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4.1 Introduction
The most precise determination of fundamental parameters of the Standard Model is very
important. One such fundamental parameter is the strong coupling of QCD. Its importance
can be gauged by taking a look at the various experiments and configurations where it was
measured, for an up to date summary see Ref. [1]. The precise measurement of such a parameter
is two-fold difficult. First, high quality data with small and well-controlled uncertainties are
needed. Second, high precision calculations are needed from the theory side such that theoretical
uncertainties are small as well.

In a theoretical prediction based on calculation in perturbation theory the uncertainty has
two main sources: the omission of higher-order terms which are estimated by the renormaliza-
tion scale and the numerical stability of the integrations. While the dependence on unphysical
scales can be, in principle, decreased by including more and more higher-order contributions
in the prediction the numerical uncertainty can be intrinsic to the method used to obtain the
theoretical prediction. Beside this, the way of comparison of experiment with theory is also
affected by another uncertainty. While an experiment measures color-singlet objects, hadrons,
the predictions are made in QCD for colorful ones, partons. The assumption of local parton-
hadron duality ensures a correspondence between these two up to non-perturbative effects.
Non-perturbative effects are power corrections in nature going with some negative power of the
collision energy. This means that for an accurate comparison 1) either these effects should be
estimated and taken into account 2) or the experiment should have a high enough energy that
these contributions become negligible compared to other effects 3) or an observable has to be
chosen which is not sensitive to these effects.

To take into account these non-perturbative effects we have to choose from phenomenolog-
ical [2,3] or analytical models [4]. It is worth to note that none of these models are derived from
first principles hence there is still room for improvement. Non-perturbative effects derived from
first principles would also be favored because these corrections are to be used in comparisons
of predictions to experimental measurements. Currently phenomenological models use several
parameters fitted to experimental data thus bias is introduced in the measurement of physical
parameters. The calculation of non-perturbative corrections from first principles is also advo-
cated because the only available analytical model seems to be ill-suited for the current precision
of theoretical calculations as it was shown in Ref. [5].

In this report we show two approaches how the measurement of a physical parameter, the
strong coupling, can be carried out with high precision. Because the used observables allow
for such measurements these can be considered as interesting subjects to study in a future
electron-positron collider.

4.2 Precision through higher orders
One possible approach to increase the precision of a measurement from the theoretical perspec-
tive is to select an observable and refine its prediction by including higher-order contributions
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Fig. B.23: The fixed-order prediction for EEC in the first three orders of perturbation theory
with theoretical uncertainties. The dots show the measurement by the OPAL collaboration [11].
On the lower panel we compared the predictions and the measurement to the NNLO result.

in fixed-order perturbation theory or by means of resummation. With the completion of the
CoLoRFulNNLO subtraction method [6–8] for electron-positron collisions the next-to-next-to-
leading order (NNLO) QCD prediction for energy-energy correlation (EEC) became available
recently [9] for the first time. Matching this with predictions obtained by resumming leading
(LL), next-to-leading (NLL) and next-to-next-to-leading logarithms (NNLL) in the back-to-
back region [10] it was possible by matching the two calculations to arrive at the most precise
theoretical prediction for this observable at NNLO+NNLL accuracy in QCD [5]. The energy-
energy correlation is defined as a normalized energy-weighted sum of two-particle correlations:

1
σt

dΣ(χ)
d cosχ ≡

1
σt

∫ ∑
i,j

EiEj
Q2 dσe+e−→ij+Xδ(cosχ+ cos θij) , (4.37)

where Q is the center-of mass energy of the collision, σt is the corresponding total cross section,
Ei is the energy of the ith particle, cos θij is the enclosed angle between the particles, i and j.
The theoretical prediction for EEC in the first three orders of perturbation theory is depicted on
Fig. B.23. The theoretical uncertainties were obtained from varying the renormalization scale
between mZ/2 and 2mZ . As can be seen from the lower panel even when using the highest
precision prediction the difference between measurement and theory is sizable. This can be
attributed to missing higher-order terms becoming important at the edge of phase space and
missing hadronization corrections.

The behavior near χ = 0 can be improved by including all-order results through resum-
mation. In Ref. [12] we used modern Monte Carlo (MC) tools to extract such corrections for
EEC. To do so we generated event samples both at the hadron and at the parton level and the
ratio of these provided the hadron-to-parton ratio or H/P . Using this ratio and multiplying
our parton-level predictions bin-by-bin we obtained our theoretical prediction at the hadron
level. As MC tools we used SHERPA2.2.4 [13] and Herwig7.1.1 [14]. The exact setup of the
MC tools is presented in Ref. [12].
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Fig. B.24: EEC distributions obtained with the two MC tools at the parton and hadron level
at 91.2 GeV with corresponding OPAL data shown as well. Note that for these two plots a
different χ definition was used: this time the back-to-back region corresponds to χ→ 180◦.

The value for the strong coupling was determined by fitting the predictions to 20 different
data sets, for details see Tab. 1 of Ref. [12]. For illustrative purposes on Fig. B.24 we showed
the predictions obtained with SHERPA and Herwig at the parton and hadron level. For SHERPA
we used both the Lund (SL) [3] and cluster (SC) [2] hadronization models while in Herwig we
used the built-in cluster model. On the figure we also indicated the range what was used in
the actual fitting procedure.

To carry out the fitting the MINUIT2 program [15] was used to minimize the quantity:

χ2(αS) =
∑

datasets
χ2

dataset(αS) (4.38)

with the χ2(αS)§ quantity calculated as:

χ2(αS) = (D − P (αS))TV −1(D − P (αS)) , (4.39)

where D is the vector of data points, P is the vector of predictions as functions of αS and V
is the covariance matrix.

With the fitting procedure performed in the range between 60◦ and 160◦. The resulting
strong coupling NNLL+NNLO prediction is:

αS(mZ) = 0.11750± 0.00287 (4.40)
§Not to be confused with the angle χ.
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and at NNLL+NLO accuracy is:

αS(mZ) = 0.12200± 0.00535 . (4.41)

Notice the reduction of uncertainties as we go from NNLL+NLO to NNLL+NNLO.

4.3 Precision through small power corrections
As outlined in the introduction the current ways of taking into account the effect of non-
perturbative contributions can raise concerns mainly because only phenomenological models
are present for them. The other big concern is that these models rely on experimental results
through tuned parameters. The best option without any model derived from first principles
is to decrease these effects as much as possible. The idea is simple: if the non-perturbative
contribution can be shrunk its large uncertainties will become smaller contribution to the final
uncertainty of the extracted value of strong coupling.

In this section we focus on altering the definitions of existing observables to decrease the
non-perturbative corrections. The most basic and most used observables in electron-positron
collisions are the thrust (T ) and the various jet masses. In their original definitions all of them
incorporate all registered hadronic objects of the event or a given, well-defined region. Hence a
natural way to modify these is to filter the tracks contributing to their value in an event. One
possible way to remove tracks is by means of grooming [16–21]. In particular the soft drop [21]
is a grooming when a part of the soft content of the event is removed according to some criteria.

In Ref. [22] soft-drop variants were defined for thrust, τ ′SD = 1−T ′SD, hemisphere jet mass,
e

(2)
2 and narrow jet mass, ρ. As it was showed in the paper the non-perturbative corrections can
be drastically decreased if soft drop is applied. The effect of soft drop turns out to be the most
significant in the peak region of the distributions where the contribution from all-order resum-
mation and non-perturbative effects is the greatest. This makes these observables promising
candidates for strong coupling measurements at a future electron-positron collider. The appli-
cation of these observables – although very interesting – is limited at LEP measurements due
to the limited amount of data taken and because the soft-drop procedure inherently results in
a decrease of cross section.

In our recent paper [23] we analyzed the proposed observables from the standpoint of
perturbative behavior by calculating the NNLO QCD corrections to them and analyzing their
dependence on the non-physical renormalization scale as an indicator of the size of neglected
higher-order terms. The soft-drop versions of the observables listed above have two parameters
related to soft drop: zc and β [22]. This allows for optimization in order to minimize the
decrease in cross section when the soft-drop procedure is applied.

On Fig. B.25 the soft-dropped thrust distribution is shown in the first three orders of
QCD perturbation theory for a specific choice of the two soft-drop related parameters. On the
right hand side of the same figure the K-factors are depicted for various parameter choices to
illustrate the stability of the result. We found that the most stable perturbation prediction and
moderate drop in cross section can be achieved when (zc, β) = (0.1, 0).

On Fig. B.26 the soft-dropped hemisphere jet mass is depicted in exactly the same way as
the soft-dropped thrust on Fig. B.25. In this case it can be seen once more that the perturbative
behavior stabilizes as going to higher orders in perturbation theory. This is the most pronounced
at the left hand side of the peak where the NLO and NNLO predictions coincide. For this
observable we found that the best choice for the soft-drop parameters is also (zc, β) = (0.1, 0).
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Fig. B.25: (L): Soft-dropped thrust distribution at the Z peak in the first three orders of
perturbation theory, the bands represent the uncertainty coming from the variation of the
renormalization scale between Q/2 and 2Q. (R): The K-factors for the soft-dropped thrust
distribution for various choices of the soft-drop parameters.

For the traditional versions of these observables the peak region is the one where the all-order
resummed results and non-perturbative corrections are mandatory to have agreement with the
experiment but for the soft-dropped versions neither the higher-order contributions nor the
non-perturbative corrections are drastic. The minimal role of higher orders in perturbation
theory can be seen from the perturbative stability of our results while the small size of non-
perturbative corrections has been shown in Ref. [22]. These properties make the soft-dropped
event shapes attractive observables for the extraction of the strong coupling.

4.4 Conclusions
A future electron-positron collider would be considered as a dream machine for many reasons.
A machine of this type would allow for a precise tuning of collision energy, it would be without
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Fig. B.26: The same as Fig. B.25 but for the hemisphere jet mass.
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any annoying underlying event and with colored partons in the initial state. Several possible
measurements could be envisioned at such a machine but from the QCD point of view the de-
termination of the strong coupling stands out. The strong coupling is a fundamental parameter
of the standard model of particle physics so knowing its value is of key importance.

In this report we showed two possible ways to conduct such a measurement. First, by
including higher-order corrections in the theoretical prediction and comparing this to the ex-
perimental result modeling non-perturbative effects with modern MC tools. Second, we showed
modified versions of well-known observables defined in electron-positron collisions where non-
perturbative corrections can be minimized hence diminishing the effects of their uncertainties on
theoretical predictions. These observables seem to be promising candidates not just for strong
coupling measurements but also for the purpose of testing the Standard Model further. Thus
they should be seriously considered as important measurements at a future electron-positron
facility.
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