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Abstract We introduce the DNNLikelihood, a novel frame-
work to easily encode, through deep neural networks (DNN),
the full experimental information contained in complicated
likelihood functions (LFs). We show how to efficiently
parametrise the LF, treated as a multivariate function of
parameters of interest and nuisance parameters with high
dimensionality, as an interpolating function in the form of a
DNN predictor. We do not use any Gaussian approximation
or dimensionality reduction, such as marginalisation or pro-
filing over nuisance parameters, so that the full experimental
information is retained. The procedure applies to both binned
and unbinned LFs, and allows for an efficient distribution
to multiple software platforms, e.g. through the framework-
independent ONNX model format. The distributed DNN-
Likelihood can be used for different use cases, such as re-
sampling through Markov Chain Monte Carlo techniques,
possibly with custom priors, combination with other LFs,
when the correlations among parameters are known, and
re-interpretation within different statistical approaches, i.e.
Bayesian vs frequentist. We discuss the accuracy of our pro-
posal and its relations with other approximation techniques
and likelihood distribution frameworks. As an example, we
apply our procedure to a pseudo-experiment corresponding
to a realistic LHC search for new physics already considered
in the literature.
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1 Introduction

The Likelihood Function (LF) is the fundamental ingredient
of any statistical inference. It encodes the full information on
experimental measurements and allows for their interpreta-
tion both from a frequentist (e.g. Maximum Likelihood Esti-
mation (MLE)) and a Bayesian (e.g. Maximum a Posteriori
(MAP)) perspectives.1

On top of providing a description of the combined con-
ditional probability distribution of data given a model (or
vice versa, when the prior is known, of a model given data),
and therefore of the relevant statistical uncertainties, the LF
may also encode, through the so-called nuisance parameters,
the full knowledge of systematic uncertainties and additional

1 To be precise, the LF does not contain the full information in the
frequentist approach, since the latter does not satisfy the Likelihood
Principle (for a detailed comparison of frequentist and Bayesian infer-
ence see, for instance, Refs. [1,2]). In particular, frequentists should
specify assumptions about the experimental setup and about experi-
ments that are not actually performed which are not relevant in the
Bayesian approach. Since these assumptions are usually well spelled
in fundamental physics and astrophysics (at least when classical infer-
ence is carefully applied), we ignore this issue and assume that the LF
encodes the full experimental information.
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constraints (for instance coming from the measurement of
fundamental input parameters by other experiments) affect-
ing a given measurement or observation, as for instance dis-
cussed in Ref. [3].

Current experimental and phenomenological results in
fundamental physics and astrophysics typically involve com-
plicated fits with several parameters of interest and hundreds
of nuisance parameters. Unfortunately, it is generically con-
sidered a hard task to provide all the information encoded
in the LF in a practical and reusable way. Therefore, exper-
imental analyses usually deliver only a small fraction of the
full information contained in the LF, typically in the form
of confidence intervals obtained by profiling the LF on the
nuisance parameters (frequentist approach), or in terms of
probability intervals obtained by marginalising over nuisance
parameters (Bayesian approach), depending on the statistical
method used in the analysis. This way of presenting results is
very practical, since it can be encoded graphically into simple
plots and/or simple tables of expectation values and corre-
lation matrices among observables, effectively making use
of the Gaussian approximation, or refinements of it aimed at
taking into account asymmetric intervals or one-sided con-
straints. However, such ‘partial’ information can hardly be
used to reinterpret a result within a different physics scenario,
to combine it with other results, or to project its sensitivity
to the future. These tasks, especially outside experimental
collaborations, are usually done in a naïve fashion, trying
to reconstruct an approximate likelihood for the quantities of
interest, employing a Gaussian approximation, assuming full
correlation/uncorrelation among parameters, and with little
or no control on the effect of systematic uncertainties. Such
control on systematic uncertainties could be particularly use-
ful to project the sensitivity of current analyses to future
experiments, an exercise particularly relevant in the context
of future collider studies [4–6]. One could for instance ask
how a certain experimental result would change if a given sys-
tematic uncertainty (theoretical or experimental) is reduced
by some amount. This kind of question is usually not address-
able using only public results for the aforementioned reasons.
This and other limitations could of course be overcome if the
full LF were available as a function of the observables and
of the elementary nuisance parameters, allowing for:

1. the combination of the LF with other LFs involving (a
subset of) the same observables and/or nuisance parame-
ters;

2. the reinterpretation of the analysis under different theo-
retical assumptions (up to issues with unfolding);

3. the reuse of the LF in a different statistical framework;
4. the study of the dependence of the result on the prior

knowledge of the observables and/or nuisance parameters.

A big effort has been put in recent years into improving the
distribution of information on the experimental LFs, usually
in the form of binned histograms in mutually exclusive cate-
gories, or, even better, giving information on the covariance
matrix between them. An example is given by the Higgs
Simplified Template Cross Sect. [7]. Giving only informa-
tion on central values and uncertainties, this approach makes
intrinsic use of the Gaussian approximation to the LF without
preserving the original information on the nuisance parame-
ters of each given analysis. A further step has been taken in
Refs. [8–10] where a simplified parameterisation in terms of
a set of “effective” nuisance parameters was proposed, with
the aim of catching the main features of the true distribu-
tion of the observables, up to the third moment.2 This is a
very practical and effective solution, sufficiently accurate for
many use cases. On the other hand, its underlying approxi-
mations come short whenever the dependence of the LF on
the original nuisance parameters is needed, and with highly
non-Gaussian (e.g. multi-modal) LFs.

Recently, the ATLAS collaboration has taken a major step
forward, releasing the full experimental LF of an analysis
[12] on HEPData [13] through the HistFactory framework
[14], with the format presented in Ref. [15]. Before this, the
release of the full experimental likelihood was advocated
several times as a fundamental step forward for the HEP
community (see e.g. the panel discussion in Ref. [16]), but
so far it was not followed up with a concrete commitment.
The lack of a concrete effort in this direction was usually
attributed to technical difficulties and indeed, this fact was
our main motivation when we initiated the work presented
in this paper.

In this work, we propose to present the full LF, as used
by experimental collaborations to produce the results of their
analyses, in the form of a suitably trained Deep Neural Net-
work (DNN), which is able to reproduce the original LF as a
function of physical and nuisance parameters with the accu-
racy required to allow for the four aforementioned tasks.

The DNNlikelihood approach offers at least two remark-
able practical advantages. First, it does not make underly-
ing assumptions on the structure of the LF (e.g. binned vs
unbinned), extending to use cases that might be problem-
atic for currently available alternative solutions. For instance,
there are extremely relevant analyses that are carried out
using an unbinned LF, notably some Higgs study in the four-
leptons golden decay mode [17] and the majority of the anal-
yses carried out at B-physics experiments. Second, the use
of a DNN does not impose on the user any specific software
choice. Neural Networks are extremely portable across mul-
tiple software environments (e.g. C++, Python, Matlab, R,
or Mathematica) through the ONNX format [18]. This aspect

2 This approach is similar to the one already proposed in Ref. [11].
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could be important whenever different experiments make dif-
ferent choices in terms of how to distribute the likelihood.

In this respect, we believe that the use of the DNNLike-
hood could be relevant even in a future scenario in which
every major experiment has followed the remarkable exam-
ple set by ATLAS. For instance, it could be useful to over-
come some technical difficulty with specific classes of anal-
yses. Or, it could be seen as a further step to take in order to
import a distributed likelihood into a different software envi-
ronment. In addition, the DNNLikehood could be used in
other contexts, e.g. to distribute the outcome of phenomeno-
logical analyses involving multi-dimensional fits such as the
Unitarity Triangle Analysis [19–23], the fit of electroweak
precision data and Higgs signal strengths [24–28], etc.

There are two main challenges associated to our proposed
strategy: on one hand, in order to design a supervised learn-
ing technique, an accurate sampling of the LF is needed
for the training of the DNNLikelihood. On the other hand
a (complicated) interpolation problem should be solved with
an accuracy that ensures a real preservation of all the required
information on the original probability distribution.

The first problem, i.e. the LF sampling, is generally easy
to solve when the LF is a relatively simple function which can
be quickly evaluated in each point in the parameter space. In
this case, Markov Chain Monte Carlo (MCMC) techniques
[29] are usually sufficient to get dense enough samplings
of the function, even for very high dimensionality, in a rea-
sonable time. However the problem may quickly become
intractable with these techniques when the LF is more com-
plicated, and takes much longer time to be evaluated. This
is typically the case when the sampling workflow requires
the simulation of a data sample, including computationally
costly corrections (e.g. radiative corrections) and/or a simu-
lation of the detector response, e.g. through Geant4 [30]. In
these cases, evaluating the LF for a point of the parameter
space may require O(minutes) to go through the full chain of
generation, simulation, reconstruction, event selection, and
likelihood evaluation, making the LF sampling with stan-
dard MCMC techniques impractical. To overcome this dif-
ficulty, several ideas have recently been proposed, inspired
by Bayesian optimisation and Gaussian processes, known as
Active Learning (see, for instance, Refs. [31,32] and ref-
erences therein). These techniques, though less robust than
MCMC ones, allow for a very “query efficient” sampling,
i.e. a sampling that requires the smallest possible number of
evaluations of the full LF. Active Learning applies machine
learning techniques to design the proposal function of the
sampling points and can be shown to be much more query
efficient than standard MCMC techniques. Another possibil-
ity would be to employ deep learning and MCMC techniques
together in a way similar to Active Learning, but inheriting
some of the nice properties of MCMC. We defer a discussion
of this new idea to a forthcoming publication [33], while in

this work we focus on the second of the aforementioned tasks:
we assume that an accurate sampling of the LF is available
and design a technique to encode it and distribute it through
DNNs.

A Jupyter notebook, the Python source files and results
presented in this paper are available on GitHub �, while
datasets and trained networks are stored on Zenodo [34].
A dedicated Python package allowing to sample LFs and
to build, optimize, train, and store the corresponding DNN-
Likelihoods is in preparation. This will not only allow to con-
struct and distribute DNNLikelihoods, but also to use them
for inference both in the Bayesian and frequentist frame-
works.

This paper is organized as follows. In Sect. 2 we discuss
the issue of interpolating the LF from a Bayesian and fre-
quentist perspective and set up the procedure for producing
suitable training datasets. In Sect. 3 we describe a benchmark
example, consisting in the realistic LHC-like New Physics
(NP) search proposed in Ref. [9]. In Sect. 4 we show our
proposal at work for this benchmark example, whose LF
depends on one physical parameter, the signal strength μ,
and 94 nuisance parameters. Finally, in Sect. 5 we conclude
and discuss some interesting ideas for future studies.

2 Interpolation of the Likelihood function

The problem of fitting high-dimensional multivariate func-
tions is a classic interpolation problem, and it is nowadays
widely known that DNNs provide the best solution to it. Nev-
ertheless, the choice of the loss function to minimise and of
the metrics to quantify the performance, i.e. of the “distance”
between the fitted and the true function, depends crucially on
the nature of the function and its properties. The LF is a spe-
cial function, since it represents a probability distribution.
As such, it corresponds to the integration measure over the
probability of a given set of random variables. The interesting
regions of the LF are twofold. From a frequentist perspec-
tive the knowledge of the profiled maxima, that is maxima
of the distribution where some parameters are held fixed,
and of the global maximum, is needed. This requires a good
knowledge of the LF in regions of the parameter space with
high probability (large likelihood), and, especially for high
dimensionality, very low probability mass (very small prior
volume). These regions are therefore very hard to populate
via sampling techniques [35] and give tiny contributions to
the LF integral, the latter being increasingly dominated by
the “tails” of the multidimensional distribution as the num-
ber of dimensions grows. From a Bayesian perspective the
expectation values of observables or parameters, which can
be computed through integrals over the probability measure,
are instead of interest. In this case one needs to accurately
know regions of very small probabilities, which however cor-
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respond to large prior volumes, and could give large contri-
butions to the integrals.

Let us argue what is a good “distance” to minimise to
achieve both of the aforementioned goals, i.e. to know the
function equally well in the tails and close to the profiled max-
ima corresponding to the interesting region of the parameters
of interest. Starting from the view of the LF as a probability
measure (Bayesian perspective), the quantity that one is inter-
ested in minimising is the difference between the expectation
values of observables computed using the true probability
distribution and the fitted one.

For instance, in a Bayesian analysis one may be interested
in using the probability densityP = L×�, whereL denotes
the likelihood and � the prior, to estimate expectation values
as

EP(x)[ f (x)] =
∫

f (x)dP(x) =
∫

f (x)P(x)dx , (1)

where the probability measure is dP(x) = P(x)dx, and
we collectively denoted by the n-dimensional vector x the
parameters on which f and P depend, treating on the same
footing the nuisance parameters and the parameters of inter-
est. Let us assume now that the solution to our interpolation
problem provides a predicted pdf PP(x), leading to an esti-
mated expectation value

EPP(x)[ f (x)] =
∫

f (x)PP(x)dx . (2)

This can be rewritten, by defining the ratio r(x) ≡
PP(x)/P(x) = LP(x)/L(x), as

EPP(x)[ f (x)] =
∫

f (x)r(x)P(x)dx , (3)

so that the absolute error in the evaluation of the expectation
value is given by
∣∣EP(x)[ f (x)] − EPP(x)[ f (x)]∣∣

=
∣∣∣∣
∫

f (x) (1 − r(x))P(x)dx

∣∣∣∣ . (4)

For a finite sample of points xi , with i = 1, . . . , N , the
integrals are replaced by sums and Eq. (4) becomes
∣∣EP(x)[ f (x)] − EPP(x)[ f (x)]∣∣

=
∣∣∣∣∣∣

1

N

∑
xi |U(x)

f (xi ) (1 − r(xi ))F(xi )

∣∣∣∣∣∣ . (5)

Here, the probability density functionP(x)has been replaced
withF(xi ), the frequencies with which each of the xi occurs,
normalised such that

∑
xi |U(x)

F(xi ) = N , the notation
xi |U(x) indicates that the xi are drawn from a uniform dis-
tribution, and the 1/N factor ensures the proper normalisa-
tion of probabilities. This sum is very inefficient to calculate
when the probability distribution P(x) varies rapidly in the

parameter space, i.e. deviates strongly from a uniform distri-
bution, since most of the xi points drawn from the uniform
distribution will correspond to very small probabilities, giv-
ing negligible contributions to the sum. An example is given
by multivariate normal distributions, where, increasing the
dimensionality, tails become more and more relevant (see
“Appendix A”). A more efficient way of computing the sum
is given by directly sampling the xi points from the proba-
bility distribution P(x), so that Eq. (5) can be rewritten as

∣∣EP(x)[ f (x)] − EPP(x)[ f (x)]∣∣

=
∣∣∣∣∣∣

1

N

∑
xi |P(x)

f (xi ) (1 − r(xi ))

∣∣∣∣∣∣ . (6)

This expression clarifies the aforementioned importance of
being able to sample points from the probability distribution
P to efficiently discretize the integrals and compute expec-
tation values. The minimum of this function for any f (x) is
in r(xi ) = 1, which, in turn, implies L(xi ) = LP(xi ). This
suggests that an estimate of the performance of the interpo-
lated likelihood could be obtained from any metric that has a
minimum in absolute value at r(xi ) = 1. The simplest such
metric is the mean percentage error (MPE)

MPEL = 1

N

∑
xi |P(x)

(
1 − LP(xi )

L(xi )

)

= 1

N

∑
xi |P(x)

(1 − r(xi )) . (7)

Technically, formulating the interpolation problem on the
LF itself introduces the difficulty of having to fit the function
over several orders of magnitude, which leads to numerical
instabilities. For this reason it is much more convenient to
formulate the problem using the natural logarithm of the LF,
the so-called log-likelihood logL. Let us see how the error on
the log-likelihood propagates to the actual likelihood. Con-
sider the mean error (ME) on the log-likelihood

MElogL = 1

N

∑
xi |P(x)

(logL(xi ) − logLP(xi ))

= 1

N

∑
xi |P(x)

log r(xi ) . (8)

The last logarithm can be expanded for r(xi ) ∼ 1 to give

MElogL ≈ 1

N

∑
xi |P(x)

(1 − r(xi )) = MPEL . (9)
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It is interesting to notice that MElogL defined in Eq. (8)
corresponds to the Kullback–Leibler divergence [36], or rel-
ative entropy, between P and PP:

DKL=
∫

log

( P(x)

PP (x)

)
P(x)dx= 1

N

∑
xi |P(x)

log r(xi )=MElogL .

(10)

While Eq. (10) confirms that small values of DKL =
MElogL ∼ MPEL correspond to a good performance of the
interpolation, DKL, as well as ME and MPE, do not sat-
isfy the triangular inequality and therefore cannot be directly
optimised for the purpose of training and evaluating a DNN.
Equation (8) suggests however that the mean absolute error
(MAE) or the mean square error (MSE) on logL should be
suitable losses for the DNN training: we explicitly checked
that this is indeed the case, with MSE performing slightly
better for well-known reasons.

Finally, in the frequentist approach, the LF can be treated
just as any function in a regression (or interpolation) problem,
and, as we will see, the MSE provides a good choice for the
loss function.

2.1 Evaluation metrics

We have argued above that the MAE or MSE on logL(xi ) are
the most suitable loss functions to train our DNN for inter-
polating the LF on the sample xi . We are then left with the
question of measuring the performance of our interpolation
from the statistical point of view. In addition to DKL, several
quantities can be computed to quantify the performance of
the predictor. First of all, we perform a Kolmogorov-Smirnov
(K-S) two-sample test [37,38] on all the marginalised one-
dimensional distributions obtained using P and PP . In the
hypothesis that both distributions are drawn from the same
pdf, the p value should be distributed uniformly in the
interval [0, 1]. Therefore, the median of the distribution of
p values of the one-dimensional K-S tests is a represen-
tative single number which allows to evaluate the perfor-
mance of the model. We also compute the error on the width
of Highest Posterior Density Intervals (HPDI) PIi for the
marginalised one-dimensional distribution of the i-th param-
eter, Ei

PI = ∣∣PIi − PIi
P

∣∣, as well as the relative error on the
median of each marginalised distribution. From a frequentist
point of view, we are interested in reproducing as precisely
as possible the test statistics used in classical inference. In
this case we evaluate the model looking at the mean error on
the test statistics tμ, that is the likelihood ratio profiled over
nuisance parameters.

To simplify the presentation of the results, we choose the
best models according to the median K-S p value, when con-
sidering bayesian inference, and the mean error on the tμ

test-statistics, when considering frequentist inference. These
quantities are compared for all the different models on an
identical test set statistically independent from both the train-
ing and validation sets used for the hyperparameter optimi-
sation.

2.2 Learning from imbalanced data

The loss functions we discussed above are all averages over
all samples and, as such, will lead to a better learning in
regions that are well represented in the training set and to a
less good learning in regions that are under-represented. On
the other hand, an unbiased sampling of the LF will populate
much more regions corresponding to a large probability mass
than regions of large LF. Especially in large dimensionality,
it is prohibitive, in terms of the needed number of samples, to
make a proper unbiased sampling of the LF, i.e. converging
to the underlying probability distribution, while still cover-
ing the large LF region with enough statistics. In this respect,
learning a multi-dimensional LF raises the issue of learning
from highly imbalanced data. This issue is extensively stud-
ied in the ML literature for classification problems, but has
gathered much less attention from the regression point of
view [39–41].

There are two main approaches in the case of regres-
sion, both resulting in assigning different weights to different
examples. In the first approach, the training set is modified by
oversampling and/or undersampling different regions (pos-
sibly together with noise) to counteract low/high population
of examples, while in the second approach the loss function
is modified to weigh more/less regions with less/more exam-
ples. In the case where the theoretical underlying distribution
of the target variable is (at least approximately) known, as
in our case, either of these two procedures can be applied
by assigning weights that are proportional to the inverse fre-
quency of each example in the population. This approach,
applied for instance by adding weights to a linear loss func-
tion, would really weigh each example equally, which may
not be exactly what we need. Moreover, in the case of large
dimensionality, the interesting region close to the maximum
would be completely absent from the sampling, making any
reweighting irrelevant. In this paper we therefore apply an
approach belonging to the first class mentioned above, con-
sisting in sampling the LF in the regions of interest and in
constructing a training sample that effectively weighs the
most interesting regions. As we clarify in Sect. 3, this pro-
cedure consists in building three samples: an unbiased sam-
ple, a biased sample and a mixed one. Training data will be
extracted from the latter sample. Let us briefly describe the
three:3

3 For simplicity in the following we describe in detail the case of a
unimodal distribution. Our discussion can be easily generalized to mul-
timodal distributions.
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• Unbiased sample: A sample that has converged as accu-
rately as possible to the true probability distribution.
Notice that this sample is the only one which allows
posterior inference in a Bayesian perspective, but would
generally fail in making frequentist inference [35].

• Biased sample: A sample concentrated around the region
of maximum likelihood. It is obtained by biasing the sam-
pler in the region of large LF, only allowing for small
moves around the maximum. Tuning this sample, tar-
geted to a frequentist MLE perspective, raises the issue
of coverage, that we discuss in Sect. 3. One has to keep in
mind that the region of the LF that needs to be well known,
i.e. around the maximum, is related to the coverage of
the frequentist analysis being carried out. To be more
explicit, the distribution of the test-statistics allows to
make a map between � logLvalues and confidence inter-
vals, which could tell, a priori, which region of � logL
from the maximum is needed for frequentist inference at
a given confidence level. For instance, in the asymptotic
limit of Wilks’ theorem [42] the relation is determined by
a χ2 distribution. In general the relation is unknown until
the distribution of the test-statistics is known, so that we
cannot exactly tune sample S2. However, unless gigan-
tic deviations from Wilks’ theorem are expected, taking
twice or three times as many � logL as the ones nec-
essary to make inference at the desired confidence level
using the asymptotic approach, should be sufficient.

• Mixed sample: This sample is built by enriching the
unbiased sample with the biased one, in the region of
large values of the LF. This is a tuning procedure, since,
depending on the number of available samples and the
statistics needed for training the DNN, this sample needs
to be constructed for reproducing at best the results of
the given analysis of interest both in a Bayesian and fre-
quentist inference framework.

Some considerations are in order. The unbiased sample is
enough if one wants to produce a DNNLikelihood to be used
only for Bayesian inference. As we show later, this does not
require a complicated tuning of hyperparameters (at least
in the example we consider) and reaches very good perfor-
mance, evaluated with the metrics that we discussed above,
already with relatively small statistics in the training sample
(considering the high dimensionality). The situation compli-
cates a bit when one wants to be able to also make frequentist
inference using the same DNNLikelihood. In this case the
mixed sample (and therefore the biased one) is needed, and
more tuning of the network as well as more samples in the
training set are required. For the example presented in this
paper it was rather simple to get the required precision. How-
ever, for more complicated cases, we believe that ensemble
learning techniques could be relevant to get stable and accu-
rate results. We made some attempts to implement stacking

of several identical models trained with randomly selected
subsets of data and observed promising improvements. Nev-
ertheless, a careful comparison of different ensemble tech-
niques and their performances is beyond the scope of this
paper. For this reason we will not consider ensemble learn-
ing in our present analysis.

The final issue we have to address when training with the
mixed sample, which is biased by construction, is to ensure
that the DNNLikelihood can still produce accurate enough
Bayesian posterior estimates. This is actually guaranteed by
the fact that a regression (or interpolation) problem, contrary
to a classification one, is insensitive to the distribution in the
target variable, since the output is not conditioned on such
probability distribution. This, as can be clearly seen from the
results presented in Sect. 3, is a crucial ingredient for our
procedure to be useful, and leads to the main result of our
approach: a DNNLikelihood trained with the mixed sample
can be used to perform a new MCMC that converges to the
underlying distribution, forgetting the biased nature of the
training set.

In the next section we give a thorough example of the
procedure discussed here in the case of a prototype LHC-
like search for NP corresponding to a 95-dimensional LF.

3 A realistic LHC-like NP search

In this section we introduce the prototype LHC-like NP
search presented in Ref. [9], which we take as a representa-
tive example to illustrate how to train the DNNLikelihood.
We refer the reader to Ref. [9] for a detailed discussion of
this setup and repeat here only the information that is strictly
necessary to follow our analysis.

The toy experiment consists in a typical “shape analysis”
in a given distribution aimed at extracting information on
a possible NP signal from the standard model (SM) back-
ground. The measurement is divided in three different event
categories, containing 30 bins each. The signal is character-
ized by a single “signal-strength” parameter μ and the uncer-
tainty on the signal is neglected.4 All uncertainties affecting
the background are parametrised in terms of nuisance param-
eters, which may be divided into three categories:

1. Fully uncorrelated uncertainties in each bin: They corre-
spond to a nuisance parameter for each bin δMC,i , with
uncorrelated priors, parametrising the uncertainty due to
the limited Monte Carlo statistics, or statistics in a control
region, used to estimate the number of background events
in each bin.

4 This approximation is done in Ref. [9] to simplify the discussion, but
it is not a necessary ingredient, neither there nor here.
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2. fully correlated uncertainties in each bin: they correspond
to a single nuisance parameter for each source of uncer-
tainty affecting in a correlated way all bins in the distribu-
tion. In this toy experiment, such sources of uncertainty
are the modeling of the Initial State Radiation and the Jet
Energy Scale, parametrised respectively by the nuisance
parameters δISR and δJES.

3. Uncertainties on the overall normalisation (correlated
among event categories): They correspond to the previ-
ous two nuisance parameters δISR and δJES, that, on top of
affecting the shape, also affect the overall normalisation
in the different categories, plus two typical experimen-
tal uncertainties, that only affect the normalisation, given
by a veto efficiency and a scale-factor appearing in the
simulation, parametrised respectively by δLV and δRC.

In summary, the LF depends on one physical parameter μ and
94 nuisance parameters, that we collectively indicate with
the vector δ, whose components are defined by δi = δMC,i

for i = 1, . . . , 90, δ91 = δISR, δ92 = δJES, δ93 = δLV,
δ94 = δRC.

The full model likelihood can be written as5

L(μ, δ) =
P∏

I=1

Pr
(

nobs
I |nI (μ, δ)

)
π (δ) , (11)

where nobs
I is the observed number of events in the LHC-

like search discussed in Ref. [9] and the product runs over
all bins I . The number of expected events in each bin is
given by nI (μ, δ) = ns,I (μ) + nb,I (δ), and the probability
distributions are given by Poisson distributions in each bin

Pr
(

nobs
I |nI

)
= (nI )

nobs
I e−nI

nobs
I ! . (12)

In this toy LF, the number of background events in each bin
nb,I (δ) is known analytically as a function of the nuisance

5 There is a difference in the interpretation of this formula in the fre-
quentist and Bayesian approaches: in a frequentist approach, the nui-
sance parameter distributions π(δ) do not constitute a prior, but should
instead be considered as the likelihood of the nuisance parameters aris-
ing from other (auxiliary) measurements [43]. In this perspective, since
the product of two likelihoods is still a likelihood, the right hand side
of Eq. (11) is the full likelihood. On the contrary, in a Bayesian per-
spective, the full likelihood is given by the product of probabilities in
the right hand side of Eq. (11), while the distributions π(δ) parametrise
the prior knowledge of the nuisance parameters. Therefore, in this case,
according to Bayes’ theorem the right hand side of the equation should
not be interpreted as the likelihoodP(data|pars), but as the full posterior
probability P(pars|data), up to a normalisation given by the Bayesian
evidence P(data). Despite this difference, in order to carry on a unified
approach without complicating formulæ too much, we abuse the nota-
tion and denote withL(μ, δ) the frequentist likelihood and the Bayesian
posterior distribution, since these are the two central objects from which
frequentist and Bayesian inference are carried out, respectively.

parameters, through various numerical parameters that inter-
polate the effect of systematic uncertainties. The parametri-
sation of nb,I (δ) is such that the nuisance parameters δ are
normally distributed with vanishing vector mean and identity
covariance matrix

π(δ) = e− 1
2 |δ|2

(2π)
dim(δ)

2

. (13)

Moreover, due to the interpolations involved in the parametri-
sation of the nuisance parameters, in order to ensure positive
probabilities, the δs are only allowed to take values in the
range [−5, 5].

In our approach, we are interested in setting up a super-
vised learning problem to learn the LF as a function of the
parameters. Independently of the statistical perspective, i.e.
whether the parameters are treated as random variables or just
variables, we need to choose some values to evaluate the LF.
For the nuisance parameters the function π(δ) already tells
us how to choose these points, since it implicitly treats the
nuisance parameters as random variables distributed accord-
ing to this probability distribution. For the model parame-
ters, in this case only μ, we have to decide how to generate
points, independently of the stochastic nature of the param-
eter itself. In the case of this toy example, since we expect
μ to be relatively “small” and most probably positive, we
generate μ values according to a uniform probability distri-
bution in the interval [−1, 5]. This could be considered as
the prior on the stochastic variable μ in a Bayesian perspec-
tive, while it is just a scan in the parameter space of μ in
the frequentist one.6 Notice that we allow for small negative
values of μ.7 Whenever the NP contribution comes from the
on-shell production of some new physics, this assumption is
not consistent. However, the “signal” may come, in an Effec-
tive Field Theory (EFT) perspective, from the interference of
the SM background with higher dimensional operators. This
interference could be negative depending on the sign of the
corresponding Wilson coefficient, and motivates our choice
to allow for negative values of μ in our scan.

3.1 Sampling the full likelihood

To obtain the three samples discussed in Sect. 2.2 from the
full model LF in Eq. (11) we used the emcee3 Python pack-
age [44], which implements the Affine Invariant (AI) MCMC
Ensemble Sampler [45]. We proceeded as follows:

6 Each different choice of μ corresponds, in the frequentist approach,
to a different theoretical hypothesis. This raises the issue of generating
pseudo-experiments for each different value of μ, that we discuss further
in Sect. 3.3 and Appendix B.
7 We checked that the expected number of events is always positive for
our choice of the μ range.
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Fig. 1 Evolution of the chains in an emcee3 sampling of the LF in
Eq. (11) with 103 walkers and 106 steps using the StretchMove algo-
rithm with a = 1.3. The plots show the explored values of the parameter
μ (left) and of minus log-likelihood − logL (right) versus the number
of steps for a random subset of 102 of the 103 chains. The parameter μ

was initialized from a uniform distribution in the interval [−1, 5]. For
visualization purposes, values in the plots are computed only for num-
bers of steps included in the set {a ×10b} with a ∈ [1, 9] and b ∈ [0, 6]

1. Unbiased sample S1

In the first sampling, the values of the proposals have
been updated using the default StretchMove algorithm
implemented in emcee3, which updates all values of the
parameters (95 in our case) at a time. The default value of
the only free parameter of this algorithm a = 2 delivered
a slightly too low acceptance fraction ε ≈ 0.12. We have
therefore set a = 1.3, which delivers a better acceptance
fraction of about 0.36. Walkers8 have been initialised ran-
domly according to the prior distribution of the parame-
ters. The algorithm efficiently achieves convergence to the
true target distribution, but, given the large dimensional-
ity, hardly explores large values of the LF.
In Fig. 1 we show the evolution of the walkers for the
parameter μ (left) together with the corresponding val-
ues of − logL (right) for an illustrative set of 100 walk-
ers. From these figures a reasonable convergence seems
to arise already after roughly 103 steps, which gives
an empirical estimate of the autocorrelation of samples
within each walker.
Notice that, in the case of ensemble sampling algorithms,
the usual Gelman, Rubin and Brooks statistics, usually
denoted as R̂c [46,47], is not guaranteed to be a robust tool
to assess convergence, due to the fact that each walker is
updated based on the state of the other walkers in the pre-
vious step (i.e. there is a correlation among closeby steps
of different walkers). This can be explained as follows.
The Gelman, Rubin and Brooks statistics works schemat-

8 Walkers are the analog of chains for ensemble sampling methods
[45]. In the following, we interchangeably use the words “chains” and
“walkers” to refer to the same object.

ically by comparing a good estimate of the variance of
the samples, obtained from the variance across indepen-
dent chains, with an approximate variance, obtained from
samples in a single chain, which have, in general, some
autocorrelation. The ratio is an estimate of the effect of
neglecting such autocorrelation, and when it approaches
one it means that this effect becomes negligible. As we
mentioned above, in the case of ensemble sampling, there
is some correlation among subsequent steps in different
walkers, which means that also the variance computed
among walkers is not a good estimate of the true vari-
ance of samples. Nevertheless, since the state of a walker
is updated from the state of all other walkers, and not
just one, the correlation of the updated walker with each
of the other walkers decreases as the number of walk-
ers increases. This implies that in the limit of large num-
ber of walkers, the effect of correlation among walkers is
much smaller than the effect of autocorrelation in each
single walker, so that the Gelman, Rubin and Brooks
statistics should still be a good metric to monitor conver-
gence. Let us finally stress that correlation among closeby
steps in different walkers of ensemble MCMC does not
invalidate this sampling technique. Indeed, as explained
in Ref. [45], since the sampler target distribution is built
from the direct product of the target probability distribu-
tion for each walker, when the sampler converges to its
target distribution, all walkers are an independent repre-
sentation of the target probability distribution.
In order to check our expectation on the performance
of the Gelman, Rubin and Brooks statistics to monitor
convergence in the limit of large number of walkers, we
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proceeded as suggested in Ref. [48]: in order to reduce
walker correlation, one can consider a number of indepen-
dent samplers, extract a few walkers from each run, and
compute R̂c for this set. Considering the aforementioned
empirical estimate of the number of steps for convergence,
i.e. roughly few 103, we have run 50 independent samplers
for a larger number of steps (3×104), extracted randomly
4 chains from each, joined them together, and computed
R̂c for this set. This is shown in the upper-left plot of Fig. 2.
With a requirement of R̂c < 1.2 [47] we see that chains
have already converged after around 5×103 steps, which
is roughly what we empirically estimated looking at the
chains evolution in Fig. 1. An even more robust require-
ment for convergence is given by R̂c < 1.1, together with
stabilized evolution of both variances V̂ and W [47]. In
the center and right plots of Fig. 2 we show this evolution,
from which we see that convergence has robustly occurred
after 2−3×104 steps. We have then compared this result
with the one obtained performing the same analysis using
200 walkers from a single sampler. The result is shown
in the lower panels of Fig. 2. As can be seen comparing
the upper and lower plots, correlation of walkers played a
very marginal role in assessing convergence, as expected
from our discussion above.
An alternative and pretty general way to diagnose MCMC
sampling is the autocorrelation of chains, and in particu-
lar the Integrated Autocorrelation Time (IAT). This quan-
tity represents the average number of steps between two
independent samples in the chain. For unimodal distri-
butions, one can generally assume that after a few IAT
the chain forgot where it started and converged to gen-
erating samples distributed according to the underlying
target distribution. There are more difficulties in the case
of multimodal distributions, which are however shared by
most of the MCMC convergence diagnostics. We do not
enter here in such a discussion, and refer the reader to the
overview presented in Ref. [51]. An exact calculation of
the IAT for large chains is computationally prohibitive,
but there are several algorithms to construct estimators
of this quantity. The emcee3 package comes with tools
that implement some of these algorithms, which we have
used to study our sampling [49,50]. To obtain a reason-
able estimate of the IAT τ , one needs enough samples, a
reasonable empirical estimate of which, that works well
also in our case, is at least 50τ [49,50]. An illustration
of this, for the parameter μ, is given in the left panel of
Fig. 3, where we show, for a sampler with 103 chains and
106 steps, the IAT estimated after different numbers of
steps with two different algorithms, “G&W 2010” and
“DFM 2017” (see Refs. [49,50] for details). It is clear
from the plot that the estimate becomes flat, and therefore
converges to the correct value of the IAT, roughly when
the estimate curves cross the empirical value of 50τ (this is

an order of magnitude estimate, and obviously, the larger
the number of steps, the better the estimate of τ ). The best
estimate that we get for this sampling for the parameter μ

is obtained with 106 steps using the “DFM 2017” method
and gives τ ≈ 1366, confirming the order of magnitude
estimate empirically extracted from Fig. 1. In the right
panel of Fig. 3 we show the resulting one-dimensional
(1D) marginal posterior distribution of the parameter μ

obtained from the corresponding run. Finally, we have
checked that Figs. 1 and 3 are quantitatively similar for
all other parameters.
As we mentioned above, the IAT gives an estimate of the
number of steps between independent samples (it roughly
corresponds to the period of oscillation, measured in num-
ber of steps, of the chain in the whole range of the param-
eter). Therefore, in order to have a true unbiased set of
independent samples, one has to “thin” the chain with a
step size of roughly τ . This greatly decreases the statis-
tics available from the MCMC run. Conceptually there is
nothing wrong with having correlated samples, provided
they are distributed according to the target distribution,
however, even though this would increase the effective
available statistics, it would generally affect the estimate
of the uncertainties in the Bayesian inference [52,53]. We
defer a careful study of the issue of thinning to a forth-
coming publication [33], while here we limit ourselves to
describe the procedure we followed to get a rich enough
sample.
We have run emcee3 for 106 + 5 × 103 steps with 103

walkers for 11 times. From each run we have discarded
a pre-run of 5 × 103 steps, which is a few times τ , and
thinned the chain with a step size of 103, i.e. roughly τ .9

Thinning has been performed by taking a sample from
each walker at the same step every 103 steps. Each run
then delivered 106 roughly independent samples. With
parallelization, the sampler generates and stores about 22
steps per second.10 The final sample obtained after all runs
consists of 1.1 × 107 samples. We stored 106 of them as

9 Even though the R̂c analysis we performed suggests robust conver-
gence after few 104 steps, considering the length of the samplers we
used (106 steps) and the large thinning value (103 steps), the difference
between discarding a pre-run of 5 × 103 versus a few 104 steps is neg-
ligible. We have therefore set the burn-in number of steps to 5 × 103 to
slightly improve the effectiveness of our MCMC generation.
10 All samplings presented in the paper were produced with a SYS-
7049A-T Supermicro® workstation configured as follows: dual Intel®

Xeon® Gold 6152 CPUs at 2.1GHz (22 physical cores), 128 Gb of
2666 MHz Ram, Dual NVIDIA® RTX 2080-Ti GPUs and 1.9Tb M.2
Samsung® NVMe PM963 Series SSD (MZ1LW1T9HMLS-00003).
Notice that speed, in our case, was almost constant for a wide choice of
the number of parallel processes in the range ∼ 30−88, with CPU usage
never above about 50%. We therefore conclude that generation speed
was, in our case, limited by data transfer and not by CPU resources,
making parallelization less than optimally efficient.
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the test set to evaluate our DNN models, while the remain-
ing 107 are used to randomly draw the different training
and validation sets used in the following.

2. Biased sample S2

The second sampling has been used to enrich the training
and test sets with points corresponding to large values of
the LF, i.e. points close to the maximum for each fixed
value of μ.
In this case we initialised 200 walkers in maxima of the LF
profiled over the nuisance parameters calculated for ran-
dom values of μ, extracted according to a uniform proba-
bility distribution in the interval [−1, 1].11 Moreover, the
proposals have been updated using a Gaussian random
move with variance 5 × 10−4 (small moves) of a single
parameter at a time. In this way, the sampler starts explor-
ing the region of parameters corresponding to the profiled
maxima, and then slowly moves towards the tails. Once
the LF gets further and further from the profiled maxima,
the chains do not explore this region anymore. Therefore,
in this case we do not want to discard a pre-run, neither to
check convergence, which implies that this sampling will
have a strong bias (obviously, since we forced the sampler
to explore only a particular region).
In Fig. 4 we show the evolution of the chains for the param-
eter μ (left panel) together with the corresponding values
of logL (right panel) for an illustrative (random) set of
100 chains. Comparing Fig. 4 with Fig. 1, we see that now
the moves of each chain are much smaller and the sampler
generates many points all around the profiled maxima at
which the chains are initialised.
In order to ensure a rich enough sampling close to pro-
filed maxima of the LF, we have made 105 iterations for
each walker. Since moves are much smaller than in the
previous case (only one parameter is updated at a time),
the acceptance fraction in this case is very large, ε ≈ 1.
We therefore obtained a sampling of 1.1 × 107 points by
randomly picking points within the 105 · 200 · ε samples.
As for S1, two samples of 106 and 107 points have been
stored separately: the first serves to build the test set, while
the second is used to construct the training and validation
sets. As mentioned before, this is a biased sample, and
therefore should only be used to enrich the training sam-
ple to properly learn the LF close to the maximum (and
to check results of the frequentist analysis), but it cannot
be used to make any posterior inference. Due to the large
efficiency, this sampling took less than one hour to be
generated.

11 This interval has been chosen smaller than the interval of μ consid-
ered in the unbiased sampling since values of μ outside this interval
correspond to values of the LF much smaller than the global maximum,
that are not relevant from the frequentist perspective. The range for the
biased sampling can be chosen a posteriori by looking at the frequentist
confidence intervals on μ.

3. Mixed sample S3

The mixed sample S3 is built from S1 and S2 in order to
properly populate both the large probability mass region
and the large log-likelihood region. Moreover, we do not
want a strong discontinuity for intermediate values of the
LF, which could become relevant, for instance, when com-
bining with another analysis that prefers slightly different
values of the parameters. For this reason, we have ensured
that also intermediate values of the LF are represented,
even though with a smaller effective weight, and that no
more than a factor of 100 difference in density of exam-
ples is present in the whole region − logL ∈ [285, 350].
Finally, in order to ensure a good enough statistics close
to the maxima, we have enriched further the sample above
logL ≈ −290 (covering the region � logL � 5).
S3 has been obtained taking all samples from S2 with
logL > −290 (around 10% of all samples in S2), 70% of
samples from S1 (randomly distributed), and the remain-
ing fraction, around 20%, from S2 with logL < −290.
With this procedure we obtained a total of 107(106)
train(test) samples. We have checked that results do not
depend strongly on the assumptions made to build S3,
provided enough examples are present in all the relevant
regions in the training sample.

The distributions of the LF values in the three samples are
shown in Fig. 5 (for the 107 points in the training/validation
set).

We have used the three samples as follows: examples
drawn from S3 were used to train the full DNNLikelihood,
while results have been checked against S1 in the case of
Bayesian posterior estimations and against S2 (together with
results obtained from a numerical maximisation of the ana-
lytical LF) in the case of frequentist inference. Moreover, we
also present a “Bayesian only” version of the DNNLikeli-
hood, trained using only points from S1.

3.2 Bayesian inference

In the Bayesian approach one is interested in marginal dis-
tributions, used to compute marginal posterior probabilities
and credibility intervals. For instance, in the case at hand, one
may be interested in two-dimensional (2D) marginal proba-
bility distributions in the parameter space (μ, δ), such as

p(μ, δi ) =
∫

dδ1 · · ·
∫

dδi−1

∫
dδi+1 · · ·

∫
dδ95L

(μ, δ) π (μ) , (14)

or in 1D HPDI corresponding to probabilities 1 − α, such as

1 − α =
∫ μhigh

μlow

dμ

∫
dδi p(μ, δi ) . (15)
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Fig. 3 Estimate of the autocorrelation time τμ (obtained using both the
original method proposed in Ref. [45] and the alternative one discussed
by the emcee3 authors [49,50]) as a function of the number of samples

(left) and normalized histogram (right) for the parameter μ. The region
on the right of the line τ = S/50 in the left plot represents the region
where the considered τμ estimates are expected to become reliable

All these integrals can be discretized and computed by just
summing over quantities evaluated on a proper unbiased LF
sampling.

This can be efficiently done with MCMC techniques,
such as the one described in Sect. 3.1. For instance,
using the sample S1 we can directly compute HPDIs for
the parameters. Figure 6 shows the 1D and 2D posterior
marginal probability distributions of the subset of param-
eters (μ, δ50, δ91, δ92, δ93, δ94) obtained with the training

set (107 points, green (darker)) and test set (106 points,
red (lighter)) of S1. Figure 6 also shows the 1D and 2D
68.27%, 95.45%, 99.73% HPDIs. All the HPDIs, including
those shown in Fig. 6, have been computed by binning the
distribution with 60 bins, estimating the interval, and increas-
ing the number of bins by 60 until the interval splits due to
statistical fluctuations.
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The results forμwith the assumptionsμ > −1 andμ > 0,
estimated from the training set, which has the largest statis-
tics, are given in Table 1.

Figure 6 shows how the 1D and 2D marginal probability
distributions are extremely accurate up to the 99.73% HPDI,
with only tiny differences in the highest probability interval
for some parameters due to the lower statistics of the test
set. Notice that, by construction, there are no points in the
samples with μ < −1. However, the credibility contours in
the marginal probability distributions, which are constructed
from interpolation, may show intervals that slightly extend
below μ < −1. This is just an artifact of the interpolation
and has no physical implications.

Considering that the sample sizes used to train the DNN
range from 105 to 5 × 105, we do not consider probability
intervals higher than 99.73%. Obviously, if one is interested
in covering higher HPDIs, larger training sample sizes need
to be considered (for instance, to cover a Gaussian 5σ inter-
val, that corresponds to a probability 1−5.7 × 10−7, even
only on the 1D marginal distributions, a sample with � 107

points would be necessary). We will not consider this case in
the present paper.

3.3 Frequentist inference

In a frequentist inference one usually constructs a test statis-
tics λ(μ, θ) based on the LF ratio

λ(μ, δ) = L(μ, δ)

Lmax(μ̂, δ̂)
. (16)

Since one would like the test statistics to be independent
of the nuisance parameters, it is common to use instead the
profiled likelihood, obtained replacing the LF at each value
of μ with its maximum value (over the nuisance parameters
volume) for that value of μ. One can then construct a test
statistics tμ based on the profiled (log)-likelihood ratio, given
by

tμ = −2 log
Lprof(μ)

Lmax

= −2 log
supδ L(μ, δ)

supμ,δ L(μ, δ)

= −2

(
sup

δ

logL(μ, δ) − sup
μ,δ

logL(μ, δ)

)
. (17)

123



Eur. Phys. J. C (2020) 80 :664 Page 13 of 31 664

68% HPDI train: [-1.16e-01,5.81e-01]
68% HPDI test: [-1.18e-01,5.73e-01]

−4
−2
0

2

4

δ 5
0

68% HPDI train: [-5.20e-01,1.40e+00]
68% HPDI test: [-5.19e-01,1.40e+00]

−3
.0

−1
.5

0.0

1.5

δ 9
1

68% HPDI train: [-1.04e+00,2.14e-01]
68% HPDI test: [-1.04e+00,2.08e-01]

−3
.0

−1
.5
0.0
1.5
3.0

δ 9
2

68% HPDI train: [-1.11e+00,2.99e-01]
68% HPDI test: [-1.10e+00,2.98e-01]

−1
.5

0.0

1.5

3.0

δ 9
3

68% HPDI train: [-5.97e-01,5.49e-01]
68% HPDI test: [-5.98e-01,5.44e-01]

−1
.2

−0
.6 0.0 0.6 1.2 1.8

μ

−1
.6

−0
.8
0.0
0.8
1.6
2.4

δ 9
4

−4 −2 0 2 4

δ50

−3
.0

−1
.5 0.0 1.5

δ91

−3
.0

−1
.5 0.0 1.5 3.0

δ92

−1
.5 0.0 1.5 3.0

δ93

−1
.6

−0
.8 0.0 0.8 1.6 2.4

δ94

68% HPDI train: [-3.91e-01,4.75e-01]
68% HPDI test: [-3.84e-01,4.81e-01]

Train vs test set of S1

Train set (107 points)

Test set (106 points)
68.27% HPDI
95.45% HPDI
99.73% HPDI

Fig. 6 1D and 2D posterior marginal probability distributions for a
subset of parameters from the unbiased S1. This gives a graphical repre-
sentation of the sampling obtained through MCMC. The green (darker)
and red (lighter) points and curves correspond to the training set (107

points) and test set (106 points) of S1, respectively. Histograms are made
with 50 bins and normalised to unit integral. The dotted, dot-dashed,

and dashed lines represent the 68.27%, 95.45%, 99.73% 1D and 2D
HPDI. For graphical purposes only the scattered points outside the out-
ermost contour are shown. The difference between green (darker) and
red (lighter) lines gives an idea of the uncertainty on the HPDI due to
finite sampling. Numbers for the 68.27% HPDI for the parameters in
the two samples are reported above the 1D plots

Whenever suitable general conditions are satisfied, and in the
limit of large data sample, by Wilks’ theorem the distribu-
tion of this test-statistics approaches a χ2 distribution that is
independent of the nuisance parameters δ and has a number
of degrees of freedom equal to dim L−dim Lprof [54]. In our
case tμ can be computed using numerical maximisation on

the analytic LF, but it can also be computed from S2 (and S3,
which is identical in the large likelihood region), which was
constructed with the purpose of describing the LF as precisely
as possible close to profiled maxima. In order to compute tμ
from the sampling we consider small bins around the given μ

value and take the point in the bin with maximum LF value.
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Table 1 HPDIs obtained using all 107 samples from the training set of
S1. The result is shown both for μ > −1 and μ > 0 (only the upper
bound is given in the latter case)

HPDI (%) μ > −1 μ > 0

68.27 [−0.12, 0.58] 0.48

95.45 [−0.47, 0.92] 0.86

99.73 [−0.82, 1.26] 1.22

This procedure gives an estimate of tμ that depends on the
statistics in the bins and on the bin size. In Fig. 7 we show
the result for tμ using both approaches for different sample
sizes drawn from S2.

The three samples from S2 used for the maximisation,
with sizes 105, 106, and 107 (full training set of S2), contain
in the region μ ∈ [0, 1] around 5×104, 5×105, and 5×106

points respectively, which results in increasing statistics in
each bin and a more precise and stable prediction for tμ. As
it can be seen 105 points, about half of which contained in the
range μ ∈ [0, 1], are already sufficient, with a small bin size
of 0.02, to reproduce the tμ curve with great accuracy. As
expected, larger bin sizes result in too high profiled maxima
estimates, leading to an underestimate of tμ.

Under Wilks’ theorem assumptions, tμ should be dis-
tributed as a χ2

1 (1 d.o.f.) distribution, from which we can
determine CL upper limits. The 68.27%(95.45%) CL upper
limit (under the Wilks’ hypotheses) is given by tμ = 1(4),
corresponding to μ < 0.37(0.74). These upper limits are
compatible with the ones found in Ref. [9], and are quite
smaller than the corresponding upper limits of the HPDI
obtained with the Bayesian analysis in Sect. 3.2 (see Table 1).
Even though, as it is well known, frequentist and Bayesian
inference answer to different questions, and therefore do not
have to agree with each other, we already know from the
analysis of Ref. [9] that deviations from gaussianity are not
very large for the analysis under consideration, so that one
could expect, in the case of a flat prior on μ such as the one we
consider, similar results from the two approaches. This may
suggest that the result obtained using the asymptotic approx-
imation for tμ is underestimating the upper limit (undercov-
erage). This may be due, in the search under consideration,
to the large number of bins in which the observed number
of events is below 5 or even 3 (see Figure 2 of Ref. [9]).
Indeed, the true distribution of tμ is expected to depart from
a χ2

1 distribution when the hypotheses of Wilks’ theorem are
violated. The study of the distribution of tμ is related to the
problem of coverage of frequentist confidence intervals, and
requires to perform pseudo-experiments and to make fur-
ther assumptions on the treatment of nuisance parameters.
We present results on the distribution of tμ obtained through
pseudo-experiments in “Appendix B”. The important con-
clusion is that using the distribution of tμ generated with

pseudo-experiments, CL upper limits become more conser-
vative by up to around ∼ 70%, depending on the choice of
the approach used to treat nuisance parameters. This shows
that the upper limits computed through asymptotic statistics
undercover, in this case, the actual upper bounds on μ.

4 The DNNLikelihood

The sampling of the full likelihood discussed above has been
used to train a DNN regressor constructed from multiple fully
connected layers, i.e. a multilayer perceptron (MLP). The
regressor has been trained to predict values of the LF given a
vector of inputs made by the physical and nuisance parame-
ters. In order to introduce the main ingredients of our regres-
sion procedure and DNN training, we first show how models
trained using only points from S1 give reliable and robust
results in the case of the Bayesian approach. Then we discuss
the issue of training with samples from S3 to allow for maxi-
mum likelihood based inference. Finally, once a satisfactory
final model is obtained, we show again its performance for
posterior Bayesian estimates.

4.1 Model architecture and optimisation

We used Keras [55] with TensorFlow [56] backend,
through their Python implementation, to train a MLP and
considered the following hyperparameters to be optimised,
the value of which defines what we call a model or a DNN-
Likelihood.

• Size of training sample
In order to assess the performance of the DNNLikeli-
hood given the training set size we considered three dif-
ferent values: 105, 2 × 105 and 5 × 105. The training
set (together with a half sized evaluation set) has been
randomly drawn from S1 for each model training, which
ensures the absence of correlation between the models
due to the training data: thanks to the large size of S1 (107

samples) all the training sets can be considered roughly
independent. In order to allow for a consistent compari-
son, all models trained with the same amount of training
data have been tested with a sample from the test set of S1,
and with half the size of the training set. In general, and
in particular in our interpolation problem, increasing the
size of the training set allows to reduce the generalization
error and therefore to obtain the desired performance on
the test set.

• Loss function
In Sect. 2 we have argued that both MAE and MSE are
suitable loss functions to learn the log-likelihood func-
tion. In our optimisation procedure we tried both, always
finding (slightly) better results for the MSE. We there-
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Fig. 7 Comparison of the tμ test-statistics computed using numerical
maximisation of Eq. (17) and using a variable sample size from S2. We
show the result obtained searching from the maximum by usind differ-

ent binning in tμ with bin size 0.01, 0.02, 0.05, 0.1 around each value
of μ (between 0 and 1 in steps of 0.1)

fore choose the MSE as our loss function in all results
presented here.

• Number of hidden layers
From a preliminary optimisation we concluded that more
than a single Hidden Layer (HL) (deep network) always
performs better than a single HL (shallow network).
However, in the case under consideration, deeper net-
works do not seem to perform much better than 2HL
networks, even though they are typically much slower to
train and to make predictions. Therefore, after this pre-
liminary assessment, we focused on 2HL architectures.

• Activation function on hidden layers
We compared RELU [57], ELU [58], and SELU [59]
activation functions and the latter performed better in
our problem. In order to correctly implement the SELU
activation in Keras we initialised all weights using the
Keras “lecun_normal” initialiser [59,60].

• Number of nodes on hidden layers
We considered architectures with the same number of
nodes on the two hidden layers. The number of trainable
parameters (weights) in the case of n fully connected HLs
with the same number of nodes dHL is given by

dHL
(
dinput + (n − 1)dHL + (n + 1)

) + 1 , (18)

where dinput is the dimension of the input layer, i.e. the
number of independent variables, 95 in our case. DNNs
trained with stochastic gradient methods tend to small
generalization errors even when the number of parame-
ters is larger than the training sample size [61]. Overfit-
ting is not an issue in our interpolation problem [62]. In
our case we considered HLs not smaller than 500 nodes,
which should ensure enough bandwidth throughout the
network and model capacity. In particular we compared
results obtained with 500, 1000, 2000, and 5000 nodes on
each HL, corresponding to 299001, 1098001, 4196001,
and 25490001 trainable parameters.

• Batch size
When using a stochastic gradient optimisation technique,
of which Adam is an example, the minibatch size is
an hyperparameter. For the training to be stochastic, the
batch size should be much smaller than the training set
size, so that each minibatch can be considered roughly
independent. Large batch sizes lead to more accurate
weight updates and, due to the parallel capabilities of
GPUs, to faster training time. However, smaller batch
sizes usually contribute to regularize and avoid overfit-
ting. After a preliminary optimisation obtained changing
the batch size from 256 to 4096, we concluded that the
best performances were obtained by keeping the number
of batches roughly fixed to 200 when changing the train-
ing set size. In particular, choosing batch sizes among
powers of two, we have used 512, 1024 and 2048 for
105, 2 × 105 and 5 × 105 training set sizes respectively.
Notice that increasing the batch size when enlarging the
training set, also allowed us to keep the initial learning
rate (LR)) fixed [63].12 Similar results could be obtained
by keeping a fixed batch size of 512 and reducing the
starting learning rate when enlarging the training set.

• Optimiser
We used the Adam optimiser with default parameters,
and in particular with learning rate ε = 0.001. We
reduced the learning rate by a factor 0.2 every 40 epochs
without improvements on the validation loss within an
absolute amount (min_delta in Keras) 1/Npoints, with
Npoints the training set size. Indeed, since the Keras

min_delta parameter is absolute and not relative to the
value of the loss function, we needed to reduce it when
getting smaller losses (better models). We have found
that 1/Npoints corresponded roughly to one to few per-
mil of the best minimum validation loss obtained for all

12 Our fixed learning rate generates some small instability in the early
stage of training for large models, which however does not affect the
final results thanks to the automatic LR reduction discussed in the Opti-
miser item.
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different training set sizes. This value turned out to give
the best results with reasonably low number of epochs
(fast enough training). Finally, we performed early stop-
ping [64,65] using the same min_delta parameter and
no improvement in the validation loss for 50 epochs,
restoring weights corresponding to the step with mini-
mum validation loss. This ensured that training did not
go on for too long without substantially improving the
result. We also tested the newly proposed AdaBound

optimiser [66] without seeing, in our case, large differ-
ences.

Notice that the process of choosing and optimising a model
depends on the LF under consideration (dimensions, num-
ber of modes, etc.) and this procedure should be repeated
for different LFs. However, good initial points for the opti-
misation could be chosen using experience from previously
constructed DNNLikelihoods.

As we discussed in Sect. 2, there are several metrics that
we can use to evaluate our model. Based on the results
obtained by re-sampling the DNNLikelihood with emcee3,
we see a strong correlation between the quality of the re-
sampled probability distribution (i.e. of the final Bayesian
inference results) and the metric corresponding to the median
of the K-S test on the 1D posterior marginal distributions. We
therefore present results focusing on this evaluation metric.
When dealing with the Full DNNLikelihood trained with the
biased sampling S3 we also consider the performance on the
mean relative error on the predicted tμ test statistics when
choosing the best models.

4.2 The Bayesian DNNLikelihood

From a Bayesian perspective, the aim of the DNNLikelihood
is to be able, through a DNN interpolation of the full LF, to
generate a sampling analog to S1, which allows to produce
Bayesian posterior density distributions as close as possible
to the ones obtained using the true LF, i.e. the S1 sampling.
Moreover, independently of how complicated to evaluate the
original LF is, the DNNLikelihood is extremely fast to com-
pute, allowing for very fast sampling.13 The emcee3MCMC
package allows, through vectorization of the input function
for the log-probability, to profit of parallel GPU predictions,
which made sampling of the DNNLikelihood roughly as fast
as the original analytic LF.

We start by considering training using samples drawn from
the unbiased S1. The independent variables all vary in a rea-
sonably small interval around zero and do not need any pre-
processing. However, the logL values in S1 span a range

13 In this case the original likelihood is extremely fast to evaluate as
well, since it is known in analytical form. This is usually not the case in
actual experimental searches involving theory and detector simulations.

between around −380 and −285. This is both pretty large
and far from zero for the training to be optimal. For this rea-
son we have pre-processed data scaling them to zero mean
and unit variance. Obviously, when predicting values of logL
we applied the inverse function to the DNN output.

We rank models trained during our optimisation proce-
dure by the median p value of 1D K-S test on all coordinates
between the test set and the prediction performed on the vali-
dation set. The best models are those with the highest median
p value. In Table 2 we show results for the best model we
obtained for each training sample size. All metrics shown
in the table are evaluated on the logL. Results have been
obtained by training 5 identical models for each architecture
(2HL of 500, 1000, 2000 and 5000 nodes each) and hyper-
parameters (batch size, learning rate, patience) choice and
taking the best one. We call these three best models B1−B3

(B stands for Bayesian). All three models have two HLs with
5×103 nodes each, and are therefore the largest we consider
in terms of number of parameters. However, it should be clear
that the gap with smaller models is extremely small in some
cases with some of the models with less parameters in the
ensemble of 5 performing better than some others with more
parameters. This also suggests that results are not too sensi-
tive to model dimension, making the DNNLikelihood pretty
robust.

Figure 8 shows the learning curves obtained for the values
of the hyperparameters shown in the legends. Early stopping
is usually triggered after a few hundred epochs (ranging from
around 200–500, with the best models around 200–300) and
values of the validation loss (MSE) that range in the inter-
val ≈ [0.01, 0.003]. Values of the validation ME, which, as
explained in Sect. 2 correspond to the K-L divergence for the
LF, range in the ≈ [1, 5]×10−3, which, together with median
of the p value of the 1D K-S tests in the range 0.2−0.4 deliver
very accurate models. Training times are not prohibitive, and
range from less than one hour to a few hours for the models
we considered on a Nvidia Tesla V100 GPU with 32GB of
RAM. Prediction times, using the same batch sizes used dur-
ing training, are in the ballpark of 10−15µs/point, allowing
for very fast sampling and inference using the DNNLikeli-
hood. Finally, as shown in Table 2, all models present very
good generalization when going from the evaluation to the
test set, with the generalization error decreasing with the
sample size as expected.

In order to get a full quantitative assessment of the perfor-
mances of the Bayesian DNNLikelihood, we compared the
results of a Bayesian analysis performed using the test set
of S1 and each of the models B1−B3. This was done in two
ways. Since the model is usually a very good fit of the LF, we
reweighted each point in S1 using the ratio between the orig-
inal likelihood and the DNNLikelihood (reweighting). This
procedure is so fast that can be done for each trained model
during the optimisation procedure giving better insights on
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Table 2 Results for the best models (Bayesian DNNLikelihood) for
different training sample size. All models have been trained for 5 times
to check the stability of the result and the best performing one has been
quoted. Prediction time is evaluated on a test set with half the size of the

training set using the same batch size used in training, and evaluating
on a Nvidia Tesla V100 GPU with 32GB of RAM. All best models have
dHL = 5 × 103

Name B1 B2 B3

Sample size (×105) 1 2 5

Epochs 178 268 363

Minimum loss train (MSE) (×10−3) 0.14 0.088 0.054

Minimum loss val (MSE) (×10−3) 10.11 6.66 3.90

Minimum loss test (MSE) (×10−3) 10.02 6.64 3.90

ME train (×10−3) 0.47 0.53 0.28

ME val (×10−3) 5.44 2.58 1.76

ME test (×10−3) 4.91 2.31 1.72

Median p value of 1D K-S test vs pred. on train 0.41 0.46 0.39

Median p value of 1D K-S test vs. pred. on val. 0.24 0.33 0.43

Median p value of 1D K-S val vs. pred. on test 0.24 0.40 0.34

Training time (s) 1007 2341 8446

Prediction time (µs/point) 11.5 10.4 14.5
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Batch norm: False
Optimizer: Adam (LR0.001)
Batch size: 512
Epochs: 178
GPU: GeForce RTX 2080 Ti
Min losses: [1.65e-04,1.01e-02]
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Scaled X: False
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Act func hid layers: selu
Act func out layer: linear
Dropout: 0
Early stopping: True
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Batch norm: False
Optimizer: Adam (LR0.001)
Batch size: 1024
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Batch norm: False
Optimizer: Adam (LR0.001)
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Fig. 8 Training and validation loss (MSE) vs number of training epochs for models B1−B3. The jumps correspond to points of reduction of the
Adam optimiser learning rate

the choice of hyperparameters. Once the best model has been
chosen, the result of reweighting has been checked by directly
sampling the DNNLikelihoods with emcee3.14 We present
results obtained by sampling the DNNLikelihoods in the
form of 1D and 2D marginal posterior density plots on a
chosen set of parameters (μ, δ50, δ91, δ92, δ93, δ94).

We have sampled the LF using the DNNLikelihoods
B1−B3 with the same procedure used for S1.15 Starting

14 Sampling has been done on the same hardware configuration men-
tioned in Footnote 10. However, in this case log-probabilities have been
computed in parallel on GPUs (using the “vectorize” option of emcee3).
15 Since the effect of autocorrelation of walkers is much smaller than
the instrinsic error of the DNN, to speed up sampling we have used 1024
walkers with 105 steps, discarded a burn-in phase of 5 × 104 steps and
thinned the remaining 5 × 104 with a step size of 50 to end up with 106

samples from each of the DNNLikelihoods. Notice that the step size of
thinning is much smaller than the one we used when building the training
set in Sect. 3.1. This is motivated by the fact that thinning has very little
effect on statistical inference in the limit of large statistics, while it may

from model B1 (Fig. 9), Bayesian inference is accurately
reproduced for 68.27% HPDI, well reproduced, with some
small deviations arising in the 2D marginal distributions for
95.45% HPDI, while large deviations, especially in the 2D
marginal distributions, start to arise for 99.73% HPDI. This
is expected and reasonable, since model B1 has been trained
with only 105 points, which are not enough to carefully
interpolate in the tails, so that the region corresponding to
HPDI larger than ∼ 95% is described by the DNNLikeli-
hood through extrapolation. Nevertheless, we want to stress
that, considering the very small training size and the large
dimensionality of the LF, model B1 already works surpris-
ingly well. This is a common feature of the DNNLikelihood,

Footnote 15 continued
have some effect on training data. Intuitively, giving more “different”
examples to the DNN could help learning the function in more regions.
This is why we have been extremely conservative in choosing a large
thinning when building the training set.
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Fig. 9 1D and 2D posterior marginal probability distributions for a
subset of parameters from the unbiased S1. The green (darker) distri-
butions represent the test set of S1, while the red (lighter) distributions
are obtained by sampling the DNNLikelihood B1. Histograms are made
with 50 bins and normalised to unit integral. The dotted, dot-dashed, and

dashed lines represent the 68.27%, 95.45%, 99.73% 1D and 2D HPDI.
For graphical purposes only the scattered points outside the outermost
contour are shown. Numbers for the 68.27% HPDI for the parameters
in the two samples are reported above the 1D plots

which, as anticipated, works extremely well in predicting
posterior probabilities without the need of a too large train-
ing sample, nor a hard tuning of the DNN hyperparameters.
When going to models B2 and B3 (Figs. 10 and 11) predic-
tions become more and more reliable, improving as expected
with the number of training points. Therefore, at least part
of the deviations observed in the DNNLikelihood prediction

have to be attributed to the finite size of the training set, and
are expected to disappear when further increasing the num-
ber of points. Considering the relatively small training and
prediction times shown in Table 2, it should be possible, once
the desired level of accuracy has been chosen, to enlarge the
training and test sets enough to match that precision. For the
purpose of this work, we consider the results obtained with
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Fig. 10 Same as Fig. 9 but for the DNNLikelihood B2

models B1−B3 already satisfactory, and do not go beyond
5 × 105 training samples.

In order to allow for a fully quantitative comparison,
in Table 3 we summarize the Bayesian 1D HPDI obtained
with the DNNLikelihoods B1−B3 for the parameter μ both
using reweighting and re-sampling (only upper bounds for
the hypothesis μ > 0). We find that, taking into account
the uncertainty arising from our algorithm to compute HPDI
(finite binning) and from statistical fluctuations in the tails
of the distributions for large probability intervals, the results
of Table 3 are in good agreement with those in Table 1. This

shows that the Bayesian DNNLikelihood is accurate even
with a rather small training sample size of 105 points and its
accuracy quickly improves by increasing the training sample
size.

4.3 Frequentist extension and the full DNNLikelihood

We have trained the same model architectures considered for
the Bayesian DNNLikelihood using the S3 sample. In Table
4 we show results for the best models we obtained for each
training sample size. Results have been obtained by training

123



664 Page 20 of 31 Eur. Phys. J. C (2020) 80 :664

68% HPDI test: [-1.18e-01,5.73e-01]
68% HPDI DNN B3: [-1.28e-01,5.78e-01]

−4
−2
0

2

4

δ 5
0

68% HPDI test: [-5.19e-01,1.40e+00]
68% HPDI DNN B3: [-5.19e-01,1.41e+00]

−3
−2
−1
0

1

2

δ 9
1

68% HPDI test: [-1.04e+00,2.08e-01]
68% HPDI DNN B3: [-1.02e+00,2.25e-01]

−3
.0

−1
.5

0.0

1.5

δ 9
2

68% HPDI test: [-1.10e+00,2.98e-01]
68% HPDI DNN B3: [-1.11e+00,2.98e-01]

−2
−1
0

1

2

δ 9
3

68% HPDI test: [-5.98e-01,5.44e-01]
68% HPDI DNN B3: [-5.98e-01,5.52e-01]

−1
.2

−0
.6 0.0 0.6 1.2 1.8

μ

−1
.6

−0
.8
0.0
0.8
1.6

δ 9
4

−4 −2 0 2 4

δ50

−3 −2 −1 0 1 2

δ91

−3
.0

−1
.5 0.0 1.5

δ92

−2 −1 0 1 2

δ93

−1
.6

−0
.8 0.0 0.8 1.6

δ94

68% HPDI test: [-3.84e-01,4.81e-01]
68% HPDI DNN B3: [-4.06e-01,4.64e-01]

DNN B3 sampling

Test set (106 points)
Sampled DNN B3 (106 points)

68.27% HPDI
95.45% HPDI
99.73% HPDI

Fig. 11 Same as Fig. 9 but for the DNNLikelihood B3

Table 3 HPDI obtained from the different DNNLikelihood models
B1−B3 both by reweighting on the test set of S1 (upper block) and by
re-sampling (lower block). Results are only shown as upper bounds on

μ in the hypothesis μ > 0 and should be compared with the last column
of Table 1

Procedure HPDI (%) B1 B2 B3

Reweighting 68.27 0.50 0.49 0.48

95.45 0.92 0.91 0.88

99.73 1.36 1.35 1.29

Sampling the DNNLikelihood 68.27 0.49 0.49 0.49

95.45 0.92 0.91 0.88

99.73 1.35 1.34 1.29
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Table 4 Results for the best
models (Full DNNLikelihood)
for different training sample
size. All models have been
trained for 5 times to check the
stability of the result and the
best performing has been
quoted. Prediction time is
evaluated on a test set with half
the size of the training set using
the same batch size used in
training, and evaluating on a
Nvidia Tesla V100 GPU with
32GB of RAM. All best models
have dHL = 5 × 103

Name F1 F2 F3

Sample size (×105) 1 2 5

Epochs 183 243 362

Minimum loss train (MSE) (×10−3) 0.092 0.026 0.030

Minimum loss val (MSE) (×10−3) 1.18 0.80 0.71

Minimum loss test (MSE) (×10−3) 1.17 0.80 0.72

ME train (×10−3) 3.07 0.47 1.1

ME val (×10−3) 1.78 0.87 0.82

ME test (×10−3) 1.50 0.68 0.86

Median p value of 1D K-S test/pred-train 0.53 0.48 0.44

Median p value of 1D K-S test/pred-val 0.15 0.27 0.20

Median p value of 1D K-S val/pred-test 0.13 0.31 0.33

Mean error on tμ 0.11 0.12 0.032

Training time (s) 1236 2819 7114

Prediction time (µs/point) 11.1 10.8 10.5

5 identical models for each architecture and hyperparameter
choice, as in Sect. 4.2, and taking the best one. We call these
models F1−F3 (F may stand for both Full and Frequentist,
bearing in mind that these models also allow for Bayesian
inference). As we anticipated in the previous section, the
performance gap between models with different number of
parameters is very small and often models with less param-
eters overperform, at least in the hyperparameter space we
considered, models with more parameters. This is especially
due to our choice of leaving the initial learning rate constant
for all architectures, which resulted in a slightly too large
learning rate for the bigger models, with a consequently less
stable training phase.

This can be seen in Fig. 12, where we show the learning
curves obtained for the values of the hyperparameters shown
in the legends. The training curves for models F1-F3 are
less regular than those of models B1-B3. Nevertheless, as the
learning rate gets reduced, they quickly reach a good valida-
tion loss. As in the case of the Bayesian DNNLikelihood, no
strong fine-tuning is needed for the DNNLikelihood to per-
form extremely well already with a moderate sized training
set, so that we have chosen the best models without pushing
optimisation further. The differences in the value of the met-
rics in Table 4 compared to the ones in Table 2 are due to the
new region of LF values that is learnt from the DNN.

Before repeating the Bayesian analysis presented for the
Bayesian DNNLikelihood, we present results of frequentist
inference using the Full DNNLikelihood. We used the mod-
els F1−F3 to evaluate the test statistics tμ. The left panel of
Fig. 13 shows tμ obtained using the Full DNNLikelihoods,
while the right panel of the same figure shows the absolute
error with respect to numerical maximisation of the analytic
LF defined as �tμ (μ) = |tDNN

μ − texact
μ |. Apart for some

visible deviation in the prediction of model F1, it is clear

that the Full DNNLikelihood is perfectly able to reproduce
the test statistics, allowing for robust frequentist inference,
already starting with relatively small training sets of few hun-
dred thousand points. Clearly, the larger the training set, the
smaller the error, with an average absolute error on tμ (dashed
lines in the right panel of Fig. 13) that gets as low as a few
10−2 for our models. We found that ensemble learning can
help in reducing differences further (keeping under control
statistical fluctuations in the training set and in the DNN
weights). However, in the particular case under considera-
tion, results are already satisfactory by taking the best out
of five identical models trained with random subsets of the
training set. For this reason we do not expand on ensemble
learning in this work and just consider it as a tool to improve
performance in cases where the LF is extremely complicated
or has very high dimensionality.

We now show how the full DNNLikelihood is also able to
catch all the features necessary for Bayesian inference. We do
so by repeating the analysis done for models B1−B3 for the
full DNNLikelihoods F1−F3. As it can be seen comparing
Table 5 with Table 3, results for HPDI on μ are quantita-
tively unchanged with respect to the Bayesian DNNLikeli-
hood, even though, as shown by Figs. 14, 15, 16, the per-
formances on the of 1D and 2D marginal probability distri-
butions slightly deteriorate. This is expected since the statis-
tics in the tails of the LF, that are relevant for the posterior
marginal probability distributions, is reduced compared to
the Bayesian DNNLikelihood due to the enrichment, in the
mixed sample S3, of points in the large probability region
of the LF. Also notice that this slight reduction in the perfor-
mance on posterior marginal probability distributions cannot
directly be inferred from a comparison of Tables 2 and 4.
Indeed, all these metrics are global and cannot tell in which
regions the DNNLikelihood performs better or worse. For
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Fig. 12 Training and validation loss (MSE) vs number of training epochs for models F1−F3. The jumps correspond to points of reduction of the
Adam optimiser learning rate
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Fig. 13 Comparison of the tμ test-statistics computed using numeri-
cal maximisation of the analytic likelihood and of the DNNLikelihoods
F1−F3. Each of the tμ prediction from the DNNLikelihoods corre-
sponds to the best out of five trained models. The left and right plots

show respectively the tμ test-statistics and the absolute error computed
as |tDNN

μ − texact
μ |. Horizontal lines in the right plot represent the mean

absolute error

this reason, looking at the performances on HPDI is crucial
to check that the Bayesian inference can be correctly repro-
duced by the DNNLikelihood.

5 Conclusion and future work

Publishing and distributing likelihoods in a simple yet gen-
eral way is becoming a key issue in many fields, and in partic-
ular in the physics of fundamental interactions, where exper-
imental (and phenomenological) results typically involve
complicated (and often multi-modal or degenerate) likeli-
hoods which depend on hundreds of parameters. We have
introduced the DNNLikelihood framework, in which the full
likelihood, binned or unbinned, including the dependence on
all nuisance parameters, is published by providing a suitably
trained DNN predictor. Distributing the results of experimen-
tal or phenomenological analyses using the DNNLikelihood

framework allows for the combination of different analyses,
for the reinterpretation of the results under different hypothe-
ses, and for the use of the likelihood in a different statistical
framework, without loss of information.

We have illustrated the power of the DNNLikelihood dis-
cussing in detail the toy experiment presented in Ref. [9],
which mimics a realistic LHC-like NP search. We found that
the DNNLikelihood is able to catch the main features of the
true LF, allowing for both frequentist and Bayesian inference,
already with a limited amount of training data.

A Jupyter notebook, together with Python source files
which allow to reproduce all results presented above are
available on GitHub �. A dedicated Python package allow-
ing to sample LFs and to build, optimize, train, and store the
corresponding DNNLikelihoods is in preparation. This will
allow not only allow to construct and distribute DNNLikeli-
hoods, but also to use them for inference both in the Bayesian
and frequentist frameworks.

123

https://github.com/riccardotorre/DNNLikelihood


Eur. Phys. J. C (2020) 80 :664 Page 23 of 31 664

68% HPDI test: [-1.18e-01,5.73e-01]
68% HPDI DNN F1: [-1.66e-01,5.90e-01]

−4
−2
0

2

4

δ 5
0

68% HPDI test: [-5.19e-01,1.40e+00]
68% HPDI DNN F1: [-5.26e-01,1.41e+00]

−3
−2
−1
0

1

2

δ 9
1

68% HPDI test: [-1.04e+00,2.08e-01]
68% HPDI DNN F1: [-1.05e+00,2.54e-01]

−3
.0

−1
.5

0.0

1.5

δ 9
2

68% HPDI test: [-1.10e+00,2.98e-01]
68% HPDI DNN F1: [-1.12e+00,3.58e-01]

−2
−1
0

1

2

δ 9
3

68% HPDI test: [-5.98e-01,5.44e-01]
68% HPDI DNN F1: [-6.04e-01,6.03e-01]

−1
.2

−0
.6 0.0 0.6 1.2 1.8

μ

−1
.6

−0
.8
0.0
0.8
1.6

δ 9
4

−4 −2 0 2 4

δ50

−3 −2 −1 0 1 2

δ91

−3
.0

−1
.5 0.0 1.5

δ92

−2 −1 0 1 2

δ93

−1
.6

−0
.8 0.0 0.8 1.6

δ94

68% HPDI test: [-3.84e-01,4.81e-01]
68% HPDI DNN F1: [-4.20e-01,4.81e-01]

DNN F1 sampling

Test set (106 points)
Sampled DNN F1 (106 points)

68.27% HPDI
95.45% HPDI
99.73% HPDI

Fig. 14 1D and 2D posterior marginal probability distributions for a
subset of parameters from the unbiased S1. The green (darker) distribu-
tions represent the test set of S1, while the red distributions are obtained
by sampling the DNNLikelihood F1. Histograms are made with 50 bins
and normalised to unit integral. The dotted, dot-dashed, and dashed lines

represent the 68.27%, 95.45%, 99.73% 1D and 2D HPDI. For graphi-
cal purposes only the scattered points outside the outermost contour are
shown. Numbers for the 68.27% HPDI for the parameters in the two
samples are reported above the 1D plots

We plan to release soon the first examples of the use of the
DNNLikelihood for true experimental likelihoods, including
unbinned, multimodal likelihoods, in forthcoming publica-
tions.

As a final remark, we stress the fact that the proposed
approach supports and complements the remarkable step
taken by the ATLAS collaboration in publishing full experi-

mental likelihoods [12,14,15]. On one hand, the DNNLike-
lihood framework can be seen as a way to export a Hist-
Factory likelihood to a software environment that does not
meet the needed dependencies, or as an alternative option for
experimental collaborations that do not use HistFactory. On
the other, the use of a DNN model does not imply specific
choices on the likelihood function (e.g. it covers equally well
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Fig. 15 Same as Fig. 14 but for the DNNLikelihood F2

Table 5 HPDI obtained from the different DNNLikelihood models
F1−F3 both by reweighting on the test set of S1 (upper block) and by
re-sampling (lower block). Results are only shown as upper bound on μ

in the hypothesis μ > 0 and should be compared with the last column
of Table 1

Procedure HPDI (%) F1 F2 F3

Reweighting 68.27% 0.50 0.50 0.49

95.45 0.93 0.92 0.89

99.73 1.39 1.37 1.31

Sampling the DNNLikelihood 68.27% 0.50 0.50 0.48

95.45 0.93 0.93 0.88

99.73 1.35 1.37 1.28
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Fig. 16 Same as Fig. 14 but for the DNNLikelihood F3

Table 6 Probability interval 1 − α corresponding to nσ for n = 1, 2, 3, 4, 5 in different dimension l = 1, 10, 100

n\l 1 10 100

1 0.683 1.7 × 10−4 1.79 × 10−80

2 0.954 0.0537 5.21 × 10−51

3 0.997 0.468 1.83 × 10−34

4 1−6.3 × 10−5 0.900 1.87 × 10−23

5 1−5.7 × 10−7 0.995 1.14 × 10−15
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Table 7 Value of log10 exp

(
− 1

2 F−1
χ2

l
(1 − α)

)
for fixed probability

intervals 1 − α corresponding to nσ of a 1-dimensional normal distri-
bution for n = 1, 2, 3, 4, 5 in different dimension l = 1, 10, 100

1 − α\l 1 10 100

0.683 0.165 3.76 79.7

0.954 0.0202 1.28 50.3

0.997 1.17 × 10−3 0.330 33.7

1−6.3 × 10−5 2.75 × 10−5 0.0456 22.7

1−5.7 × 10−7 2.49 × 10−7 2.32 × 10−3 14.9

unbinned likelihoods and/or likelihoods built from analytical
functions and not represented as histograms).

Last but not least, using a DNNLikelihood could be a
viable solution to distribute the outcome of phenomeno-
logical studies, such as the ones presented in Refs. [19–
28,67,68].

On a long term, a large scale adoption of likelihood pub-
lishing towards the DNNLikelihood framework would moti-
vate the possibility of publishing DNN models on HEP-
Data (which, more generically, would be beneficial for repro-
ducibility issues related to physics analysis using DNNs for
selection, etc.), for instance supporting the ONNX format.
In this respect, and considering that there could be inter-
est in likelihood publishing in other domains (e.g. for the
C DM likelihood in cosmology), it might be worth con-
sidering a less hierarchical submission procedure for HEP-
Data (e.g. allowing individuals outside a structured organiza-
tion/experimental collaboration to submit a likelihood func-
tion) or the opportunity to create a separate (and not HEP
specific) likelihood function repository, e.g. based on Zen-
odo.
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A On the multivariate normal distribution

For the univariate normal distribution (centered in zero and
with unit variance)

N1(x) = 1√
2π

e− x2
2 , (19)

the confidence intervals at nσ are defined by the quantiles of
the χ2

k distribution with k = 1 degrees of freedom by

n2 = F−1
χ2

1
(1 − α) , 1 − α = Fχ2

1

(
n2

)
(20)

where 1 − α is the area of the distribution within ±nσ from
the mean and Fχ2

k
is the cumulative distribution of the χ2

distribution with k degrees of freedom.
Generalization to a multivariate normal distribution in l

dimensions with zero vector mean and identity covariance
matrix � = Il

Nl(x) = 1

(2π)l/2 e− 1
2

∑l
i=1 x2

i , (21)

is obtained by considering the χ2
k distribution with k = l

degrees of freedom. Equation (20) then becomes

n2 = F−1
χ2

l
(1 − α) , 1 − α = Fχ2

l

(
n2

)
(22)

Table 6 shows the probability corresponding to an interval at
nσ for n = 1, 2, 3, 4, 5 in different dimension l = 1, 10, 100.

The typical size ofN outside of the region with probability
1 − α is given by

1

(2π)l/2 e
− 1

2 F−1
χ2

l
(1−α)

. (23)

The target set of the distribution within 1 − α probability
from the mean is therefore given by:

Nl (x)within 1−α ∈ (2π)−l/2

{
e
− 1

2 F−1
χ2

l
(1−α)

, 1

}
, (24)

To get an idea of how many orders of magnitude the target
set spans for a given 1 − α probability interval in different
dimensions, in Table 7 we show − log10 of the ratio between
minimum and maximum, i.e.

log10 e
− 1

2 F−1
χ2

l
(1−α)

(25)
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Fig. 17 Distributions f (tμ|μ) for the LHC-like new physics search discussed in Sect. 3, obtained from pseudo-experiments employing the profile
construction (upper panel) and the hybrid frequentist-Bayesian treatment of nuisance parameters (lower panel). A χ2

1 distribution is shown for
comparison

Table 8 Values of μ with corresponding tμ,obs and CL coverage for
the LHC-like new physics search discussed in Sect. 3, obtained from
pseudo-experiments employing the profile construction and the hybrid

frequentist-Bayesian treatment of nuisance parameters. The last row
shows the asymptotic result obtained with a χ2

1 distribution

μ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

tμ,obs 0.0 0.09 0.29 0.63 1.13 1.77 2.57 3.53 4.64 5.92 7.37

Coverage (profile) 0.0 0.15 0.27 0.37 0.49 0.59 0.68 0.76 0.83 0.89 0.93

Coverage (hybrid) 0.0 0.15 0.30 0.46 0.61 0.73 0.82 0.90 0.94 0.97 0.99

Coverage (χ2
1 ) 0.0 0.23 0.41 0.57 0.71 0.82 0.89 0.94 0.97 0.99 0.99

for fixed probability intervals corresponding to nσ of a 1-
dimensional normal distribution for n = 1, 2, 3, 4, 5 in dif-
ferent dimension l = 1, 10, 100.

B Pseudo-experiments and frequentist coverage

In order to check the validity of the asymptotic approxima-
tion given by Wilks’ theorem, and to obtain more robust

upper bounds from the tμ test-statistics for the LHC-like
search discussed in Sect. 3, we need to generate several
pseudo-experiments for each hypothesised “true” value of
μ, compute the log-likelihood and the test statistics tμ for
each pseudo-experiment, and study the pdf of tμ, denoted by
f (tμ|μ). The cumulative distribution of f (tμ|μ) determines
the coverage properties of the test-statistics tμ through the
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Table 9 Upper bounds on tμ and corresponding μ at different CL
for the LHC-like new physics search discussed in Sect. 3, obtained
from pseudo-experiment employing a profiled frequentist and hybrid
frequentist-Bayesian treatment of nuisance parameters. The last two
rows show the asymptotic result obtained with a χ2

1 distribution

CL 68.27% 95.45% 99.73%

tμ (profile) 2.71 > 7.37 > 7.37

μ (profile) 0.61 > 1.00 > 1.00

tμ (hybrid) 1.52 5.26 > 7.37

μ (hybrid) 0.46 0.85 > 1.00

tμ (χ2
1 ) 1.00 4.00 9.00

μ (χ2
1 ) 0.37 0.74 > 1.00

relation

1 − pμ =
∫ tμ,obs

0
f (tμ|μ)dtμ , (26)

where tμ,obs is the tμ of our actual experiment at the given
value of μ. By solving this equation for μ at specified value
of pμ = α we get the value of μ excluded at a CL of 1 − α.

We generate pseudo-experiments following two different
procedures for the treatment of nuisance parameters and com-
pare the results.

• Profile construction
First we consider a frequentist treatment of nuisance
parameters, referred to as profile construction [43,69]:
we determine the values θ̂μ of the nuisance parameters
at the maximum of the LF of our actual experiment for
different values of μ, and keep them fixed to generate sev-
eral pseudo-experiments for each μ according to Eq. (12).
This approach encodes statistical fluctuations arising in
repeated experiments, but does not take into account sys-
tematic uncertainties. Although this approach violates the
“anticipation criterion” [70], it is expected to work well,
and have good coverage properties when the uncertainty
is statistically dominated.16 Indeed the coverage of this
approach grows as the profiled value θ̂μ approaches the
“true” value of θ . This happens when systematic uncer-
tainties become less and less relevant compared to statis-
tical fluctuations.
Following this procedure we generated 5 × 104 pseudo-
experiments for each value of μ in the range [0, 1] with
steps of 0.1.

• Hybrid frequentist-Bayesian (marginal model)
In order to understand the impact of systematic uncer-

16 This was the approach employed, for instance, in the LHC Higgs
boson search combination in 2011 [3]. Notice that in our toy example we
do not have access to the auxiliary measurements used to constrain the
nuisance parameters, so we cannot float them when generating pseudo-
experiments.

tainties we also consider the hybrid frequentist-Bayesian
treatment of nuisance parameters (referred to as marginal
model in Ref. [43]): pseudo-experiments are generated
including both variations of the nuisance parameters
according to their distribution, and statistical uncertainty
through Eq. (12). This allows to include the effect of
systematic uncertainties in the generation of pseudo-
experiments.
In this case we generated, for the same values of μ con-
sidered above, 5 × 103 expected counts (for all 90 bins)
corresponding to variations of the nuisance parameters
over their multivariate distibution, and subsequently used
each of these expected counts to generate 10 pseudo-
experiments according to Eq. (12). This delivers a total
of 5×104 pseudo-experiments for each value ofμ, encod-
ing both statistical and systematic uncertainties.

Figure 17 shows the distributions f (tμ|μ) for each value
of μ, while the probability values covered for each value
of μ and the corresponding tμ,obs are given in Table 8.
Using the distributions f (tμ|μ) we performed the integral
in Eq. (26) for 1− pμ = 0.6827, 0.9545, 0.9973, getting the
upper bounds on μ reported in Table 9. All results are shown
for both the profile construction and the hybrid frequentist-
Bayesian approach.

As expected, due to the small statistics in many bins, the
asymptotic result is inaccurate, and in particular tends to
undercover the true value. This delivers a too “aggressive”
upper bound for μ. The hybrid approach gives relatively more
conservative upper bounds, very similar (expectedly, given
the marginal model used for the nuisance parameters) to the
Bayesian result reported in Table 1. Finally, the profile con-
struction gives the most conservative bound, that is substan-
tially more conservative than the asymptotic one. We do not
dare here to discuss which upper bound is to be quoted, since
we are only interested in assessing the validity of the asymp-
totic approximation.

References

1. A. Stuart, J.K. Ord, S. Arnold, Kendall’s advanced theory of statis-
tics. Vol.2A: Classical inference and the linear model (Sixth Edi-
tion) (Wiley, New York, 2009) [CDS]. http://cds.cern.ch/record/
436225

2. A. O’Hagan, J. Forster, Kendall’s advanced theory of statis-
tics. Vol.2B: Bayesian inference (Second Edition) (Wiley, New
York, 2004) [CDS]. http://cds.cern.ch/record/436225

3. ATLAS, CMS and LHC Higgs Combination Group Collab-
orations, Procedure for the LHC Higgs boson search combina-
tion in Summer 2011, Tech. Rep. CMS-NOTE-2011-005, ATL-
PHYS-PUB-2011-11 (CERN, 2011) [InSpire]. http://cds.cern.ch/
record/1379837, http://cds.cern.ch/record/1379837, https://labs.
inspirehep.net/literature/1196797

4. F.C.C. Collaboration, A. Abada et al., FCC Physics Oppor-
tunities. Eur. Phys. J. C 79, 474 (2019). https://doi.org/10.

123

http://cds.cern.ch/record/436225
http://cds.cern.ch/record/436225
http://cds.cern.ch/record/436225
http://cds.cern.ch/record/1379837
http://cds.cern.ch/record/1379837
http://cds.cern.ch/record/1379837
https://labs.inspirehep.net/literature/1196797
https://labs.inspirehep.net/literature/1196797
https://doi.org/10.1140/epjc/s10052-019-6904-3


Eur. Phys. J. C (2020) 80 :664 Page 29 of 31 664

1140/epjc/s10052-019-6904-3 [InSpire]. https://labs.inspirehep.
net/literature/1713706

5. T. Behnke et al., The International Linear Collider Techni-
cal Design Report, volume 1: Executive Summary [InSpire].
arXiv:1306.6327. https://labs.inspirehep.net/literature/1240093

6. M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun,
K. Peach et al., A Multi-TeV Linear Collider Based on
CLIC Technology—CLIC Conceptual Design Report, CERN Yel-
low Reports: Monographs CERN, Geneva (2012). https://doi.
org/10.5170/CERN-2012-007 [CDS]. https://cds.cern.ch/record/
1500095

7. N. Berger et al., Simplified template cross sections–stage 1.1.
arXiv:1906.02754 [InSpire]. https://labs.inspirehep.net/literature/
1738820

8. S. Fichet, Taming systematic uncertainties at the LHC with the cen-
tral limit theorem. Nucl. Phys. B 911, 623 (2016). https://doi.org/
10.1016/j.nuclphysb.2016.08.029. arXiv:1603.03061 [InSpire].
https://labs.inspirehep.net/literature/1427030

9. A. Buckley, M. Citron, S. Fichet, S. Kraml, W. Wal-
tenberger, N. Wardle, The Simplified Likelihood Framework.
JHEP 04, 064 (2019). https://doi.org/10.1007/JHEP04(2019)064.
arXiv:1809.05548 [InSpire]. https://labs.inspirehep.net/literature/
1694152

10. CMS Collaboration, Simplified likelihood for the re-interpretation
of public CMS results, Tech. Rep. CMS-NOTE-2017-001, (2017)
[CDS]. https://cds.cern.ch/record/2242860

11. K. Cranmer, S. Kreiss, D. Lopez-Val, T. Plehn, Decoupling Theo-
retical Uncertainties from Measurements of the Higgs Boson. Phys.
Rev. D 91, 054032 (2015). https://doi.org/10.1103/PhysRevD.91.
054032. arXiv:1401.0080 [InSpire]. https://labs.inspirehep.net/
literature/1275827

12. ATLAS Collaboration, G. Aad et al., Search for bottom-squark
pair production with the ATLAS detector in final states con-
taining Higgs bosons, b-jets and missing transverse momentum.
arXiv:1908.03122 [InSpire]. https://labs.inspirehep.net/literature/
1748602

13. G. Watt et al., HepData [Webpage]. https://www.hepdata.net
14. ROOT Collaboration, K. Cranmer et al., HistFactory: A tool for

creating statistical models for use with RooFit and RooStats, Tech.
Rep. CERN-OPEN-2012-016 (2012) [CDS]. https://cds.cern.ch/
record/1456844

15. ATLAS Collaboration, Reproducing searches for new physics with
the ATLAS experiment through publication of full statistical like-
lihoods, Tech. Rep. ATL-PHYS-PUB-2019-029 (2019) [CDS].
https://cds.cern.ch/record/2684863

16. F. James, Y. Perrin, L. Lyons, eds., 1st Workshop on Confi-
dence Limits, CERN, Geneva, Switzerland, 17–18 Jan 2000: Pro-
ceedings, CERN (2000). https://doi.org/10.5170/CERN-2000-005
[InSpire]. https://labs.inspirehep.net/literature/534129

17. C.M.S. Collaboration, A.M. Sirunyan et al., Measurements of prop-
erties of the Higgs boson decaying into the four-lepton final state
in pp collisions at

√
s = 13 TeV. JHEP 11, 047 (2017). https://

doi.org/10.1007/JHEP11(2017)047. arXiv:1706.09936 [InSpire].
https://labs.inspirehep.net/literature/1608162

18. J. Bai et al., ONNX: Open Neural Network Exchange [GitHub].
https://github.com/onnx/onnx

19. M. Ciuchini, G. D’Agostini, E. Franco, V. Lubicz, G. Martinelli,
F. Parodi et al., 2000 CKM triangle analysis: A Critical review
with updated experimental inputs and theoretical parameters.
JHEP 07, 013 (2001). https://doi.org/10.1088/1126-6708/2001/
07/013. arXiv:hep-ph/0012308 [InSpire]. https://labs.inspirehep.
net/literature/539328

20. A. Hocker, H. Lacker, S. Laplace, F. Le Diberder, A New approach
to a global fit of the CKM matrix. Eur. Phys. J. C 21, 225 (2001).
https://doi.org/10.1007/s100520100729. arXiv:hep-ph/0104062
[InSpire]. https://labs.inspirehep.net/literature/555184

21. J. Charles, A. Hocker, H. Lacker, S. Laplace, F.R. Le
Diberder, J. Malcles et al., CP violation and the CKM
matrix: Assessing the impact of the asymmetric B facto-
ries. Eur. Phys. J. C 41, 1 (2005). https://doi.org/10.1140/epjc/
s2005-02169-1. arXiv:hep-ph/0406184 [InSpire]. https://labs.
inspirehep.net/literature/652597

22. UTfit Collaboration, M. Bona, The, et al., UTfit collaboration report
on the status of the unitarity triangle in the standard model. JHEP
07(2005), 028 (2004). https://doi.org/10.1088/1126-6708/2005/
07/028 [InSpire]. arXiv:hep-ph/0501199. https://labs.inspirehep.
net/literature/675376

23. UTfit Collaboration, M. Bona et al., Model-independent con-
straints on �F = 2 operators and the scale of new physics.
JHEP03, 049 (2008). https://doi.org/10.1088/1126-6708/2008/
03/049 [InSpire]. arXiv:0707.0636. https://labs.inspirehep.net/
literature/755026

24. M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, Elec-
troweak Precision Observables, New Physics and the Nature of
a 126 GeV Higgs Boson. JHEP 08, 106 (2013). https://doi.org/
10.1007/JHEP08(2013)106 [arXiv:1306.4644] [InSpire]. https://
labs.inspirehep.net/literature/1239175

25. Gfitter Group Collaboration, M. Baak et al., The global
electroweak fit at NNLO and prospects for the LHC and
ILC. Eur. Phys. J. C 74, 3046 (2014). https://doi.org/10.1140/
epjc/s10052-014-3046-5. arXiv:1407.3792 [InSpire]. https://labs.
inspirehep.net/literature/1306488

26. J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini,
L. Reina et al., Electroweak precision observables and Higgs-
boson signal strengths in the Standard Model and beyond:
present and future. JHEP 12, 135 (2016). https://doi.org/10.
1007/JHEP12(2016)135. arXiv:1608.01509] [InSpire]. https://
labs.inspirehep.net/literature/1479455

27. A. Falkowski, M. González-Alonso, K. Mimouni, Compilation
of low-energy constraints on 4-fermion operators in the SMEFT.
JHEP 08, 123 (2017). https://doi.org/10.1007/JHEP08(2017)123.
arXiv:1706.03783 [InSpire]. https://labs.inspirehep.net/literature/
1604898

28. J. Ellis, C.W. Murphy, V. Sanz, T. You, Updated Global
SMEFT Fit to Higgs. Diboson and Electroweak Data.
JHEP 06, 146 (2018). https://doi.org/10.1007/JHEP06(2018)146.
arXiv:1803.03252 [InSpire]. https://labs.inspirehep.net/literature/
1659142

29. M. Clark, MCMC Algorithms [Webpage]. https://m-clark.github.
io/docs/ld_mcmc/

30. GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A Simu-
lation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://
doi.org/10.1016/S0168-9002(03)01368-8 [InSpire]. http://
inspirehep.net/record/593382

31. K. Kandasamy, J. Schneider, B. Póczos, Query efficient
posterior estimation in scientific experiments via Bayesian
active learning. Artif. Intell. 243, 45 (2017). https://
doi.org/10.1016/j.artint.2016.11.002. arXiv:1702.01145
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Query-efficient-posterior-estimation-in-scientific-Kandasamy-
Schneider/24045a780ebfe8f1bd6fb2885a475538c0bb8bb8

32. S. Caron, T. Heskes, S. Otten and B. Stienen, Constraining
the parameters of high-dimensional models with active learning.
arXiv:1905.08628 [InSpire]. https://labs.inspirehep.net/literature/
1735784

33. A. Coccaro, M. Pierini, L. Silvestrini, R. Torre, To appear
34. A. Coccaro, M. Pierini, L. Silvestrini, R. Torre, The DNNLike-

lihood: enhancing likelihood distribution with Deep Learning
(2019). https://doi.org/10.5281/zenodo.3567822 [Zenodo]

35. F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri, R.
Trotta, Challenges of profile likelihood evaluation in multi-
dimensional SUSY scans. JHEP 06, 042 (2011). https://doi.org/10.

123

https://doi.org/10.1140/epjc/s10052-019-6904-3
https://labs.inspirehep.net/literature/1713706
https://labs.inspirehep.net/literature/1713706
http://arxiv.org/abs/1306.6327
https://labs.inspirehep.net/literature/1240093
https://doi.org/10.5170/CERN-2012-007
https://doi.org/10.5170/CERN-2012-007
https://cds.cern.ch/record/1500095
https://cds.cern.ch/record/1500095
http://arxiv.org/abs/1906.02754
https://labs.inspirehep.net/literature/1738820
https://labs.inspirehep.net/literature/1738820
https://doi.org/10.1016/j.nuclphysb.2016.08.029
https://doi.org/10.1016/j.nuclphysb.2016.08.029
http://arxiv.org/abs/1603.03061
https://labs.inspirehep.net/literature/1427030
https://doi.org/10.1007/JHEP04(2019)064
http://arxiv.org/abs/1809.05548
https://labs.inspirehep.net/literature/1694152
https://labs.inspirehep.net/literature/1694152
https://cds.cern.ch/record/2242860
https://doi.org/10.1103/PhysRevD.91.054032
https://doi.org/10.1103/PhysRevD.91.054032
http://arxiv.org/abs/1401.0080
https://labs.inspirehep.net/literature/1275827
https://labs.inspirehep.net/literature/1275827
http://arxiv.org/abs/1908.03122
https://labs.inspirehep.net/literature/1748602
https://labs.inspirehep.net/literature/1748602
https://www.hepdata.net
https://cds.cern.ch/record/1456844
https://cds.cern.ch/record/1456844
https://cds.cern.ch/record/2684863
https://doi.org/10.5170/CERN-2000-005
https://labs.inspirehep.net/literature/534129
https://doi.org/10.1007/JHEP11(2017)047
https://doi.org/10.1007/JHEP11(2017)047
http://arxiv.org/abs/1706.09936
https://labs.inspirehep.net/literature/1608162
https://github.com/onnx/onnx
https://doi.org/10.1088/1126-6708/2001/07/013
https://doi.org/10.1088/1126-6708/2001/07/013
http://arxiv.org/abs/hep-ph/0012308
https://labs.inspirehep.net/literature/539328
https://labs.inspirehep.net/literature/539328
https://doi.org/10.1007/s100520100729
http://arxiv.org/abs/hep-ph/0104062
https://labs.inspirehep.net/literature/555184
https://doi.org/10.1140/epjc/s2005-02169-1
https://doi.org/10.1140/epjc/s2005-02169-1
http://arxiv.org/abs/hep-ph/0406184
https://labs.inspirehep.net/literature/652597
https://labs.inspirehep.net/literature/652597
https://doi.org/10.1088/1126-6708/2005/07/028
https://doi.org/10.1088/1126-6708/2005/07/028
http://arxiv.org/abs/hep-ph/0501199
https://labs.inspirehep.net/literature/675376
https://labs.inspirehep.net/literature/675376
https://doi.org/10.1088/1126-6708/2008/03/049
https://doi.org/10.1088/1126-6708/2008/03/049
http://arxiv.org/abs/0707.0636
https://labs.inspirehep.net/literature/755026
https://labs.inspirehep.net/literature/755026
https://doi.org/10.1007/JHEP08(2013)106
https://doi.org/10.1007/JHEP08(2013)106
http://arxiv.org/abs/1306.4644
https://labs.inspirehep.net/literature/1239175
https://labs.inspirehep.net/literature/1239175
https://doi.org/10.1140/epjc/s10052-014-3046-5
https://doi.org/10.1140/epjc/s10052-014-3046-5
http://arxiv.org/abs/1407.3792
https://labs.inspirehep.net/literature/1306488
https://labs.inspirehep.net/literature/1306488
https://doi.org/10.1007/JHEP12(2016)135
https://doi.org/10.1007/JHEP12(2016)135
http://arxiv.org/abs/1608.01509
https://labs.inspirehep.net/literature/1479455
https://labs.inspirehep.net/literature/1479455
https://doi.org/10.1007/JHEP08(2017)123
http://arxiv.org/abs/1706.03783
https://labs.inspirehep.net/literature/1604898
https://labs.inspirehep.net/literature/1604898
https://doi.org/10.1007/JHEP06(2018)146
http://arxiv.org/abs/1803.03252
https://labs.inspirehep.net/literature/1659142
https://labs.inspirehep.net/literature/1659142
https://m-clark.github.io/docs/ld_mcmc/
https://m-clark.github.io/docs/ld_mcmc/
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
http://inspirehep.net/record/593382
http://inspirehep.net/record/593382
https://doi.org/10.1016/j.artint.2016.11.002
https://doi.org/10.1016/j.artint.2016.11.002
http://arxiv.org/abs/1702.01145
https://www.semanticscholar.org/paper/Query-efficient-posterior-estimation-in-scientific-Kandasamy-Schneider/24045a780ebfe8f1bd6fb2885a475538c0bb8bb8
https://www.semanticscholar.org/paper/Query-efficient-posterior-estimation-in-scientific-Kandasamy-Schneider/24045a780ebfe8f1bd6fb2885a475538c0bb8bb8
https://www.semanticscholar.org/paper/Query-efficient-posterior-estimation-in-scientific-Kandasamy-Schneider/24045a780ebfe8f1bd6fb2885a475538c0bb8bb8
http://arxiv.org/abs/1905.08628
https://labs.inspirehep.net/literature/1735784
https://labs.inspirehep.net/literature/1735784
https://doi.org/10.5281/zenodo.3567822
https://doi.org/10.1007/JHEP06(2011)042


664 Page 30 of 31 Eur. Phys. J. C (2020) 80 :664

1007/JHEP06(2011)042. arXiv:1101.3296 [InSpire]. https://labs.
inspirehep.net/literature/884664

36. S. Kullback, R.A. Leibler, On Information and
Sufficiency. Ann. Math. Statist. 22, 79 (1951).
https://doi.org/10.1214/aoms/1177729694 [Semantic
Scholar]. https://www.semanticscholar.org/paper/
ON-INFORMATION-AND-SUFFICIENCY-Kullback-Leibler/
c054360ec3ccadae977fdd0d77694c9655478a41

37. A. Kolmogorov, Sulla Determinazione Empirica di una Legge di
Distribuzione. Giornale dell’Istituto Italiano degli Attuari 4, 83
(1933) [Google Scholar]. https://scholar.google.com/scholar?
hl=it&as_sdt=0%2C5&q=kolmogorov+1933&btnG=

38. N. Smirnov, Table for Estimating the Goodness of
Fit of Empirical Distributions. Ann. Math. Statist. 19,
279 (1948). https://doi.org/10.1214/aoms/1177730256
[Semantic Scholar]. https://www.semanticscholar.org/
paper/Table-for-Estimating-the-Goodness-of-Fit-of-Smirnov/
91e455e20865eba0e93a12fd8080ad640584b133

39. B. Krawczyk, Learning from imbalanced data: open challenges
and future directions. Progr. Artif. Intell. 5, 221 (2016). https://
doi.org/10.1007/s13748-016-0094-0 [Semantic Scholar].
https://www.semanticscholar.org/paper/Learning-from-imbalanced-
data%3A-open-challenges-and-Krawczyk/f537f1bc527bf33cc5fd8
da34275106329de1802

40. P. Branco, L. Torgo, R.P. Ribeiro, SMOGN: a Pre-processing
Approach for Imbalanced Regression, in First International
Workshop on Learning with Imbalanced Domains: Theory
and Applications, LIDTA@PKDD/ECML 2017, 22 Septem-
ber 2017, Skopje, Macedonia, vol. 74 of Proceedings of
Machine Learning Research, PMLR, pp. 36–50 (2017)
[Semantic Scholar]. https://www.semanticscholar.org/paper/
SMOGN%3A-a-Pre-processing-Approach-for-Imbalanced-Bran
co-Torgo/5839b2b19bf85a7b02b5bdabb752dae2993131ca

41. M. Ren, W. Zeng, B. Yang, R. Urtasun, Learning to Reweight
Examples for Robust Deep Learning, in Proceedings of
the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, pp. 4331–4340 (2018) arXiv:1803.09050
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Learning-to-Reweight-Examples-for-Robust-Deep-Ren-Zeng/
c5420ef59d7508d82e53671b0d623027eb58e6ed

42. S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio
for Testing Composite Hypotheses. Ann. Math. Stat. 9, 60 (1938).
https://doi.org/10.1214/aoms/1177732360 [InSpire]. https://labs.
inspirehep.net/literature/1247197

43. Particle Data Group Collaboration, M. Tanabashi et al.,
Review of particle physics. Phys. Rev. D 98, 030001 (2018).
https://doi.org/10.1103/PhysRevD.98.030001 [InSpire]. https://
labs.inspirehep.net/literature/1688995

44. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman,
emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 125,
306 (2013). https://doi.org/10.1086/670067. arXiv:1202.3665
[InSpire]. https://labs.inspirehep.net/literature/1089369

45. J. Goodman, J. Weare, Ensemble samplers with affine invari-
ance. Commun. Appl. Math. Comput. Sci. 5(1), 65–80
(2010). https://doi.org/10.2140/camcos.2010.5.65 [Semantic
Scholar]. https://www.semanticscholar.org/paper/ENSEM
BLE-SAMPLERS-WITH-AFFINE-INVARIANCE-Goodman-W
eare/4311c875c04b091acba45de428b68daa66b69a3c

46. A. Gelman, D.B. Rubin, Inference from Iterative Simulation
Using Multiple Sequences. Statist. Sci. 7, 457 (1992). https://doi.
org/10.1214/ss/1177011136 [InSpire]. https://labs.inspirehep.
net/literature/352327

47. S.P. Brooks, A. Gelman, General methods for monitoring con-
vergence of iterative simulations. J. Comput. Graph. Stat. 7,
434 (1998). https://doi.org/10.1080/10618600.1998.10474787

[Semantic Scholar]. https://www.semanticscholar.org/paper/
General-Methods-for-Monitoring-Convergence-of-Brooks-Gelman/
abd6cc122265b2d5de049145a0d91211bace5009

48. D. Huijser, J. Goodman, B.J. Brewer, Properties of the affine
invariant ensemble sampler in high dimensions. arXiv:1509.02230
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Properties-of-the-Affine-Invariant-Ensemble-Sampler-Huijser-
Goodman/5cb9ae49d8e477afe60b373e9bf7d0ed8f3a7abd

49. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman,
emcee: The MCMC Hammer [ReadTheDocs]. https://emcee.
readthedocs.io/en/latest/

50. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, emcee:
The MCMC Hammer [GitHub]. https://github.com/dfm/emcee3

51. E.B. Ford, Convergence Diagnostics For Markov chain Monte
Carlo (2016) [Slides]. https://astrostatistics.psu.edu/RLectures/
diagnosticsMCMC16.pdf

52. W.A. Link, M.J. Eaton, On thinning of chains
in MCMC. Methods Ecol. Evol. 3, 112 (2012).
https://doi.org/10.1111/j.2041-210x.2011.00131.x
[Semantic Scholar]. https://www.semanticscholar.
org/paper/On-thinning-of-chains-in-MCMC-Link-Eaton/
f1d47f13d8ee38ce9b4b234b9ce6ccf826760dff

53. A.B. Owen, Statistically efficient thinning of a
Markov chain sampler. arXiv:1510.07727 [Semantic
Scholar]. https://www.semanticscholar.org/paper/
Statistically-efficient-thinning-of-a-Markov-chain-Owen/
2263490be4babaaf72b9d58a3d3ff52172e78fb5

54. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formu-
lae for likelihood-based tests of new physics. Eur. Phys. J. 17,
1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0.
arXiv:1007.1727 [InSpire]. http://inspirehep.net/record/860907
[Erratum: 10.1140/epjc/s10052-013-2501-z Eur. Phys. J. C73
(2013) 2501]

55. F. Chollet et al., Keras: Deep Learning for humans [GitHub].
https://github.com/fchollet/keras

56. M. Abadi et al., TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems [TensorFlow v1]. https://www.tensorflow.
org/versions/r1.15/api_docs/python/tf

57. X. Glorot, A. Bordes and Y. Bengio, Deep Sparse Rectifier
Neural Networks, In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics,
ed. by G. Gordon, D. Dunson, M. Dudík, eds., vol. 15 of
Proceedings of Machine Learning Research, PMLR (2011),
pp. 315–323 (2011). http://proceedings.mlr.press/v15/glorot11a.
html [Semantic Scholar]. https://www.semanticscholar.org/
paper/Deep-Sparse-Rectifier-Neural-Networks-Glorot-Bordes/
67107f78a84bdb2411053cb54e94fa226eea6d8e

58. D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate
deep network learning by exponential linear units (ELUs).
In 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings (2016). arXiv:1511.07289
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Fast-and-Accurate-Deep-Network-Learning-by-Linear-Clevert-
Unterthiner/f63e917638553414526a0cc8550de4ad2d83fe7a

59. G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-
normalizing neural networks. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA (2017), pp. 971–980. arXiv:1706.02515. http://
papers.nips.cc/paper/6698-self-normalizing-neural-networks
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Self-Normalizing-Neural-Networks-Klambauer-Unterthiner/
424a6e62084d919bfc2e39a507c263e5991ebdad

60. Y. LeCun, L. Bottou, G.B. Orr, K.-R.Müller, Efficient Back-
Prop. In Neural Networks: Tricks of the Trade. Lecture Notes

123

https://doi.org/10.1007/JHEP06(2011)042
http://arxiv.org/abs/1101.3296
https://labs.inspirehep.net/literature/884664
https://labs.inspirehep.net/literature/884664
https://doi.org/10.1214/aoms/1177729694
https://www.semanticscholar.org/paper/ON-INFORMATION-AND-SUFFICIENCY-Kullback-Leibler/c054360ec3ccadae977fdd0d77694c9655478a41
https://www.semanticscholar.org/paper/ON-INFORMATION-AND-SUFFICIENCY-Kullback-Leibler/c054360ec3ccadae977fdd0d77694c9655478a41
https://www.semanticscholar.org/paper/ON-INFORMATION-AND-SUFFICIENCY-Kullback-Leibler/c054360ec3ccadae977fdd0d77694c9655478a41
https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=kolmogorov+1933&btnG=
https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=kolmogorov+1933&btnG=
https://doi.org/10.1214/aoms/1177730256
https://www.semanticscholar.org/paper/Table-for-Estimating-the-Goodness-of-Fit-of-Smirnov/91e455e20865eba0e93a12fd8080ad640584b133
https://www.semanticscholar.org/paper/Table-for-Estimating-the-Goodness-of-Fit-of-Smirnov/91e455e20865eba0e93a12fd8080ad640584b133
https://www.semanticscholar.org/paper/Table-for-Estimating-the-Goodness-of-Fit-of-Smirnov/91e455e20865eba0e93a12fd8080ad640584b133
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://www.semanticscholar.org/paper/Learning-from-imbalanced-data%3A-open-challenges-and-Krawczyk/f537f1bc527bf33cc5fd8da34275106329de1802
https://www.semanticscholar.org/paper/Learning-from-imbalanced-data%3A-open-challenges-and-Krawczyk/f537f1bc527bf33cc5fd8da34275106329de1802
https://www.semanticscholar.org/paper/Learning-from-imbalanced-data%3A-open-challenges-and-Krawczyk/f537f1bc527bf33cc5fd8da34275106329de1802
https://www.semanticscholar.org/paper/SMOGN%3A-a-Pre-processing-Approach-for-Imbalanced-Branco-Torgo/5839b2b19bf85a7b02b5bdabb752dae2993131ca
https://www.semanticscholar.org/paper/SMOGN%3A-a-Pre-processing-Approach-for-Imbalanced-Branco-Torgo/5839b2b19bf85a7b02b5bdabb752dae2993131ca
https://www.semanticscholar.org/paper/SMOGN%3A-a-Pre-processing-Approach-for-Imbalanced-Branco-Torgo/5839b2b19bf85a7b02b5bdabb752dae2993131ca
http://arxiv.org/abs/1803.09050
https://www.semanticscholar.org/paper/Learning-to-Reweight-Examples-for-Robust-Deep-Ren-Zeng/c5420ef59d7508d82e53671b0d623027eb58e6ed
https://www.semanticscholar.org/paper/Learning-to-Reweight-Examples-for-Robust-Deep-Ren-Zeng/c5420ef59d7508d82e53671b0d623027eb58e6ed
https://www.semanticscholar.org/paper/Learning-to-Reweight-Examples-for-Robust-Deep-Ren-Zeng/c5420ef59d7508d82e53671b0d623027eb58e6ed
https://doi.org/10.1214/aoms/1177732360
https://labs.inspirehep.net/literature/1247197
https://labs.inspirehep.net/literature/1247197
https://doi.org/10.1103/PhysRevD.98.030001
https://labs.inspirehep.net/literature/1688995
https://labs.inspirehep.net/literature/1688995
https://doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665
https://labs.inspirehep.net/literature/1089369
https://doi.org/10.2140/camcos.2010.5.65
https://www.semanticscholar.org/paper/ENSEMBLE-SAMPLERS-WITH-AFFINE-INVARIANCE-Goodman-Weare/4311c875c04b091acba45de428b68daa66b69a3c
https://www.semanticscholar.org/paper/ENSEMBLE-SAMPLERS-WITH-AFFINE-INVARIANCE-Goodman-Weare/4311c875c04b091acba45de428b68daa66b69a3c
https://www.semanticscholar.org/paper/ENSEMBLE-SAMPLERS-WITH-AFFINE-INVARIANCE-Goodman-Weare/4311c875c04b091acba45de428b68daa66b69a3c
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://labs.inspirehep.net/literature/352327
https://labs.inspirehep.net/literature/352327
https://doi.org/10.1080/10618600.1998.10474787
https://www.semanticscholar.org/paper/General-Methods-for-Monitoring-Convergence-of-Brooks-Gelman/abd6cc122265b2d5de049145a0d91211bace5009
https://www.semanticscholar.org/paper/General-Methods-for-Monitoring-Convergence-of-Brooks-Gelman/abd6cc122265b2d5de049145a0d91211bace5009
https://www.semanticscholar.org/paper/General-Methods-for-Monitoring-Convergence-of-Brooks-Gelman/abd6cc122265b2d5de049145a0d91211bace5009
http://arxiv.org/abs/1509.02230
https://www.semanticscholar.org/paper/Properties-of-the-Affine-Invariant-Ensemble-Sampler-Huijser-Goodman/5cb9ae49d8e477afe60b373e9bf7d0ed8f3a7abd
https://www.semanticscholar.org/paper/Properties-of-the-Affine-Invariant-Ensemble-Sampler-Huijser-Goodman/5cb9ae49d8e477afe60b373e9bf7d0ed8f3a7abd
https://www.semanticscholar.org/paper/Properties-of-the-Affine-Invariant-Ensemble-Sampler-Huijser-Goodman/5cb9ae49d8e477afe60b373e9bf7d0ed8f3a7abd
https://emcee.readthedocs.io/en/latest/
https://emcee.readthedocs.io/en/latest/
https://github.com/dfm/emcee3
https://astrostatistics.psu.edu/RLectures/diagnosticsMCMC16.pdf
https://astrostatistics.psu.edu/RLectures/diagnosticsMCMC16.pdf
https://doi.org/10.1111/j.2041-210x.2011.00131.x
https://www.semanticscholar.org/paper/On-thinning-of-chains-in-MCMC-Link-Eaton/f1d47f13d8ee38ce9b4b234b9ce6ccf826760dff
https://www.semanticscholar.org/paper/On-thinning-of-chains-in-MCMC-Link-Eaton/f1d47f13d8ee38ce9b4b234b9ce6ccf826760dff
https://www.semanticscholar.org/paper/On-thinning-of-chains-in-MCMC-Link-Eaton/f1d47f13d8ee38ce9b4b234b9ce6ccf826760dff
http://arxiv.org/abs/1510.07727
https://www.semanticscholar.org/paper/Statistically-efficient-thinning-of-a-Markov-chain-Owen/2263490be4babaaf72b9d58a3d3ff52172e78fb5
https://www.semanticscholar.org/paper/Statistically-efficient-thinning-of-a-Markov-chain-Owen/2263490be4babaaf72b9d58a3d3ff52172e78fb5
https://www.semanticscholar.org/paper/Statistically-efficient-thinning-of-a-Markov-chain-Owen/2263490be4babaaf72b9d58a3d3ff52172e78fb5
https://doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727
http://inspirehep.net/record/860907
https://github.com/fchollet/keras
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://www.semanticscholar.org/paper/Deep-Sparse-Rectifier-Neural-Networks-Glorot-Bordes/67107f78a84bdb2411053cb54e94fa226eea6d8e
https://www.semanticscholar.org/paper/Deep-Sparse-Rectifier-Neural-Networks-Glorot-Bordes/67107f78a84bdb2411053cb54e94fa226eea6d8e
https://www.semanticscholar.org/paper/Deep-Sparse-Rectifier-Neural-Networks-Glorot-Bordes/67107f78a84bdb2411053cb54e94fa226eea6d8e
http://arxiv.org/abs/1511.07289
https://www.semanticscholar.org/paper/Fast-and-Accurate-Deep-Network-Learning-by-Linear-Clevert-Unterthiner/f63e917638553414526a0cc8550de4ad2d83fe7a
https://www.semanticscholar.org/paper/Fast-and-Accurate-Deep-Network-Learning-by-Linear-Clevert-Unterthiner/f63e917638553414526a0cc8550de4ad2d83fe7a
https://www.semanticscholar.org/paper/Fast-and-Accurate-Deep-Network-Learning-by-Linear-Clevert-Unterthiner/f63e917638553414526a0cc8550de4ad2d83fe7a
http://arxiv.org/abs/1706.02515
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks
https://www.semanticscholar.org/paper/Self-Normalizing-Neural-Networks-Klambauer-Unterthiner/424a6e62084d919bfc2e39a507c263e5991ebdad
https://www.semanticscholar.org/paper/Self-Normalizing-Neural-Networks-Klambauer-Unterthiner/424a6e62084d919bfc2e39a507c263e5991ebdad
https://www.semanticscholar.org/paper/Self-Normalizing-Neural-Networks-Klambauer-Unterthiner/424a6e62084d919bfc2e39a507c263e5991ebdad


Eur. Phys. J. C (2020) 80 :664 Page 31 of 31 664

in Computer Science, ed. by Montavon, G., Orr, G. and Müller,
K.R., vol. 7700 (Springer, 2012). https://doi.org/10.1007/
978-3-642-35289-8_3 [Semantic Scholar]. https://www.
semanticscholar.org/paper/Efficient-BackProp-LeCun-Bottou/
b87274e6d9aa4e6ba5148898aa92941617d2b6ed

61. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Under-
standing deep learning requires rethinking generalization,
in 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24–26, 2017,
Conference Track Proceedings (2017) arXiv:1611.03530
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Understanding-deep-learning-requires-rethinking-Zhang-Bengio/
54ddb00fa691728944fd8becea90a373d21597cf

62. M. Belkin, D. Hsu, P. Mitra, Overfitting or perfect fitting?
Risk bounds for classification and regression rules that
interpolate. In: Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada (2018), pp. 2306–2317, arXiv:1806.05161
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Overfitting-or-perfect-fitting-Risk-bounds-for-and-Belkin-Hsu/
57580f0d04716b6c585cf59435d83e60a819313a

63. S.L. Smith, P.-J. Kindermans, C. Ying, Q.V. Le, Don’t Decay
the Learning Rate, Increase the Batch Size, In 6th Inter-
national Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings (2018). arXiv:1711.00489
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Don’t-Decay-the-Learning-Rate%2C-Increase-the-Batch-Smith-
Kindermans/90e06703a776d4d482f8bbc04f31d816ee02ca8b

64. Y. Yao, L. Rosasco, A. Caponnetto, On Early Stop-
ping in Gradient Descent Learning. Constr. Approx. 26,
289 (2007). https://doi.org/10.1007/s00365-006-0663-2
[Semantic Scholar]. https://www.semanticscholar.org/paper/
On-Early-Stopping-in-Gradient-Descent-Learning-Yao-Rosasco/
e7b18110c70ccb71305dda7a973f89630ffd9879

65. G. Raskutti, M.J. Wainwright, B. Yu, Early stopping and non-
parametric regression: an optimal data-dependent stopping rule.
J. Mach. Learn. Res. 15, 335 (2014). https://doi.org/10.1109/
Allerton.2011.6120320. arXiv:1306.3574 [Semantic Scholar].
https://www.semanticscholar.org/paper/Early- stopping–
for-non-parametric-regression%3A-An-Raskutti-Wainwright/
e9a7a043d2202f084be2b0e20a174b76940049e9

66. L. Luo, Y. Xiong, Y. Liu, X. Sun, Adaptive gradient meth-
ods with dynamic bound of learning rate. In Proceedings of
the 7th International Conference on Learning Representa-
tions, (New Orleans, Louisiana) (2019). arXiv:1902.09843
[Semantic Scholar]. https://www.semanticscholar.org/paper/
Adaptive-Gradient-Methods-with-Dynamic-Bound-of-Luo-Xiong/
03af562fb8e69677865dbe94910e464443dd4623

67. M. Ciuchini, A.M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Sil-
vestrini et al., New physics in b → s�+�− confronts new data on
Lepton Universality. Eur. Phys. J. C 79, 719 (2019). https://doi.org/
10.1140/epjc/s10052-019-7210-9. arXiv:1903.09632 [InSpire].
https://labs.inspirehep.net/literature/1726374

68. I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vry-
onidou et al., O new physics, where art thou? A global search in
the top sector. arXiv:1910.03606 [InSpire]. https://labs.inspirehep.
net/literature/1758233

69. K. Cranmer, Statistical challenges for searches for new physics at
the LHC. In Statistical Problems in Particle Physics, Astrophysics
and Cosmology (PHYSTAT 05): Proceedings, Oxford, UK, Septem-
ber 12-15, 2005 (2005), pp. 112–123. arXiv:physics/0511028.
https://doi.org/10.1142/9781860948985_0026 [InSpire]. https://
labs.inspirehep.net/literature/706581

70. L. Demortier, Constructing ensembles of pseudo-experiments.
eConf C030908, WEMT003 (2003). arXiv: physics/0312100
[InSpire]. https://labs.inspirehep.net/literature/637547

123

https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://www.semanticscholar.org/paper/Efficient-BackProp-LeCun-Bottou/b87274e6d9aa4e6ba5148898aa92941617d2b6ed
https://www.semanticscholar.org/paper/Efficient-BackProp-LeCun-Bottou/b87274e6d9aa4e6ba5148898aa92941617d2b6ed
https://www.semanticscholar.org/paper/Efficient-BackProp-LeCun-Bottou/b87274e6d9aa4e6ba5148898aa92941617d2b6ed
http://arxiv.org/abs/1611.03530
https://www.semanticscholar.org/paper/Understanding-deep-learning-requires-rethinking-Zhang-Bengio/54ddb00fa691728944fd8becea90a373d21597cf
https://www.semanticscholar.org/paper/Understanding-deep-learning-requires-rethinking-Zhang-Bengio/54ddb00fa691728944fd8becea90a373d21597cf
https://www.semanticscholar.org/paper/Understanding-deep-learning-requires-rethinking-Zhang-Bengio/54ddb00fa691728944fd8becea90a373d21597cf
http://arxiv.org/abs/1806.05161
https://www.semanticscholar.org/paper/Overfitting-or-perfect-fitting-Risk-bounds-for-and-Belkin-Hsu/57580f0d04716b6c585cf59435d83e60a819313a
https://www.semanticscholar.org/paper/Overfitting-or-perfect-fitting-Risk-bounds-for-and-Belkin-Hsu/57580f0d04716b6c585cf59435d83e60a819313a
https://www.semanticscholar.org/paper/Overfitting-or-perfect-fitting-Risk-bounds-for-and-Belkin-Hsu/57580f0d04716b6c585cf59435d83e60a819313a
http://arxiv.org/abs/1711.00489
https://www.semanticscholar.org/paper/Don't-Decay-the-Learning-Rate%2C-Increase-the-Batch-Smith-Kindermans/90e06703a776d4d482f8bbc04f31d816ee02ca8b
https://www.semanticscholar.org/paper/Don't-Decay-the-Learning-Rate%2C-Increase-the-Batch-Smith-Kindermans/90e06703a776d4d482f8bbc04f31d816ee02ca8b
https://www.semanticscholar.org/paper/Don't-Decay-the-Learning-Rate%2C-Increase-the-Batch-Smith-Kindermans/90e06703a776d4d482f8bbc04f31d816ee02ca8b
https://doi.org/10.1007/s00365-006-0663-2
https://www.semanticscholar.org/paper/On-Early-Stopping-in-Gradient-Descent-Learning-Yao-Rosasco/e7b18110c70ccb71305dda7a973f89630ffd9879
https://www.semanticscholar.org/paper/On-Early-Stopping-in-Gradient-Descent-Learning-Yao-Rosasco/e7b18110c70ccb71305dda7a973f89630ffd9879
https://www.semanticscholar.org/paper/On-Early-Stopping-in-Gradient-Descent-Learning-Yao-Rosasco/e7b18110c70ccb71305dda7a973f89630ffd9879
https://doi.org/10.1109/Allerton.2011.6120320
https://doi.org/10.1109/Allerton.2011.6120320
http://arxiv.org/abs/1306.3574
https://www.semanticscholar.org/paper/Early-stopping-for-non-parametric-regression%3A-An-Raskutti-Wainwright/e9a7a043d2202f084be2b0e20a174b76940049e9
https://www.semanticscholar.org/paper/Early-stopping-for-non-parametric-regression%3A-An-Raskutti-Wainwright/e9a7a043d2202f084be2b0e20a174b76940049e9
https://www.semanticscholar.org/paper/Early-stopping-for-non-parametric-regression%3A-An-Raskutti-Wainwright/e9a7a043d2202f084be2b0e20a174b76940049e9
http://arxiv.org/abs/1902.09843
https://www.semanticscholar.org/paper/Adaptive-Gradient-Methods-with-Dynamic-Bound-of-Luo-Xiong/03af562fb8e69677865dbe94910e464443dd4623
https://www.semanticscholar.org/paper/Adaptive-Gradient-Methods-with-Dynamic-Bound-of-Luo-Xiong/03af562fb8e69677865dbe94910e464443dd4623
https://www.semanticscholar.org/paper/Adaptive-Gradient-Methods-with-Dynamic-Bound-of-Luo-Xiong/03af562fb8e69677865dbe94910e464443dd4623
https://doi.org/10.1140/epjc/s10052-019-7210-9
https://doi.org/10.1140/epjc/s10052-019-7210-9
http://arxiv.org/abs/1903.09632
https://labs.inspirehep.net/literature/1726374
http://arxiv.org/abs/1910.03606
https://labs.inspirehep.net/literature/1758233
https://labs.inspirehep.net/literature/1758233
http://arxiv.org/abs/physics/0511028
https://doi.org/10.1142/9781860948985_0026
https://labs.inspirehep.net/literature/706581
https://labs.inspirehep.net/literature/706581
http://arxiv.org/abs/physics/0312100
https://labs.inspirehep.net/literature/637547

	The DNNLikelihood: enhancing likelihood distribution with Deep Learning
	Abstract 
	1 Introduction
	2 Interpolation of the Likelihood function
	2.1 Evaluation metrics
	2.2 Learning from imbalanced data

	3 A realistic LHC-like NP search
	3.1 Sampling the full likelihood
	3.2 Bayesian inference
	3.3 Frequentist inference

	4 The DNNLikelihood
	4.1 Model architecture and optimisation
	4.2 The Bayesian DNNLikelihood
	4.3 Frequentist extension and the full DNNLikelihood

	5 Conclusion and future work
	Acknowledgements
	A On the multivariate normal distribution
	B Pseudo-experiments and frequentist coverage
	References





