

A 128-channel SALT ASIC for the readout of Upstream Tracker in the LHCb Upgrade

Krzysztof Swientek

on behalf of LHCb UT working group

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

Outline

- Introduction
- SALT design
 - Main blocks (FE, ADC, DSP)
 - SALTv3 versus previous versions
- SALT measurements
 - SALT on hybrid with sensor type A full tests with transmission of digitized data
- Summary and plans

Introduction Upgrade of LHCb Inner Tracker at LHC

- Upstream Tracker (UT) replaces the Tracker Turicensis (TT)
- 500 000 silicon strip detector channels
- Readout frequency increases to 40 MHz – *currently Level-0 trigger output is limited to 1MHz*
- New readout electronics was needed

LHCb detector

Introduction Upstream Tracker (UT)

- 4 silicon strip sensor types
 - *p*⁺-in-*n*, 10 cm
 - *n*⁺-in-*p*, 10/5 cm
- $\bullet \ {\sim} 1000$ hybrids with 4 or 8 ASICs

- ~4000 128-channel readout ASICs – SALT
- Data rate depends on position different number of active e-links in SALT

Introduction SALT specification

- CMOS 130 nm technology
- 128 channels, Front-end & ADC in each channel
- In/Out pitch 80/140um, No Top/Bottom pads (previous ver.) SALTv3 uses it
- Sensor: capacitance 1.6–12 pF, AC coupled
- Input charge range ~30ke- with both polarities (*p*⁺-in-*n* and *n*⁺-in-*p*)
- Noise: ENC ~1000e- @10pF + 50e-/pF
- Pulse shape: $T_{peak} \sim 25$ ns, very short tail: $\sim 5\%$ after $2*T_{peak}$
- Crosstalk < 5%
- ADC: 6-bit resolution (5-bit&polarity), 40MS/s
- DSP functions: pedestal and common mode subtraction, zero-suppression
- Serialization & Data transmission: 320 Mbps e-links to GBT, SLVS I/O
- Slow control: I2C
- Power < 6 mW/channel
- Radiation hardness ~30 MRad

Outline

- Introduction
- SALT design
 - Main blocks (FE, ADC, DSP)
 - SALTv3 versus previous versions
- SALT measurements
 - SALT on hybrid with sensor type A full tests with transmission of digitized data
- Summary and plans

SALT – Silicon ASIC for LHCb Tracking Architecture

- Front-end & ADC in each channel 128 standard channels plus 2 test channels (nr -1,128 not shown) with analog outputs
- Digital Signal Processing (DSP) of the ADC data
- And many other features/blocks: PLL, DLL, TFC, I2C, serialiser, SLVS I/O, biasing DACs, monitoring ADCs, (not all shown)

SALT design Preamplifier&Shaper and Conv. Single-to-Diff.

- 3-stage shaper (complex poles and zeros) gives the pulse with short tail
- Common mode (vcm_sh) at half power supply for both pulse polarities
- Single-to-Differential converter to generate differential signal for ADC
- Power consumption: $\sim 1.5 \text{ mW}$

AGH

SALT design 6-bit ADC

SALTv3: optional dummy current added (constant current after conversion) to keep current consumption more stable

Main features:

- SAR architecture, 6-bit resolution
- 40 MSps nominal sampling rate
- Merge Capacitor Switching (MCS)
- Capacitive DAC with 3b/2b split

- Dynamic comparator
- Dynamic asynchronous logic
- Bootstrapped input switches
- Power consumption ~350µW+400µW

SALT design DSP operations

- Input data: 6 bits (5 bits plus sign 2's complement)
- Noisy or dead channels can be masked
- All channel values can be inverted (1 config bit)
- Pedestal subtraction subtraction in each channel
- CMS (Mean) Common Mode Subtraction
 - average of all channels below CM threshold
 - subtraction in each channel
- ZS Zero suppression
 - only channels above ZS threshold are sent out
- PCK Packet building

- Left & right sides bonded to the hybrid.
- Top&bottom pads for analog supply

- Unsatisfactory SALTv2 performance was attributed mainly to internal inductive couplings in power distribution typically not covered by extraction tools
- Analogue power distribution redesign to minimize inductances
- ADC supplied from digital domain mesh

K. Swientek, NSS 2019

4095um

0000um

Outline

- Introduction
- SALT design
 - Main blocks (FE, ADC, DSP)
 - SALTv3 versus previous versions
- SALT measurements
 - SALT on hybrid with sensor type A full tests with transmission of digitized data
- Summary and plans

Analogue test channel output (@scope)

Transient response to MIP (~4fC) with 12pF external input capacitance

- For SALTv3 good pulse response is seen with large input capacitance
- With large input capacitance small 40MHz disturbance is still present (also in simulations)

SALT on hybrid with sensor A (full tests with digitized data)

Hybrid with the largest sensor and 4 SALT ASICs

Power consumption @ Vsup=1.2 V:

- P = ~580 mW (total)
- ~4.5 mW / channel (within spec.)

Baseline correction

K. Swientek, NSS 2019

Noise with sensor type A (on hybrid)

- Measurements show that noise RMS is slightly below 1 LSB
- For MIP (4 fC) one can estimate SNR above 10

- In standard operation samples are taken every 25ns
- To obtain above plots internal DLL was scanned over all 64 phases (Δt =25ns/64) and data was averaged for each phase
- In standard operation small 40MHz component is seen as constant offset but can be subtracted in DSP

SALT on hybrid with sensor A Pulse shape

Before TrimDAC correction

- Pulse shape is obtained via DLL scan
- Expected pulse shape is observed

 Disturbances are small and similar to scope measurements of analogue test channels

Summary and plans

- The third SALT prototype, which addressed the issues found in the past, was fabricated and tested.
- The tests confirmed that the measures taken were effective.
- Good results have been obtained for 4-chip hybrid.
- Full stave tests have been already started. SALT production has been recently completed, wafer tests done.
- Back side power delivery scheme will be tested soon waiting for chips with respinned metal layers.

Thank you for your attention

Backup

SALT design PLL, DLL

DLL

PLL features:

- High frequency (160 MHz) clock for DDR serializer
- Input frequency 40 MHz
- Power consumption ~0.5 mW @ 160 MHz
- 2 output phases (multiplexing) selected from 16 uniform phases (receiver synchronization)
 DLL features:
- ADC sampling phase setting
- Test pulse phase setting
- Input frequency 40 MHz
- Power consumption $\sim 0.7 \text{ mW}$
- 2 output phases (multiplexing) selected from 64 uniform phases

SALT design Modifications of SALTv3 versus SALTv2

- Single Channel
 - Analogue front-end highly improved PSRR
 - > ADC dummy current option added to minimize current fluctuations
 - Power supply domains separation optimized for inductive effects
 - Decoupling of analogue supply removed to minimize LC factor
- Power distribution network
 - Analogue front-end supplied from top&bottom pads (issue for 8-chip hybrid),
 - > ADC supplied from **digital domain mesh** (output side)
 - Layout of analogue power distribution drawn to minimize inductances

Analogue test channel output for large input capacitance (@scope)

Transient response to MIP (~4fC) with 24pF external input capacitance

- Good pulse response is seen even with 24pF input capacitance
- With this capacitance small 40MHz disturbance are also present

K. Swientek, NSS 2019