IMPLEMENTATION OF THE ATLAS TRIGGER WITHIN THE MULTI-THREADED ATHENAMT FRAMEWORK

Kondoli woven sculpture, SA Maritime Museum Image via ABC

TENG JIAN KHOO ON BEHALF OF THE ATLAS COLLABORATION

OVERVIEW

- Computing resources don't scale with challenge of growing LHC luminosity – SW evolution necessary
- Large project to implement GaudiHive & AthenaMT framework upgrades
 - Framework elements common with LHCb and other experiments [Gaudi webpage] Multithreading uses Intel Threading Building Blocks (TBB)
- Here cover adaptation of ATLAS software trigger

WHY MULTITHREADING?

"Embarrassingly parallel" no longer enough

- Processor speed plateau -> growth of multicore
- Memory price floor -> need for memory sharing

Run 2 approach: multiprocess execution

- Fork workers after initialisation (or first event)
- Share large static data structures
- Slow memory growth unavoidable
- Intra-event parallelisation limited •
- Pathway to future computing architectures E.g. GPUs or FPGAs for hardware acceleration

PARALLELISM

AthenaMT

Inter-event Intra-event Sub-algorithm

PERFORMANCE SCALING

Close to ideal CPU scaling per core with minimal memory growth Some bottlenecks still to be addressed

<u>S Snyder et al 2019, EPJ Web Conf., 214 (2019) 05018</u>

DISTILLING PHYSICS

ATLAS TRIGGER ARCHITECTURE

T.J. KHOO

ATLAS TRIGGER ARCHITECTURE

C

T.J. KHOO

TOPIC OF THIS TALK

HLT COMPUTING CONSTRAINTS

CORE HLT ELEMENTS

• Algorithmic code

- Four-momentum reconstruction & Particle ID
- Decision-making ("Hypothesis")

Regional reconstruction

Local detector readout where L1 trigger fired - "Regions of Interest" (all detector slices)

Data flow & scheduling ("Control Flow") •

- Reconstruct once, cache data for reuse
- Early termination when event rejection is established
- Decisions recorded as event data

CONSTRAINTS & SOLUTIONS

Ensure code is thread-friendly

- Const data access
- State-free execution

Asynchronous conditions access

- Conditions object containers in data store
- Intervals Of Validity mapped to data objects
- Conditions Algorithms populate store for new IOV

Removal of trigger-specific steering wrapper

Integration of Control Flow elements into framework allowing execution to be stopped early

CORE HLT ELEMENTS IN ATHENANT

• Algorithmic code

- Shared where possible with offline domain
- Regional reconstruction
 - <u>Views</u> in Event Store restrict geometric acceptance transparently to algorithmic code
 - Parallel reconstruction of multiple Regions of Interest
- Data flow & scheduling
 - GaudiHive graph-based scheduler
 - Declarative data access
 - Control Flow sequences
- Decisions recorded as event data

ATHENAMT DATA ACCESS

Sub-algorithm components (tools) propagate data inputs/outputs to parent

ATHENAMT SCHEDULING

Data in/outputs specified during initialisation. GaudiHive scheduler resolves execution graph before launching event loop

TRIGGER SCHEDULING

Reco alg: prepare data

Hypo: make decision on data

Filter: gate execution based on hypo

Execute all children in parallel, return logical OR

Execute children sequentially, return early if fail

MIGRATION STATUS

- Core infrastructure largely in place
- "Mechanical" migration of reconstruction elements in progress
 - Jointly with offline code
- O(100) Run 2 chains in test trigger menu, some fraction of which fully implemented

- Common Gaudi framework extended to support multithreading
- AthenaMT extensions permit ATLAS HLT operation for O(500ms) reconstruction and event filtering
 - **Regional reconstruction with Event Views**
 - Early rejection with Control Flow gate nodes
- Some Run 2 chains fully implemented
- Validation & performance assessments to come

SUMMARY

REFERENCES

• AthenaMT: <u>ATL-SOFT-PROC-2017-019</u>

GaudiHive/Avalanche scheduler:
<u>http://concurrency.web.cern.ch/GaudiHive</u>

PHYSICS PERFORMANCE

ATLAS-DAQ-PUB-2018-002

OVERVIEW OF ATHENA ARCHITECTURE

Sequence

Algorithm

Tool

Service

T.J. KHOO

