EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjcont/201921405020
CHEP 2018

Building, testing and distributing common software for the
LHC experiments

Javier Cervantes Villanueva', Gerardo Ganis'*, Dmitri Konstantinov?, Grigorii Latyshev?,
Pere Mato Vila', Patricia Mendez Lorenzo'-**, Rafal Pacholek®, and Ivan Razumov?

ICERN, Switzerland
2NRC Kurchatov Institute - IHEP, Protvino, Russia
3 AGH University of Science and Technology, Poland

Abstract. Building, testing and deploying of coherent large software stacks is
very challenging, in particular when they consist of the diverse set of packages
required by the LHC experiments, the CERN Beams Department and data anal-
ysis services such as SWAN. These software stacks include several packages
(Grid middleware, Monte Carlo generators, Machine Learning tools, Python
modules) all available for a large number of compilers, operating systems and
hardware architectures.

To address this challenge, we developed an infrastructure around a tool called
lcgcmake. Dedicated modules are responsible for building the packages, con-
trolling the dependencies in a reliable and scalable way. The distribution re-
lies on a robust and automatic system, responsible for building and testing the
packages, installing them on CernVM-FS and packaging the binaries in RPMs
and tarballs. This system is orchestrated through Jenkins on build machines
provided by the CERN Openstack facility. The results are published through
user-friendly web pages.

In this paper we will present an overview of these infrastructure tools and poli-
cies. We also discuss the role of this effort within the HEP Software Founda-
tion (HSF). Finally we will discuss the evolution of the infrastructure towards
container (Docker) technologies and the future directions and challenges of the
project.

1 Introduction

Modern physics experiments require complex software stacks to build the experiment spe-
cific applications. Stability and reproducibility usually imply a conservative approach in the
choice of the main components; however, the constant need to integrate new developments
and versions to improve performances and usability makes the provision of coherent large
software stacks a dynamic and challenging task. In this paper we present and discuss the way
the CERN EP-SFT [1] group has addressed this task for the needs of ATLAS [2], LHCb [3],
SWAN [4], FCC [5] and the CERN Beams Department [6].

The paper is organized as follows. In the rest of this section we will introduce some
key concept and related terminology. In the next section we discuss the lcgcmake tool,

*e-mail: gerardo.ganis@cern.ch (corresponding author)
**e-mail: patricia.mendez@cern.ch (presenter)

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020
CHEP 2018

based on CMake [7] and used to build the required packages. We then describe how this
tool is integrated in a build and deployment infrastructure based on Jenkins [8], and the way
information about the package content of a given release version is provided. Finally we
mention the current and future consolidation and development work.

1.1 The LCG stacks

Figure 1 gives a schematic overview of the various components of the software stack of an
experiment.

Experiment Analysis || Simulation Analysis || Simulation
Other additions
EP-SFT o
S (LCG stacks) Other additions
r (LCG stacks) S
CERN IT R i Eos e
HEPOSLibs ARSI SRS

s o

Base System

0S 1 0S2

Distribution Base System

Figure 1. Overview of the various components of an experiment software stack.

The experiment applications determine the package content of the entire stack. Some of
these packages may be available in the official distribution repositories of the given operating
system (OS); these represent the system prerequisites and in the figure these are the two
blocks at the bottom !. The provision of the LCG stacks, which stand between the experiments
applications and the system provided components, is the subject of this paper.

The LCG stack is made of packages. A package can be of three types:

e contrib: these are utility packages upgrading the equivalent packages provided by the
system; typical examples are compilers or, for some systems, CMake;

e projects: these are packages developed in CERN EP-SFT or related CERN IT projects;
examples are ROOT [10], Geant4 [11], COOL/CORAL [12];

e externals: this category comprises all the remaining packages. Three sub-categories are
singled-out, mostly for historical reasons:

— gridexternals: these sub-category includes packages providing functionality related
to the Grid;

'In the case of the LCG stacks, the system pre-requisites are provided by a meta package called HEPOSLibs [9]
which will not be discussed any further.

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjcont/201921405020
CHEP 2018

— pyexternals: these sub-category contains purely Python external packages;

— generators: these sub-category contains physics generators; the particularity is that
more versions of the same generator can be part of stack; support for multi-version will
be discussed later on.

The system currently manages about 400 packages; these packages are mostly written
in C++ and Python, though there are still C and Fortran packages, in particular among the
generators.

1.2 Type of builds: releases and nightlies

To provide reproducibility, exact control of the content of a given stack is required. To achieve
that, a major version number and a tag is assigned to the set of package, version which
constitutes an LCG stack. A tagged LCG stack is called a release. At the time of writing, the
major version is 94 and the corresponding tag is LCG_94.

A particularity of the LCG stacks is that the change in the global major number is driven
by new releases of the ROOT package, one of the project packages on which almost all the
experiment applications depend on; as an example, LCG_94 is based on ROOT v6-14/04.

In order to test future releases, two development builds are provided, which differ by the
ROOT version included. For historical reasons, these are called dev3 and dev4 and have the
following composition:

e dev3: head of ROOT master; latest versions of validated packages;

e dev4: head of patches branch of latest ROOT tagged release, e.g. v6-14-00-patches;
latest versions of validated packages.

The development builds dev3 and dev4 are provided on daily basis and called nightlies (they
are built during nights); the builds are kept for seven days.

1.2.1 Python 3 builds

The release tag is also used to indicate a particular specialisation of a build. The notable
example is the case of builds with Python 3, the artefacts of which cannot be mixed with
those of the default build for which Python 2 is used. Python 3 builds are flagged with the
suffix python3 - e.g. LCG_94python3; de facto, these are considered as a different platform
(see Sect. 1.4).

1.3 The life-cycle of a new package

A new package is initially built on a local node to determine the relevant configuration and
build options. A first integration build, flagged experimental is then attempted and, if suc-
cessful, the package is included in the development builds, to appear in the nightlies. The
new package will then be included in the next release.

1.4 Platform concept

In order to keep up the needs of the experiments in terms of OS, architecture, compiler, debug,
instruction sets, etc. the concept of platform is introduced. The platform identifies a given
build configuration following the scheme [13]

Architecture-OS-Compiler-BuildType

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020
CHEP 2018

where the different components carry the following meaning:

e Architecture indicates the computer architecture for which the build is made. Most of
the builds are done for x86_64 or extension of that, e.g. x86_64+avx2+fma . Support for
arm64 is still experimental and part of the future work. 32-bit architectures are not required
anymore and not built by default;

e OS denotes the operating system. The reference OSs are the Linux flavours proposed by
CERN, which, at the time of writing, are Scientific Linux CERN 6 (s1c6) and CERN
CentOS 7 (centos?7). Ubuntu builds are provided for single users, not necessarily from
the customer experiments; these builds provide a test of the entire procedure on newer
distributions and to anticipate problems;

e Compiler brings information about the compiler name and its version. The choices in terms
of compilers are driven by the experiment’s needs. The set of compilers in use could be
split into two different categories: production-ready compilers such as GCC 6.2 and GCC
7 2, and more recent versions or compilers under testing such as GCC 8 or Clang 6.0.0 .
The term native refers to the compiler coming with the system and it is only used when
it is modern enough, as usually on the latest Ubuntu OSs;

o BuildType denotes whether the build is a debug build, an optimized build, and any other
special setting. Debug (dbg) and optimized (opt) are treated as separate builds. Debug
build are produced for all packages, though this may not be strictly required and will be
reviewed in the future.

Table 1 shows the combinations currently managed. Not all the combinations are built;
for example, the LCG_94 release has been provided for 14 combinations for each Python
flavour; the development builds contain a similar number of combinations, focusing more on
combinations which need validation and testing, such as those involving recent compilers.

Table 1. Platform combinations: choice currently supported. In parenthesis those more experimental
not used for releases. The list of platforms actually available for a given release or nightly build are
provided by the LCGInfo web site at http://lcginfo.cern.ch

Architecture oS Compiler | Build Type
x86_64 slcb6 native opt
x86_64+avx2+fma | centos7 gcc62 dbg
(arm64) ubuntul6 gcc7

ubuntul8 gcc8

(mac) clang60

1.5 Deployment and packaging

One of the relevant aspects relates to the way the additional binaries are provided. The main
distribution vector for the LCG stacks is CernVM-FS [14], a read-only, cache-aggressive
network file system optimized for software distribution and widely used at LHC. The project
manages two CernVM-FES repositories for this purpose:

/cvmfs/sft.cern.ch contrib packages, releases, views
/cvmfs/sft-nightlies.cern.ch nighlies development builds

2The meaning of the major number in GCC releases changed with version 7: the minor did become the major, so
that it is not necessary anymore to specify the minor when specifying the GCC version.

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjcont/201921405020
CHEP 2018

The main reason to have two different repositories is the different life cycles of the in-
formation included: the main repository /cvmfs/sft.cern.ch contains reference informa-
tion; the other repository contains information being recycled and garbage collected after one
week. To give a common view to all the deliverables, releases and development builds, sym-
links to the relevant nightlies directories are created under the main repository, so that it is
possible, de facto, to work only with the main repository.

Views

To simplify the setup of a given set of packages, either a release or a nightly, as well as run-
time lookups, the concept of view has been introduced. A view is a path that contains all what
is required to run the chosen release or nightly as a large global meta-package, with a Linux-
system-like organisation of the packages and files provided by a release or nightly. For the
LCG stacks, views are created on CernVM-FS under /cvmfs/sft.cern.ch/lcg/views for
each release and nightly build sym-linking the relevant files, for example under the common
bin, 1ib, etc, include directories. To use a view, the user only needs to source the relevant
setup.{sh, csh} file. For example:

1xplus7 $ source /cvmfs/sft.cern.ch/lcg/views/LCG_94/x86_64-centos7-gcc7-dbg/setup.sh
1xplus7 $ gcc -v

gcc version 7.3.0 (GCCO)
1xplus7 $ which root
/cvmfs/sft.cern.ch/lcg/views/LCG_94/x86_64-centos7-gcc7-dbg/bin/root

1.5.1 Packaging

To better address the needs of the customers, the releases are also provided in packaged form
as RPMs or binary tarballs. Recently the possibility to pack the full content of a release in
Docker containers has been introduced. All these artifacts are available from the EOS storage
system [15], which, as described later, is an essential component of the build and continuous
integration infrastructure.

RPMs. RPM format is provided for the convenience of the experiments, in particular
ATLAS and LHCDb, for which the LCG stack is an extension of the distribution. The RPM
repository is available through the web interface of the EOS system. The path to the RPM
repository is

https://lcgpackages.web.cern.ch/lcgpackages/rpms .

Binary tarballs. Binary tarballs are the initial format used for the installation of CernVM-
FS; they are available for both releases and nightly builds. The path to the tarball area is

https://lcgpackages.web.cern.ch/lcgpackages/tarFiles

Containers, The packaging via Docker containers has been introduced with LCG_93 and
it is still in experimental phase. It addresses the use cases where CernVM-FS is not pro-
vided/installed on the system, therefore software package have to be alternatively provided.
The resulting containers images, which therefore include all the binaries of the release, are
quite big, approximately 20 GB 3. Ready-to-use containers can be found at

https://lcgpackages.web.cern.ch/lcgpackages/docker .

3To reduce the size of the generated containers to the essential, the system can include only a pre-defined subset
of required packages.

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020
CHEP 2018

1.6 Release content information

Detailed descriptions of the releases and development builds are available on GitLab. The
exact content of a release or a development build, in terms of packages and available plat-
forms, is provided by the LCGInfo web site at http://lcginfo.cern.ch. This site also
allows to compare the content of two releases and determine the exact details about what
has changed. Figure 2 shows a snapshot of the configuration differences page for releases
LCG_94 and LCG_93c.

LCG Software Elements

Main / LCG Configurations Diff (94 / 93¢)

LCG Configuration 94 s LCG Configuration 93c

Graphics

pydot 1.2.4 123
at 487
ats 5114 59.2
qut 6.0.1

soqt 150

10

xrootd 4.8.4 4.8.2

Figure 2. LCGInfo: comparison between LCG 94 and 93¢ content.

2 LCGCmake

The 1cgcmake tool is based on CMake [7], a set of tools increasingly used to control the
software compilation process using simple platform and compiler independent configuration
files.

The main components of 1cgcmake are:

e LCGPackage_Add
A wrapper of the ExternalProject_Add function customized for LCG packages which sup-
ports: pure binary package installations, incremental builds and a central release area to
avoid building already existing projects;

e The toolchains defining the detailed content of a given release, i.e. a list of package name
and versions. These are CMake files listing the packages project, externals, generators
being included in the release.

2.1 The lcgcmake GitLab repository

The 1cgcmake infrastructure is available on CERN GitLab service
https://gitlab.cern.ch/sft/lcgcmake

and it is organized as a high-level CMake project. Each of the main package categories above-

mentioned has its own directory. The rest of common tools, modules and scripts are defined

under the cmake directory as well as the CMake files with the toolchain definitions.

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjcont/201921405020
CHEP 2018

The tool can be run as a normal CMake project, with usual cmake, make, make install
sequence to configure, build and install the chosen release on the local system. Alternatively,
a high level interface is available through the script 1lcgcmake, providing a more user-friendly
interface to the whole infrastructure *.

3 The continuous build and integration infrastructure

To automate the whole process a Jenkins automation server is used [8]. In addition to the key
tool, described above, the key elements of this system are:

Build nodes. The EP-SFT Jenkins infrastructure, which is used for all the group projects,
including ROOT, Geant4 and CernVM, manages approximately 500 cores. The bulk of the
build nodes are virtual machines hosted by the CERN Openstack instance, with CERN sup-
ported linux distributions flavours - currently Scientific Linux CERN 6 (s1c6) and CERN
CentOS 7 (centos?7), the latest long-term supported Ubuntu versions (currently 16.04 and
18.04) and the supported Fedora versions (currently 27, 28 and 29). A set of Mac nodes
running the supported versions of Mac Os X are also managed by Jenkins. For the purpose
of the LCG stacks, the Mac and Fedora nodes are not used on regular basis.

A set of centos7 nodes is reserved for running the build jobs inside docker containers.
Pre-configured Docker containers are available through the GitLab container registry for the
required flavours. Despite being rather recent, the implementation of this functionality is
continuously improved and is mature enough to be used for the development builds.

EOS shared area. The EOS project used to provide the packaged releases is also used
as a shared area between the build nodes. The tarballs with the sources are stored in there
and the results of the builds are saved by the jobs into a dedicated path and picked up by the
subsequent jobs to finalise the required objective.

Scripts. The bash and Python scripts used by Jenkins to control the required workflows
are taken from a dedicated GitLab repository, https://gitlab.cern.ch/sft/lcgjenkins .

Dashboard. The dashboard [16], based on CDash [17], allows to monitor the results of the
builds and to retrieve detailed information about the failures. The Jenkins jobs are instructed
to send the information to CDash as last step before closing.

4 Summary and Future work

In this paper we have described the main aspects of the system developed and used by CERN
EP-SFT to provide software stacks to a diverse community of physicist. The system is the
result of many years of pragmatic development and has reached a good level of maturity and
robustness, satisfying the needs of the customers: ATLAS, LCHb, SWAN, Beams and FCC.

A build infrastructure such as the one described in this paper requires continuous main-
tenance and research of ways for improvement. Current effort includes: improve validation
and integration testing of the builds in environments as close as possible to the ones used by
the experiments; keep the list of packages up-to-date; consolidate the docker setup with the
goal of fully replacing the VMs; investigate the use of S3 as common shared area; reduce the
publication time to CernVM-FS. And of course follow up any relevant development which
could come from the HEP Software Foundation.

References

[1] CERN EP-SFT, SoFTware Development for Experiments, http://ep-dep-sft.web.cern.ch/

4The project welcome page on GitLab provides all details and options available.

EPJ Web of Conferences 214, 05020 (2019) https://doi.org/10.1051/epjconf/201921405020
CHEP 2018

[2] The ATLAS experiment, https://atlas.cern/

[3] The LHCb experiment, http://lhcb.web.cern.ch/lhcb/

[4] The SWAN Service, https://swan.web.cern.ch

[51 Future Circular Collider Studies, https://fcc.web.cern.ch

[6] CERN Beams Department, https://beams.web.cern.ch/

[7] Kitware, Inc., CMake, https://cmake.org/

[8] The Jenkins System, https://jenkins.io

[9] A Valassi, HEPOSLibs, https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs
[10] The ROOT Data Analysis Framework, https://root.cern

[11] The Geant4 Simulation Kit, https://geant4.web.cern.ch/

[12] The Persistency Framework, https://twiki.cern.ch/twiki/bin/view/Persistency
[13] B Hegner, HSF Platform Naming Conventions - A Proposal, HSF-TN-2018-01
[14] The CernVM File System, http://cernvm.cern.ch/portal/filesystem

[15] The EOS system, http://eos.cern.ch/

[16] See LCGSoft at http://cdash.cern.ch

[17] Kitware, Inc., CDash, https://www.cdash.org/

