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Abstract. The ALICE Experiment at CERN LHC (Large Hadron Collider) is
under preparation for a major upgrade that is scheduled to be deployed dur-
ing Long Shutdown 2 in 2019-2020 and that includes new computing systems,
called O2 (Online-Offline). To ensure the efficient operation of the upgraded
experiment along with its newly designed computing system, a reliable, high
performance and automated control system will be developed with the goal
of managing the lifetime of all the O2 processes, and of handling the various
phases of the data taking activity by interacting with the detectors, the trig-
ger system and the LHC. The ALICE O2 control system will be a distributed
system based on state of the art cluster management and microservices which
have recently emerged in the distributed computing ecosystem. Such technolo-
gies weren’t available during the design and development of the original LHC
computing systems, and their use will allow the ALICE collaboration to benefit
from a vibrant and innovating open source community. This paper illustrates the
O2 control system architecture. It evaluates several solutions that were consid-
ered during an initial prototyping phase and provides a rationale for the choices
made. It also provides an in-depth overview of the components, features and
design elements of the actual system.

1 Introduction

1.1 The O2 computing system

The ALICE Experiment [1] is on track for a major upgrade [2], scheduled to be deployed
during LHC’s Long Shutdown 2 (2019-2020), in time for LHC Run 3. In order to keep up
with the increased data rate coming out of the detectors, a new computing system called
O2 [3] will be deployed.

The O2 computing system will consist of 100,000s of processes deployed over roughly
2000 nodes performing readout, processing and storage. The system will read out 27 Tb/s of
raw data and record 800 Gb/s of reconstructed data.

The O2 computing system will run on two main typologies of computing nodes: FLPs
(First Level Processors) and EPNs (Event Processing Nodes). Each FLP will be fitted with
CRU (Common Readout Unit) [4] or C-RORC (Common Readout Receiver Card) [5] hard-
ware, depending on the detector. These readout cards are capable of two way communication
with detector front end electronics.
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The O2 computing system will be capable of two kinds of data-driven workflows: syn-
chronous operation, intended to be synchronous with detector readout, and asynchronous op-
eration, which will take place at any time regardless of detector/beam conditions. Each node
is expected to run dozens of processes of different kinds, including long running services,
WLCG-like (Worldwide LHC Computing Grid) environments for asynchronous processing,
and data-driven process workflows. Synchronous workflows operate on data coming from
detector data links, so they must run in the O2 facility at LHC Point 2. Asynchronous work-
flows do not have this constraint, so they can run at any time on WLCG nodes, or on O2

facility resources when they are not needed for synchronous operation.
The O2 project has chosen FairMQ [6] as the common message passing and data transport

framework for its data-driven processes. It has been developed in the context of FairRoot [7,
8], a simulation, reconstruction and analysis framework for particle physics experiments.
FairMQ provides the basic building blocks to implement complex data processing workflows,
including a message queue, a configuration mechanism, a state machine, and a plugin system.

1.2 Target operational improvements in a control system solution for O2

A new control system will be developed with the goal of managing the lifetime of all the O2

processes, and of handling the various phases of the data taking activity by interfacing with
the detectors, the trigger system and the LHC.

The goals and requirements of the ALICE O2 control system (O2 control) are derived
from experience in running the current computing system, and they are motivated by a desire
for greater reliability, performance, maintainability, and operational flexibility.

Target operational improvements include
1. no workflow redeployment when including or excluding a detector from data taking,
2. recovery from process and server crashes,
3. process reconfiguration without mandatory restart,
4. and EPN scaling during data taking (e.g. as luminosity decreases towards the end of a

LHC fill).
The O2 project includes a redesign of user interfaces, in favor of next-generation web-

based GUIs with SSO (single sign-on) and a revamped design. O2 control will come with a
number of command line and graphical user interfaces, including shifter oriented GUIs for
the O2 equivalent of the current ECS (Experiment Control System) [9].

Finally, the O2 project is an opportunity to take advantage of modern developments in
computing, thus O2 control will be built with the best practices of a microservices distributed
application paradigm, and harnessing the features of modern cluster resource management
systems.

2 Requirements of a control solution for O2

The primary duty of a control system for O2 is to launch, configure and control a set of data-
driven processes and workflows inside a computer cluster. Specifically, the control system
solution is in charge of

1. managing the lifetime of thousands of processes in the O2 facility,
2. minimizing the waste of beam time by reusing processes and avoiding time-consuming

process restart operations,
3. interfacing with the LHC, the trigger system, the DCS (Detector Control System) [10]

and other systems, ideally through common APIs,
4. and ensuring fair and efficient resource multiplexing between synchronous and asyn-

chronous tasks.
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Figure 1. O2 control will be
able to designate the
resources of a compute node
for synchronous or
asynchronous processing. If a
node is assigned to
synchronous processing (top
image), O2 control stays in
charge and keeps fine-grained
control over resource
allocation. When O2 control
assigns a node to
asynchronous operation
(bottom image), it will
bootstrap a pilot job to set up
a WLCG-like asynchronous
execution environment.

2.1 Synchronous and asynchronous workflows

The primary task of O2 control is to handle the details of synchronous workflows, as this kind
of workflow is time-critical and directly affected by experiment operations. Asynchronous
workflows will be executed in Grid-like environments, both on the WLCG and inside the O2

facility when resources are available, on a best-effort basis. At times when the O2 facility has
free resources (i.e., compute resources not used for synchronous operation), O2 control will
have the responsibility of bootstrapping AliEn [11] pilot jobs, which set up asynchronous
processing environments for tasks like asynchronous reconstruction, analysis, and simulation
(see Fig. 1). O2 control will be able to reclaim resources assigned to asynchronous operation
if synchronous processing workflows require them.

In order to satisfy such use cases, the O2 control system is a distributed system in charge
of the O2 facility, with full knowledge and control over its resources. It implements a reliable
and distributed state machine mechanism to represent the aggregated state of the constituent
O2 processes of a data-driven workflow. Furthermore, it allows reconfiguration and reuse
of running O2 processes as often as possible to avoid process restarts, it allows simultane-
ous operation of multiple asynchronous and synchronous workflows, with easy reallocation
of resources among workflows. Finally, it reacts promptly to inputs, handling events from
the user, the LHC, the trigger system, the DCS, and the cluster itself with a high degree of
autonomy.

3 Resource management in the O2 facility

We implement O2 control as a distributed application, using Apache Mesos [12, 13] as toolkit.
This custom solution integrates a task scheduler component, a purpose-built distributed state
machine system, a general purpose process configuration mechanism, and a control plugin
and library compatible with any data-driven O2 process.

3.1 An overview of Apache Mesos

Apache Mesos is a cluster resource management system. It greatly streamlines distributed
application development by providing a unified distributed execution environment. Mesos
facilitates the management of O2 components, resources and tasks inside the O2 facility,
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effectively enabling the developer to program against the datacenter (i.e., the O2 facility at
LHC Point 2) as if it was a single pool of resources.

Apache Mesos comes with two main components: masters and agents. In a Mesos-
enabled cluster there is a Mesos agent running on every node: its purpose is to collect infor-
mation on the resources available on that node, and to handle task deployment. A Mesos-
enabled cluster must also have at least one Mesos master. In this context, a Mesos-aware
distributed application is called a framework. When developing a framework, the developer
must build a scheduler process (which subscribes to the Mesos master), as well as one or
more executors. The Mesos master acts as an authoritative source of knowledge on cluster
resources, and periodically sends resource offers to the schedulers of the frameworks running
on the cluster, which can then use these resources to run tasks.

In order to run a task, a Mesos agent runs the selected executor component of the frame-
work that accepted the resources provided by this agent, and the executor can then run a
process or perform any other operation as required by the scheduler.

3.2 The role of Apache Mesos in the O2 facility

Apache Mesos has become a household name in the industry, and it has been used in de-
ployments of 10,000s of nodes. It is an open source project, hosted by the Apache Software
Foundation. Commercial support is available.

For O2 control, benefits of using Mesos include
1. the knowledge of what runs where,
2. resource management, which facilitates various deployment steps including port as-

signment, node selection, configuration, and others,
3. transport facilities for O2-specific control messages,
4. task status tracking (e.g. an event is raised if a task dies unexpectedly),
5. and advanced features such as node attributes, resource overprovisioning, checkpoint-

ing, and others.
The drawback of having Apache Mesos as an additional component in the stack is com-

pensated by its benefits. We also argue that implementing a computing system at the scale
of O2 with modern techniques would in any case involve a resource management system
component or mechanism.

It is important to note that Apache Mesos is not a control system. The requirements,
and thus the design of O2 control include much beyond Mesos. Apache Mesos is not a
service discovery system, though its role as an authoritative source of knowledge on cluster
resources makes it suitable for integration with such a system. Mesos is also not a distributed
state machine, and in fact it makes no assumption on the stateful nature of the tasks it helps
deploy. Furthermore, while Apache Mesos can run containerized tasks, it is not a container
orchestration platform. Finally, Mesos is not a plug-and-play platform-as-a-service (PaaS)
system for cloud native applications (one such system is DC/OS, and it is built on top of
Mesos).

4 Design overview of O2 control

4.1 O2 control components

Our proposed solution for the problem of O2 synchronous control is under development. The
current implementation of O2 control can be found on GitHub [14], and it consists of

1. the O2 control core (which includes the Apache Mesos-facing scheduler component),
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Figure 2. O2 control architecture.
All control communication between
core and executor instances is
piggybacked on Mesos messages.
RPC-pattern interaction between the
user interfaces and the O2 control
core, and between the executor and
the controlled O2 process is
implemented with gRPC. The O2

control and configuration plugin
hides the complexities of handling
gRPC connections and driving the
state machine. The AliEn pilot job
is not to be considered a controlled
process, as O2 control is only in
charge of bootstrapping it.

2. the O2 control executor,
3. the O2 control and configuration plugin for FairMQ devices (FairMQPlugin_OCC),
4. the O2 control and configuration library (libOcc),
5. the O2 control and configuration command line utility (coconut),
6. a deployment utility for O2 development and testing (fpctl),
7. and the web-based O2 control GUI.

The O2 control core accepts requests from the O2 control GUI or from coconut. These
requests are then processed, and they result in Mesos API calls, handlers for Mesos API
events, or O2-specific control messages (using Mesos API calls and handlers for transport).

Furthermore, O2 control interfaces via a configuration wrapper library with Consul [15], a
key-value store which acts as the system’s configuration repository. The design also includes
interfacing with information sources from the LHC, the trigger system, and the DCS.

Most components of O2 control are written in Go, a statically typed general purpose
programming language in the tradition of C, which is particularly suitable for distributed
systems development because of its advanced synchronization and threading facilities. The
O2 control and configuration plugin for FairMQ devices is developed in C++14, and it works
with any FairMQ-based process. A non-plugin library equivalent of the latter is also provided,
for O2 processes which do not support the FairMQ plugin system.

4.2 Inter-process communication in O2 control

The common idiom of inter-process communication in O2 control is gRPC [16], an open
source, cross-language RPC (remote procedure call) system backed by Google. It is widely
used in the microservices community. gRPC comes with a code generator which provides
client and server stub code based on a common descriptor file. Once the developer describes
the client-server interface in this file, the generator can output stubs for C++, Go or any
other supported language, enabling seamless interaction between processes in a heteroge-
neous cross-language distributed system. Depending on the language, for the developer this
gRPC-mediated remote interaction mimics local function calls.

In O2 control, gRPC is used for communication between the core and a user interface, and
for communication between the executor and the OCC plugin (see Fig. 2). We also expect to
use gRPC to interface with other systems such as the trigger system and the DCS.
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4.3 O2 control concepts

The basic unit of scheduling in O2 control is a task. A task generally corresponds to a process,
specifically a process that can receive and respond to OCC-compatible control messages. An
O2 control workflow is ultimately made of tasks.

Tasks are the leaves in a tree of roles. A role is a runtime subdivision of the complete
system, it represents a kind of operation along with its resources. Each task implements one or
more roles. Roles allow binding tasks or groups of tasks to specific host attributes, detectors
and configuration values. Each role represents either a single task, or a group of child roles. If
tasks are leaves, roles are all the other nodes in the control tree of an environment. Thus, for
example, one can have a task "readout-bin", which is a child of role "readout-tpc-026".
The latter role, in turn, is a child of role "readout-tpc", which is a child of role "readout",
which is a child of top-level role "physics-1".

In comparison with the ECS partitions used in Run 2, we aim to provide novel, more
flexible, and more easily deployable abstractions. In memory, a tree of O2 roles, along with
their tasks and their configuration is a workflow. A workflow aggregates the collective state
of its constituent O2 roles. A running workflow, along with associated detectors and other
hardware and software resources associated with experiment operation constitutes an envi-
ronment. When an environment is in state RUNNING, it implements an activity, such as a data
taking run.

4.4 The environment state machine

Environments have states, constrained by a state machine. In memory, each role as a node in
the control tree also has a state, which aggregates the states of its child roles (or of its single
child task). Thus, the state machines of each individual process are directed by the top-level
state machine of the environment.

The environment state machine is the entry point for all process control operations. Some
examples of control requests at this level include creating a new environment by loading a
workflow template from the configuration repository (which also instantiates the new envi-
ronment’s state machine), requesting a state transition for an environment, or modifying a
subtree in an environment’s workflow.

4.5 Workflow configuration

The O2 Configuration repository contains a list of O2 task templates. A task template is a
configuration item that describes the command that launches the relevant process, plus some
command-specific, FairMQ-specific, or Mesos-specific configuration parameters.

The O2 Configuration repository also contains workflow template structures, which, when
instantiated, result in a workflow associated with an environment. These template structures
can be represented via common hierarchical human-readable data formats such as JSON or
YAML. This representation is further enriched with a template syntax, which allows express-
ing iterators, variables, and internal references.

The workflow template format is not primarily intended as a data interchange format: it is
rather the human-readable representation of a curated list of templates, which are maintained
in the O2 control configuration repository. Importing and exporting such data in a meaningful
way will be handled by the coconut tool, which will also provide support for topologies
generated by other workflow description mechanisms, such as the O2 DPL (Data Processing
Layer) [17].
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Figure 3. The O2 control executor
integrates modular components
called transitioners. These units act
as translation wrappers between O2

control states and events, and the
states and events of the state
machine of a specific controlled
process. In the figure above the
executor has loaded the FairMQ
transitioner, which drives the state
machine of a FairMQ-based process.

4.6 O2 process control

Most O2 processes are also FairMQ devices, i.e., programs that make use of the FairMQ
library for its state machine and I/O facilities. FairMQ provides a plugin system, which is
capable of loading the purpose-built O2 control and configuration plugin for FairMQ devices.
This plugin enables any FairMQ device to accept control commands from an O2 control
executor (see Fig. 3). The OCC plugin takes control of the process on startup, and starts a
gRPC server on a specific TCP port as instructed by the O2 control executor. When the OCC
plugin receives a remote procedure call from the executor, it drives the state machine of the
FairMQ device and reports back. The OCC plugin is also capable of pushing configuration
key-value pairs as FairMQ properties to the FairMQ configuration map of the device.

O2 tasks are started on demand when an environment’s roles require them, but they are
generally not killed when an environment is disbanded. Instead, they are kept in an idle tasks
pool, ready to be reconfigured and used without additional deployment steps (see Fig. 4).
Thus, since automatic port assignment and other crucial data flow setup operations happen at
task configuration time rather than at task startup, it is possible to stop an environment, add
or remove a subtree of roles, and resuming operation without having to redeploy all tasks.

5 Conclusion

We propose a new, custom built, microservices oriented solution for synchronous control in
the O2 computing system. We assert that the leap to O2 is an opportunity for a broad technical

Figure 4. Example of how O2

control handles task deployment.
Tasks in an idle state are generally
not killed when their parent
environment is torn down, instead
they are kept running and tracked in
an idle tasks pool. If and when
necessary, these active but idle tasks
can be reacquired into an
environment if they can satisfy a
role in that environment’s workflow.
They are then reconfigured and
reused.
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refresh by leveraging modern cluster resource management and IPC technologies for a high
performance, low latency O2 control.

By taking advantage of Apache Mesos, we gain resource management, control message
transport, events, and more, with the goal of achieving improved operational flexibility. On
top of this framework, we implement a distributed state machine mechanism, with an expres-
sive configuration format and a modular process control stack for maximum compatibility in
an inevitably heterogeneous context.

We aim to minimize the waste of LHC beam time while ensuring optimal usage of the
new O2 facility for both synchronous and asynchronous data-driven workflows. With the
O2 control system we make provisions for self-contained WLCG-compatible environments
for asynchronous operation. With our design approach we aim to achieve substantial perfor-
mance improvements and operational benefits in mission critical use cases compared to the
previous system.
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