supervised application is ready to be implemented in the online ECAL
monitoring tools already in the next months, allowing verification and validation of the speci-
fications requested. The intended purpose to facilitate operations and to save human resources
could be potentially be solved before the end of Run 2.

ECAL.: supervised learning

Activation ReLU, but last layer that has softmax
Optimizer ADAM
Performances binary Cross Entropy loss
Net architecture | NN with convolutional layer followed by dense layers
Regularization L2, dropout

Table 2: ECAL supervised approach: model details

3.1.2 ECAL: semi-supervised learning

While the supervised model seemed to generalize well as far as the classification has a pure
binary solution, we desired to take our study further and to be able to detect anomalies, not
foreseen earlier, in a way to understand better the ongoing behavior of the detector.

For this purpose a semi-supervised learning approach, based on Auto-Encoder(AE)[11], is
what we tested on the data sample considered.

! A lumisection is in fact the minimum quanta of data time in LHC.



EPJ Web of Conferences 214, 01007 (2019) https://doi.org/10.1051/epjconf/201921401007
CHEP 2018

An AE Neural Network is a model for dimensionality reduction, composed by an en-
coding and a decoding section. The encoding section reduces the dimensionality of the data
representation, while the decoding one expands it back to that of the input. The algorithm is
trained to learn an approximation to the identity function, so as the reconstructed output is
similar to the input. The identity function seems a particularly trivial function to be trying
to learn; but, by placing constraints on the network (e.g. by limiting the number of hidden
units), we can discover interesting structure about the data (e.g. some of the input features
are correlated), and this is exactly one of the peculiarity interesting to us.

The model developed is an AE with convolutional layers, based on the Keras library
framework (with TensorFlow[12] backend), using LeakyRelu[13] activation function in all
the input-to-hidden and all hidden-to-hidden layers, and Linear activation in the hidden
to output layer. We trained exclusively on normal instances, assuming imbalance of nor-
mal/anomalous instances; in this way the system learns to reconstruct the input minimizing
the loss function (chosen here the Minimum Squared Error); for further details see Table 3.

ECAL: semi-supervised learning

Preprocessing data standardization, scale to 0 mean and standard deviation of 1
Activation LeakyRelu activation for the input-to-hidden and hidden-to-hidden layers
Linear activation for the hidden to output layer
Optimizer AdaDelta
Loss function MSE loss
Net Architecture Auto-Encoder with convolutional layers,
in framework Keras library (tensorflow backend)
Regularization Dropout (10-15%)

Table 3: ECAL semi-supervised approach: model details

Two types of anomalies were analyzed to test the detection abilities of the proposed
model: a hot tower? and a missing module?, left columns (top and bottom raws respectively)
of Figure 1. The artificially manufactured samples, previously described, were constructed
by inserting, at random position, either a hot tower (red spot in the original image on the left)
or a missing module (blue box in original image).

Looking at the image reconstructed by the AE, the architecture seems to perform well in
case of hot tower events, the higher reconstruction loss can be associated with certitude to
the spread around the hot area. The method does not work as effectively in event of missing
module because the spread around the module is minimal with well defined edges.

Nevertheless the separation power of the ECAL semi-supervised method is evident in
Figure 1 rightest column, where the Minimum Squared Error (MSE) loss is displayed as
function of time (one entry per LS). The reconstruction error can be used to set a threshold
between anomaly data and good ones; the separation power is absolutely indisputable in case
of hot tower; less definitive, but still usable, in case of missing tower.

3.2 HCAL

Second use case of the CMS-IBM project is the Hadronic Calorimeter (HCAL)[3], chosen,
as complementary to the ECAL study, for its capacity to identify and measure the energy of
hadronic jets and to provide a good missing transverse energy determination. Because both
of these quantities play a fundamental role in many analyzes of physics beyond the Standard
Model, is crucial to have a trusty monitoring of the energy distribution maps. A dedicated

2Hot tower: large occupancy in a group of ~5 x 5 crystal.
3Missing module: missing reading in a strip composed of 1700 crystals.



EPJ Web of Conferences 214, 01007 (2019) https://doi.org/10.1051/epjcont/201921401007
CHEP 2018

scatter_model_v26_MSE_adadelta_hot_towers_test

14] e gwoddata
o baddaa
@ 15 15
0 Chialal o ® eoe .
- . . .
.

50

100

150

0 S 100 150 200 250 300 350 o 0 50 100 150 200 250 300 350 o

0 “event

scatter_model_v26_MSE_adadelta_missing_modules_test

® good dara
o baddata

= .
-05 08 o
- 5| -
i ag -10 o7 “
0 S0 100 150 200 250 300 350 0 S 100 150 200 250 300 350 by

Figure 1: ECAL. From left to right: original image, reconstructed by AE image, MSE loss
good data (blue) vs bad data (orange); top: Hot tower, bottom: Missing module

ML effort started only recently but it quickly reached the first faithful results following the
lessons learnt from the ECAL study.

Also in this case the online running conditions were emulated, producing one set of im-
ages per LS, for all the 2017 data available, and artificially generating of 5x5 bad regions data
(e.g. hot regions and dead regions principally), to accommodate the sparsity of anomalous
real data.

At first a supervised method was adopted to verify the correctness of data pre-processing
and ability over data duality classification.

Afterwards the step forward, towards the ability to predict anomalies, was taken via a
semi-supervised approach, using a convolutional Auto-Encoder[11], the technical details of
which can be found in Table 4. Fig. 2 reports the results of the experiments made on different
samples of data: good data (top raw), hot channel (central raw) and dead channel (bottom
raw). For each of these samples, columns, from left to right, present: the data type original
image, the acquired image, as reconstructed by the AE, and the euclidean distance loss (re-
lated to its reconstruction error) respectively; the latter is precisely what we’re interested in
minimizing, because it represents how close our reconstruction is to the true input data.

Figure 3, the distribution of the max error made per reconstructed LS, confirms that good
data (which reconstruction error is under 0.4) and anomalous data are very separable, even
just applying a cut on the error value and we can classify them accordingly.

HCAL.: semi-supervised learning

Preprocessing batch normalization
Activation Relu activation for the input-to-hidden and hidden-to-hidden layers
Sigmoid activation for the hidden to output layer
Optimizer AdaDelta
Loss function MSE loss
Net Architecture Auto-Encoder with convolutional layers,
in framework Keras library (tensorflow backend)
Regularization maxPooling

Table 4: HCAL semi-supervised approach: model details
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Figure 2: HCAL. From left to right: original image, reconstructed by AE image, reconstruc-

tion error; from top to bottom: Good data, Hot channel, Dead module
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4 Summary and Future plans

The CMS experiment engaged in a partnership with the IBM company, with CERN Openlab
as facilitator, to investigate the benefits of a future ML-based quality monitoring. Two types
of models were developed:

- a Supervised model, for learning quality rules and statistics directly from raw data,
and eliminate the need of the present hand-coded rules. The first validated prototypes
proved, with a ROC AUC ~0.99, to be able to provide a robust binary classification of
known incidents in the data taking. Next months will be spent in pinning down comput-
ing details, as data processing speed in the ML approach and the amount of computing
resources used from the Minsky system and in cross referencing the results, comparing
the human certification and the intelligent one, once the latter will be implemented in
online monitoring tools.

- a convolutional Auto-Encoder method, tested on known cases, manifested a satisfying
ability of differentiating good and bad event. CMS would rely on its semi-supervised
learning technique, for flagging any unforeseen unusual looking features. The strength
of the predictive method will be completed by the ongoing tests of more sophisticated
models and extension to the whole detector.

The final benchmarking results, we believe, will be reached once time will enter in the matrix
of features, via a time recurrent algorithm, and we will be able to include detector metadata
to proactively foresee and alarm the collaboration about potential future hardware failures.
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