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3.1 Introduction
Currently, four-dimensional techniques applied to higher order calculations are under active
investigation [1–8]. The main motivation for this is the need of simplifying perturbative calcu-
lations necessary to cope with the precision requirements of the future LHC and FCC experi-
ments.

In this contribution, I review the FDR approach [9] to the computation of NNLO correc-
tions in 4 dimensions. In particular, I describe how fully inclusive NNLO final state quark-pair
corrections [10]

σNNLO = σB + σV + σR with
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are computed in FDR by directly enforcing gauge invariance and unitarity in the definition of
the regularized UV and IR divergent integrals. The IR divergent parts of the amplitudes are
depicted in Fig. C.2 and dΦm := δ (P −∑m

i=1 pi)
∏m
i=1 d

4piδ+(p2
i ).
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Fig. C.2: The lowest order amplitude (a), the IR divergent final-state virtual quark-pair
correction (b) and the IR divergent real component (c). The empty circle stands for the emission
of n−1 particles. Additional IR finite corrections are created if the gluons with momenta q1
and k34 are emitted by off-shell particles contained in the empty circle.

In Sec. 3.2, I recall the basics of FDR. The next Sections deal with its use in the contest
of the calculation of σNNLO in Eq. (3.73).

3.2 FDR integration and loop integrals
The main idea of FDR can be sketched out with the help of a simple one-dimensional example
[11]. More details can be found in the relevant literature [9,10,12–16]. Let’s assume one needs
to define the UV divergent integral

I = lim
Λ→∞

∫ Λ

0
dx

x

x+M
, (3.74)

where M stands for a physical energy scale. FDR identifies the UV divergent pieces in terms
of integrands which do not depend on M , the so called FDR vacua, and separates them by
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rewriting

x

x+M
= 1− M

x
+ M2

x(x+M) . (3.75)

The first term in the r.h.s. of Eq. (3.75) is the vacuum responsible for the linear O(Λ) UV
divergence of I and 1/x generates its ln Λ behavior. By definition of FDR integration, both
divergent contributions need to be subtracted from Eq. (3.74). The subtraction of the O(Λ)
piece is performed over the full integration domain [0,Λ], while the logarithmic divergence is
removed over the interval [µR,Λ] only. The arbitrary separation scale µR 6= 0 is needed to keep
a-dimensional and finite the arguments of the logarithms appearing in the subtracted and finite
parts. Thus

IFDR := I − lim
Λ→∞

(∫ Λ

0
dx−

∫ Λ

µR
dx
M

x

)
= M ln M

µR
. (3.76)

The advantage of the definition in Eq. (3.76) is twofold:

– the UV cutoff Λ is traded for µR, which is interpreted, right away, as the renormalization
scale;

– other than logarithmic UV divergences never contribute.

The use of Eq. (3.76) is inconvenient in practical calculations due to the explicit appearance
of µR in the integration interval. An equivalent definition is obtained by adding an auxiliary
unphysical scale µ to x,

x→ x̄ := x+ µ, (3.77)

and introducing an integral operator
∫∞

0 [dx] defined in such a way that it annihilates the FDR
vacua before integration. Thus
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0
[dx] x̄
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0
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)
:= M2 lim
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∫ ∞
0

dx
1

x̄(x̄+M)

∣∣∣∣∣
µ=µR

,(3.78)

where µ→ 0 is an asymptotic limit. Note that, in order to keep the structure of the subtracted
terms as in Eq. (3.75), the replacement x → x̄ must be performed in both numerator and
denominator of the integrated function.

This strategy can be extended to more dimensions and to integrands which are rational
functions of the integration variables, as is the case of multi-loop integrals. For instance, typical
two-loop integrals contributing to σV (γ∗ → jets) and σV (H → bb̄+ jets) are

K1 :=
∫

[d4q1][d4q2] 1
q̄2

1D̄1D̄2q̄2
2 q̄

2
12
, Kρσαβ

2 :=
∫

[d4q1][d4q2] qρ2q
σ
2 q

α
1 q

β
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12
, (3.79)

where q12 := q1 + q2, D̄1,2 = q̄2
1 + 2(q1 · p1,2), p2

1,2 = 0, and q̄2
i := q2

i − µ2 (i = 1, 2, 12), in the
same spirit of Eq. (3.77).

FDR integration keeps shift invariance in any of the loop integration variables and the
possibility of cancelling reconstructed denominators, e.g.∫

[d4q1][d4q2] q̄2
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12

= K1. (3.80)
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Since, instead,
∫

[d4q1][d4q2] q2
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12
6= K1, this last property is maintained only if the replace-

ment q2
i → q̄2

i is also performed in the numerator of the loop integrals whenever q2
i is generated

by Feynman rules. This is called global prescription (GP), often denoted by q2
i →

GP
q̄2
i .

GP and shift invariance guarantee results which do not depend on the chosen gauge
[12, 14]. Nevertheless, unitarity should also be maintained. This requires that any given UV
divergent sub-diagram produce the same result when computed/manipulated separately or
when embedded in the full diagram. Such a requirement is called sub-integration consistency
(SIC) [15]. Enforcing SIC in the presence of IR divergent integrals, such as those in Eq. (3.79),
needs extra care. In fact, the IR treatments of σV and σR should match with each other. In the
next Sections I describe how this is achieved in the computation of the observable in Eq. (3.73).

3.3 Keeping unitarity in the virtual component
Any integral contributing to σV has the form

IV =
∫

[d4q1][d4q2] NV

D̄q̄2
2 q̄

2
12
, (3.81)

where D̄ collects all q2-independent propagators and NV is the numerator of the correspond-
ing Feynman diagram. IV can be sub-divergent or globally divergent for large values of the
integration momenta. For example, K1 in Eq. (3.79) only diverges when q2 → ∞, while K2
also when q1,2 → ∞. This means that FDR prescribes the subtraction of a global vacuum
(GV) involving both integration variables in K2, while the sub-vacuum (SV) developed when
q2 → ∞ should be removed from both K1 and K2. In addition, IR infinities are generated by
the on-shell conditions p2

1,2 = 0. Even though IR divergences are automatically regulated when
barring the loop denominators, a careful SIC preserving treatment is necessary in order not to
spoil unitarity. Since the only possible UV sub-divergence is produced by the quark loop in
Fig. C.2-(b), this is accomplished as follows [10]:

– one does not apply GP to the contractions gρσqρ2qσ2 when gρσ refers to indices external to
the UV divergent sub-diagram;

– one replaces back everywhere q̄2
1 → q2

1 after GV subtraction.

The external indices entering the calculation of σV in Eq. (3.73) are denoted by ρ̂ and σ̂
in Fig. C.3-(a,b). Using this convention, one can rephrase the first rule as follows: gρσqρ2qσ2 =

pq1+p
ρ̂

σ̂

(a)

q2q12
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σ̂

(b)
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k3

k4

(c)

ρ̂

σ̂

k1

k3

k4

(d)

.

Fig. C.3: Virtual and real cuts contributing to the IR divergent parts of σV (a,b) and σR (c,d).
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q2
2 →
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q̄2

2, but gρ̂σ̂q
ρ
2q
σ
2 := q̂2

2 →
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q2
2, which gives, for instance,

gρσK
ρσαβ
2 →GP

K̄αβ
2 =

∫
[d4q1] qα1 q

β
1

q̄4
1D̄1D̄2

∫
[d4q2] 1

q̄2
12

= 0, but

gρ̂σ̂K
ρσαβ
2 →GP

K̂αβ
2 =

∫
[d4q1][d4q2] q2

2q
α
1 q

β
1

q̄4
1D̄1D̄2q̄2

2 q̄
2
12
6= 0, (3.82)

where K̄αβ
2 vanishes because the shift q2 → q2 − q1 makes it proportional to the sub-vacuum

1/q̄2
2, which is annihilated by the

∫
[d4q2] operator. It can be shown [10, 15] that integrals such

as K̂αβ
2 generate the unitarity restoring logarithms missed by K̄αβ

2 .
As for the second rule, it states that a GV subtraction is needed first. In the case of

K̂αβ
2 , this is achieved by rewriting 1

D̄1
= 1

q̄2
1
− 2(q1·p1)

D̄1q̄2
1
. The first term gives a scaleless integral,

annihilated by
∫

[d4q1][d4q2], so that

K̂αβ
2 = −2

∫
[d4q1][d4q2] (q1 · p1)q2

2q
α
1 q

β
1

q̄6
1D̄1D̄2q̄2

2 q̄
2
12
, (3.83)

which is now only sub-divergent when q2 →∞, as is K1 in Eq. (3.79). After that, the replace-
ment q̄2

1 → q2
1 produces

K1 → K̃1 =
∫
d4q1[d4q2] 1

q2
1D1D2q̄2

2 q̄
2
12
, K̂αβ

2 → K̃αβ
2 = −2

∫
d4q1[d4q2] (q1 · p1)q2

2q
α
1 q

β
1

q6
1D1D2q̄2

2 q̄
2
12
. (3.84)

All two-loop integrals IV in Eq. (3.81) should be treated in this way. In the case of the NF part
of σV (γ∗ → jets) and σV (H → bb̄ + jets) this produces three master integrals, which can be
computed as described in Appendix D of [10].

After loop integration, σV contains logarithms of µ2 of both UV and IR origin. The former
should be replaced by logarithms of µ2

R, as dictated by Eq. (3.78), while the latter compensate
the IR behavior of σR. To disentangle the two cases, it is convenient to renormalize σV first.
This means expressing the bare strong coupling constant a0 := α0

S/4π and the bare bottom
Yukawa coupling y0

b in terms of a := αMS
S (s)/4π and yb extracted from the the bottom pole

mass mb. The relevant relations in terms of L := lnµ2/(p1 − p2)2 and L′′ := lnµ2/m2
b are as

follows [10]

a0 = a
(
1 + aδ(1)

a

)
, y0

b = yb
(
1 + aδ(1)

y + a2
(
δ(2)
y + δ(1)

a δ(1)
y

))
, (3.85)

with

δ(1)
a = 2

3NFL, δ
(1)
y = −CF (3L′′ + 5) , δ(2)

y = CFNF

(
L′′

2 + 13
3 L

′′ + 2
3π

2 + 151
18

)
. (3.86)

After renormalization, the remaining µ2s are the IR ones.

3.4 Keeping unitarity in the real component
The integrands in σR of Eq. (3.73) are represented in Fig. C.3-(c,d). They are of the form

JR = NR

Ssα34s
β
134
, si...j := (ki + . . .+ kj)2, 0 ≤ α, β ≤ 2, (3.87)
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where NR is the numerator of the amplitude squared and S collects the remaining propagators.
Depending on the value of α and β, JR becomes infrared divergent when integrated over Φn+2.
These IR singularities must be regulated consistently with the SIC preserving treatment of σV
described in Sec. 3.3.

The changes q2
2 →

GP
q̄2

2 and q2
12 →

GP
q̄2

12 in the virtual cuts of Fig. C.3-(a,b) imply the
Cutkosky relation

1
(q̄2

2 + i0+)(q̄2
12 + i0+) ↔

(2π
i

)2
δ+(k̄2

3)δ+(k̄2
4), (3.88)

with k̄2
3,4 := k2

3,4 − µ2. Hence, one replaces in Eq. (3.73) Φn+2 → Φ̃n+2, where the phase-space
Φ̃n+2 is such that k2

3 = k2
4 = µ2 and k2

i = 0 when i 6= 3, 4. In [10] it is proven that SV
subtraction in σV does not alter Eq. (3.88). Analogously, the correspondence between cuts (a)
and (d)

1
(q1 + p)2 + i0+ ↔

2π
i
δ+(k2

1) (3.89)

is not altered by GV subtraction. Finally, k2
3, k2

4 and (k3 + k4)2 = s34 in NR of Eq. (3.87)
should be treated using the same prescriptions imposed on q2

2, q2
12 and q2

1 in NV of Eq. (3.81),
respectively. This means replacing

k2
3,4 → k̄2

3,4 = 0, (k3 · k4) = 1
2
(
s34 − k2

3 − k2
4

)
→ 1

2(s34 − k̄2
3 − k̄2

4) = 1
2s34, (3.90)

where the last equalities are induced by the delta functions in Eq. (3.88). These changes should
be performed everywhere in NR except in contractions induced by the external indices ρ̂ and σ̂
in cuts (c,d). In this case

gρ̂σ̂k
ρ
3,4k

σ
3,4 → k2

3,4 = µ2, gρ̂σ̂k
ρ
3k

σ
4 → (k3 · k4) = s34 − 2µ2

2 . (3.91)

In the case of the NF part of σR(γ∗ → jets) and σR(H → bb̄+jets), integrating JR over Φ̃4 and
taking the asymptotic µ→ 0 limit produces the phase-space integrals reported in Appendix E
of [10].

3.5 Results and conclusions
Using the approach outlined in Sec. 3.3 and Sec. 3.4 one reproduces the known MS results for
the NF components of σNNLO(H → bb̄+ jets) and σNNLO(γ∗ → jets) [10]

σNNLO(H → bb̄+ jets) = ΓBORN(yMS
b (MH))

{
1 + a2CFNF

(
8ζ3 + 2

3π
2 − 65

2

)}
,

σNNLO(γ∗ → jets) = σBORN

{
1 + a2CFNF (8ζ3 − 11)

}
. (3.92)

This shows, for the first time, that a fully four-dimensional framework to compute NNLO quark-
pair corrections can be constructed based on the requirement of preserving gauge invariance and
unitarity. The basic principles leading to a consistent treatment of all the pieces contributing
to the NNLO results in Eq. (3.92) are expected to remain valid also when considering more
complicated environments. A general four-dimensional NNLO procedure including initial state
IR singularities is currently under investigation.
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