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1 Introduction

Quantum coherence plays an important role in many physical problems in cosmology. Ex-

amples include CP-violating particle-wall interactions during the electroweak phase tran-

sition, out-of-equilibrium decay of nearly degenerate heavy neutrinos during leptogenesis,

particle production during phase transitions and reheating at the end of inflation. The key

quantity in the analysis of such intrinsically quantum systems is the two-point correlation

function, whose evolution is described by the Schwinger-Dyson equations [1, 2], or in the

phase space picture by the Kadanoff-Baym equations [3–5]. The phase space picture in

particular has provided a useful basis for deriving approximate transport formalisms, the

prime example being the standard Boltzmann theory.

In this paper we study an exact, damped, spatially homogeneous and isotropic two-

point correlation function of a fermion with a possibly complex, time-varying mass term.

We show that the mixed representation correlation function contains novel shell structures

which carry information about different types of quantum coherences. For example we find
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a shell at k0 = 0, which encodes the information of a coherently mixing particle-antiparticle

system. This shell was previously seen in the context of the coherent quasiparticle approxi-

mation (cQPA) [6–12] in the spectral limit, but our derivation is more general, being exact

in the non-interacting case. In addition we find also other shell-structures, corresponding

to non-local (in the relative time coordinate), long range correlations.

All phase space structures depend sensitively on the existence and the magnitude of

damping. In the non-interacting case non-local coherences dominate the system, prevent-

ing a free particle interpretation of the phase space structure in non-trivial backgrounds.

Damping suppresses the non-local coherences and leads to the emergence of a local limit

for time intervals ∆t > 1/Γ, where Γ is the damping width. For small enough Γ the

local correlation function can be well approximated by a spectral ansatz, leading to the

cQPA-picture mentioned above.

We will introduce a new, elegant way to reorganise the gradient expansion in the

mixed representation Kadanoff-Baym equations. We then use it to give a simple derivation

of the cQPA equations complete with explicit collision integrals for arbitrary types of

interactions. These equations are one of the main results of this paper: they generalise

the usual Boltzmann transport theory to systems including coherent particle-antiparticle

states. In particular we argue that the cQPA completely encompasses the well known

semiclassical effects. Possible applications of these equations include baryogenesis during

phase transitions and particle production during and after inflation.

We compute the axial current densities using the exact mixed representation correlation

functions as well as their cQPA counterparts and compare these to the ones obtained in

the semiclassical approximation. We find that the semiclassical methods work reasonably

well even in systems where the relevant modes have a wavelength as small as half of the

wall width.1 This is encouraging for the application of semiclassical methods in the related

problem of electroweak phase baryogenesis with very strong electroweak phase transitions.

These typically create sharp transition walls and are often encountered in the context of

models producing large, observable gravitational wave signals [13–18].

This paper is organised as follows: in section 2 we first review the derivation of the

cQPA formalism including the spectral Wightman functions. In section 3 we construct

the exact free Wightman function from mode functions, generalised to account for the

damping. Some numerical examples for the phase space solutions are shown in section 4.

In section 5, we compute and compare currents in different approximations in the non-

interacting case. In section 6 we present cQPA transport equations in the interacting case

with explicit expressions for collision terms and compute cQPA currents with interactions.

Finally, in section 7, we give our conclusions.

1Throughout this paper we use the word ‘wall’ to refer to the temporal transition in the mass, see e.g.

figure 2a.
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2 Wightman functions and cQPA

We are using the Schwinger-Keldysh formalism [1, 2] of finite temperature field theory.

The key quantities are the two-point Wightman functions

iS<(u, v) =
〈
ψ(v)ψ(u)

〉
,

iS>(u, v) =
〈
ψ(u)ψ(v)

〉
,

(2.1)

which describe the quantum statistical properties of the non-equilibrium system.2 We also

need the retarded and advanced correlation functions iSr(u, v) = 2θ(u0 − v0)A(u, v) and

iSa(u, v) = −2θ(v0 − u0)A(u, v), where the spectral function is A ≡ 1
2〈{ψ(u), ψ(v)}〉 =

i
2(S> + S<) = i

2(Sr − Sa).

To get a phase space description of the system we perform the Wigner transformation

S(k, x) ≡
∫

d4r eik·rS

(
x+

r

2
, x− r

2

)
, (2.2)

where r ≡ u− v and x ≡ 1
2(u+ v) are the relative and average coordinates, corresponding

to microscopic and macroscopic scales, respectively. In this mixed Wigner representation

correlation functions obey the Kadanoff-Baym equations [3](
/k +

i

2
/∂

)
Sp − e−i♦{Σp}{Sp} = 1, (2.3)(

/k +
i

2
/∂

)
Ss − e−i♦{Σr}{Ss} = e−i♦{Σs}{Sa}, (2.4)

where s = <,> and p = r, a refer to the retarded and advanced functions, respectively, Σ

is the fermion self-energy and ♦{f}{g} ≡ 1
2 [∂xf · ∂kg − ∂kf · ∂xg] is the Moyal product.

Note that we absorb the mass terms into the singular parts of Σr,a, unless explicitly stated

otherwise.

Moyal products are not the optimal way for organising the gradient expansions, and

we find it useful to introduce another self-energy function:

Σout(k, x) ≡
∫

d4z eik·(x−z)Σ(x, z) = e
i
2
∂Σ
x ·∂Σ

k Σ(k, x). (2.5)

Using equation (2.5) we can rewrite Moyal products in a form that reorganises the gradients

into total k-derivatives controlled by the scale of variation of Σ, while all dependence on

(dynamical) gradients acting on S is fully accounted for by iterative resummation:

/̂KSp − e−
i
2
∂Σ
x ·∂k [Σp

out(K̂, x)Sp] = 1, (2.6)

/̂KSs − e−
i
2
∂Σ
x ·∂k [Σr

out(K̂, x)Ss] = e−
i
2
∂Σ
x ·∂k [Σs

out(K̂, x)Sa], (2.7)

where K̂ ≡ k+ i
2∂x. This form of the Kadanoff-Baym equations is particularly well suited

for obtaining finite order expansions and iterative solutions. The mass operator is included

in the singular part Σsg of the retarded/advanced self-energy functions:

Σr,a(k, x) = Σsg(x) + ΣH
nsg(k, x)∓ iΣA(k, x), (2.8)

2Note that we define the Wightman function S< with a positive sign. We also suppress Dirac indices

when there is no danger of confusion.
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where ΣH
nsg is the non-singular Hermitian part and ΣA is the anti-Hermitian part of the

self-energy. To be specific, we consider a fermion field with a complex, spacetime-dependent

mass m(x):

L = iψ/∂ψ −m∗(x)ψRψL −m(x)ψLψR, (2.9)

where ψL,R ≡ 1
2(1 ∓ γ5)ψ. In the Wigner representation the spacetime-dependent mass

gives rise to an operator:

(m̂R + iγ5m̂I)S(k, x) ≡ e−
i
2
∂mx ·∂k

{
[mR(x) + iγ5mI(x)]S(k, x)

}
, (2.10)

where mR(x) and mI(x) are the real and imaginary parts of m(x), respectively.

Equations (2.6) and (2.7) are practically impossible to solve exactly and one needs to

find approximation schemes that maintain the essential physics at hand. The cQPA devel-

oped in refs. [6–12] is one such scheme, which allows to study particular non-equilibrium

systems with quantum coherence. The crux of the cQPA is to solve equations (2.6) and (2.7)

in two steps. First one solves for the phase space structure of the system at the lowest

order in gradients and ignoring collision terms. This leads to spectral solutions for both

pole and Wightman functions, where the latter contain new coherence shells in addition to

the usual mass shell solutions. In the second step, one inserts these solutions back to the

full equations, which are then reduced to a set of Boltzmann-like equations for generalised

particle distribution functions [10, 11].

2.1 cQPA-solution in a spatially homogeneous system

Let us consider a spatially homogeneous and isotropic system, where m(x) → m(t) in

equations (2.9) and (2.10). The Wigner transform (2.2) with respect to spatial coordinates

then reduces to a Fourier transform, and we will denote the Wigner transform S(k, x) as

Sk(k0, t). We also consider explicitly only the equation for S<, as the derivation for S> is

completely analogous. At first we will ignore interactions and work to the lowest order in

gradients. The Hermitian part of equation (2.7) for S< ≡ iS<γ0 then reduces to

2k0S
<
k (k0, t) = {Hk(t), S<k (k0, t)}, (2.11)

where Hk(t) ≡ α · k + γ0[mR(t) + iγ5mI(t)] is the free Dirac Hamiltonian.

In spatially homogeneous and isotropic systems the Wightman functions have 8 inde-

pendent components and can be parametrised without any loss of generality as follows:

S<k (k0, t) ≡
∑
h,±,±′

P (4)

hkP
±
k γ

0P±
′

k D±±
′

hk (k0, t), (2.12)

where the helicity and energy projection operators are defined, respectively, as

P (4)

hk ≡
1

2

(
1 + hα · k̂γ5

)
, P±k ≡

1

2

(
1± Hk

ωk

)
, (2.13)

with k̂ ≡ k/|k| and ωk ≡
√
k2 + |m(t)|2. Inserting the parametrisation (2.12) to equa-

tion (2.11) gives algebraic constraints to the time- and energy-dependent coefficient func-

tions D±±
′

hk (k0, t):

(k0 ∓ ωk)D±±hk (k0, t) = 0,

k0D
±∓
hk (k0, t) = 0.

(2.14)
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Figure 1. The shell structure of the cQPA Wightman function S<
k (k0, t), showing the particle shell

where k0 = ωk (purple), the antiparticle shell where k0 = −ωk (orange) and the particle-antiparticle

coherence shell where k0 = 0 (brown).

Functions D±±hk (k0, t) ∝ δ(k0 ∓ ωk) correspond to the usual mass shell excitations, while

D±∓hk (k0, t) ∝ δ(k0) are the new coherence functions found in refs. [7–11]. The spectral

cQPA-solution can then be written as:

S
<
k (k0, t) = 2π

∑
h,±

[
Pm±hk fm±hk δ(k0 ∓ ωk) + P c±hk f

c±
hk δ(k0)

]
. (2.15)

where we defined the projection operators

Pm±hk ≡ ±
ωk

mR
P (4)

hkP
±
k γ

0P±k = P (4)

hkP
±
k ,

P c±hk ≡ P
(4)

hkP
±
k γ

0P∓k = P (4)

hk

(
γ0 ± mR

ωk

)
P∓k .

(2.16)

With this normalisation the mass shell functions fm±hk (t) coincide with the usual Fermi-

Dirac distributions in the thermal limit: fm±hk → feq(±ωk), where feq(k0) ≡ (ek0/T + 1)−1.

Note that due to the Hermiticity of S<hk(k0, t) the shell functions obey (fm±hk )∗ = fm±hk and

(f c±hk )∗ = f c∓hk . The phase space structure of the cQPA Wightman functions is shown in

figure 1.

The cQPA evolution equations are then obtained by inserting the spectral ansatz (2.15)

to the anti-Hermitian part of equation (2.7), now including all gradients and interaction

terms, and integrating over the energy. However, let us again first consider this equation

in the non-interacting limit and to lowest order in gradients:

i∂tS
<
k (k0, t) =

[
Hk, S

<
k (k0, t)

]
. (2.17)

Substituting the spectral solution (2.15) for S
<
k (k0, t) to equation (2.17) and integrating

over k0 it is easy to derive the leading behaviour of the shell-functions:

∂tf
m±
hk = . . . ,

∂tf
c±
hk = ∓2iωkf

c±
hk + . . . ,

(2.18)
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where the ellipses denote terms proportional to gradient terms (and eventually self-energy

terms when interactions are included).

The point we wish to make here is that the coherence shell solutions f c±hk are oscillating

rapidly with frequencies that are not suppressed by gradients. Anticipating this oscillation

was the reason for our careful organisation of gradient terms in equations (2.6) and (2.7):

whenever the operator K̂0 = k0 + i
2∂t is acting on a coherence shell function f c±hk , one must

replace K̂0 → k0 ± ωk as the effective momentum argument of the operator, at the lowest

order in gradients. Indeed, in cQPA:∫
dk0

2π
e−

i
2
∂Σ
x ·∂k

[
Σout,k

(
k0 +

i

2
∂t

)
S
<
hk(k0, t)

]
=
∑
±

∫
dk0 Σout,k

(
k0 +

i

2
∂t

)[
Pm±hk (t)fm±hk (t)δ(k0 ∓ ωk) + P c±hk (t)f c±hk (t)δ(k0)

]
'
∑
±

∫
dk0

[
Σout,k(k0)Pm±hk (t)fm±hk (t)δ(k0 ∓ ωk) + Σout,k(k0 ± ωk)P c±hk (t)f c±hk (t)δ(k0)

]
=
∑
±

Σout,k(±ωk)
[
Pm±hk (t)fm±hk (t) + P c±hk (t)f c±hk (t)

]
(2.19)

for a generic self-energy function Σ. That is, coherence shell projections are not evaluated

at the shell k0 = 0, but on the mass shells instead. It would be straightforward to include

higher order gradient corrections to shell positions generated by the K̂0-operator, but doing

so consistently, we should also solve the cQPA-ansatz to higher order in gradients. The

gradient corrections to collision terms arising from such an expansion (collisional source

terms) were studied in ref. [19] for the electroweak baryogenesis problem using semiclassical

methods. They were in general found to be very small and we shall not pursue them here

further. For the same reason we shall, in what follows, set Σout,k → Σk, dropping the

corrections coming from the expansion of the Σout-function in equation (2.5).3

We will also work with the vacuum dispersion relations, setting ΣH
nsg → 0 and Σsg →

mR + iγ5mI. Furthermore, we shall drop the term ∝ SHΣ<, as this is required by the

consistency of the spectral limit with respect to the pole equations [7]. With these simpli-

fications it is now straightforward to show that the full cQPA equations can be written as

∂tf
m±
hk = ± 1

2

∑
s

Φ̇s
hkf

cs
hk + Tr

[
CcollP

m±
hk

]
, (2.20a)

∂tf
c±
hk = ∓ 2iωkf

c±
hk + ξkΦ̇∓hk

[
mR

ωk
f c±hk −

1

2

(
fm+
hk − f

m−
hk

)]
+ ξk Tr

[
CcollP

c∓
hk

]
, (2.20b)

where

Ccoll =
∑
h,s

[(
1

2
Σ<
k (sωk)− fmshk ΣAk (sωk)

)
Pmshk − f cshk ΣAk (sωk)P cshk

]
+ h.c. (2.21)

3Note however that the expansion of Σout,k may contain lowest order gradients that need to be resummed

in the same way as we did above in equation (2.19). This is the case whenever the self-energy function

contains an internal propagator containing the coherence function connected to the external leg in the

diagram. For more details see refs. [11, 12].
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and we defined

Φ̇±hk ≡ ∂t
(
mR

ωk

)
± i

h|k|
ω2
k

∂tmI, ξk ≡
ω2
k

ω2
k −m2

R

. (2.22)

We shall return to study interacting theories in section 6. For now, we shall take a closer

look into the phase space structure of the exact non-interacting Wightman functions.

3 Constructing the exact Wightman function

In the previous section we showed that Wightman functions may acquire novel phase space

structures in the spectral limit. The new coherence functions f c±hk on the k0 = 0 shell

describe quantum coherence in correlated particle-antiparticle states. These correlations

can be interpreted in terms of squeezed states and the functions f c±hk can be related to

Bogolyubov coefficients [12]. Condensation of the coherence information onto a sharp

phase space shell is still surprising. It is therefore of interest to see how such structures

arise in an exactly solvable system.

3.1 Non-interacting Wightman function

The Lagrangian density (2.9) provides a suitable system for our study. In the spatially

homogeneous case it implies the equation of motion

i/∂ψ −m∗(t)ψL −m(t)ψR = 0. (3.1)

We quantise this model with the usual canonical procedure. Because three-momentum k

and helicity h are conserved, the field operator ψ̂(x) may be expanded in terms of mode

functions as

ψ̂free(t,x) =
∑
h

∫
d3k

(2π)32ω−

[
âhkUhk(t)eik·x + b̂†hkVhk(t)e−ik·x

]
, (3.2)

where ω− =
√
k2 + |m(−∞)|2. The vacuum state is annihilated as âhk|Ω〉 = b̂hk|Ω〉 = 0

and our normalisation is such that

{âhk, â†h′k′} = (2π)32ω−δ
(3)(k − k′)δhh′ ,

{b̂hk, b̂†h′k′} = (2π)32ω−δ
(3)(k − k′)δhh′ ,

(3.3)

while all other anticommutators vanish. The normalisation of the spinor ψ̂free is chosen to

be such that

{ψ̂free,α(t,x), ψ̂†free,β(t,y)} = δαβδ
(3)(x− y), (3.4)

with the mode functions Uhk and Vhk normalised accordingly. The particle and antiparticle

spinors can be decomposed in terms of helicity as follows:

Uhk(t) =

[
ηhk(t)

ζhk(t)

]
⊗ ξhk, Vhk(t) =

[
ηhk(t)

ζhk(t)

]
⊗ ξhk, (3.5)

– 7 –
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where ξhk are the eigenfunctions of helicity satisfying

(σ · k̂)ξhk = h ξhk, h = ±1, (3.6)

and ηhk, ζhk, ηhk and ζhk are yet unknown mode functions that depend on m(t).4 The

particle mode functions ηhk and ζhk satisfy the equations

i∂tηhk + h|k|ηhk = m(t)ζhk, (3.7a)

i∂tζhk − h|k|ζhk = m∗(t)ηhk, (3.7b)

while the equations for the antiparticle mode functions ηhk and ζhk contained in Vhk(t)

can be obtained from equations (3.7) by the replacements h→ −h and m→ −m∗.
The exact Wightman functions for the non-interacting system can now be constructed

as expectation values of field operators in the vacuum defined by our annihilation opera-

tors. While both Wightman functions S> and S< contain the same degrees of freedom,

the positive energy solutions, which we shall be using as an example below, are most

straightforward to identify from S>. Continuing to work in the helicity basis we find

iS>hh′k(k0, t) =

∫
d4r eik0r0−ik·r〈Ω∣∣ψ̂h,free

(
x+

r

2

)
ψ̂h′,free

(
x− r

2

)∣∣Ω〉. (3.8)

Using the definition (3.2) (with ψ̂free ≡
∑

h ψ̂h,free), decompositions (3.5) and spatial trans-

lation invariance, this can be written as

S>hh′k(k0, t) = δhh′

∫ ∞
−∞

dr0 eik0r0M>
hk

(
t+

r0

2
, t− r0

2

)
⊗ P (2)

hk , (3.9)

where P (2)

hk = ξhkξ
†
hk = 1

2(1 + hσ · k̂) and only the chiral component matrix M>
hk depends

on the mode functions:

M>
hk

(
t+

r0

2
, t− r0

2

)
≡ 1

2ω−

[
ηhk
(
t+ r0

2

)
η∗hk
(
t− r0

2

)
ηhk
(
t+ r0

2

)
ζ∗hk
(
t− r0

2

)
ζhk
(
t+ r0

2

)
η∗hk
(
t− r0

2

)
ζhk
(
t+ r0

2

)
ζ∗hk
(
t− r0

2

)] . (3.10)

When the component mode functions are solved, it is straightforward to construct the

Wightman function using fast Fourier transform methods.

3.2 Including damping

In the absence of dissipative processes, the free particle solutions (3.9) are correlated over

arbitrarily large time intervals, because the Wigner transform correlates mode functions

over all relative times ± r0
2 at each value of t. This is of course a physical result. However,

our typical applications concern interacting systems, where such correlations are naturally

suppressed by decohering interactions.

Taking interactions completely into account would require solving the full Kadanoff-

Baym equations, which is beyond the scope of this paper. However, one can account for

4We are using the chiral basis, where the Dirac matrices are given by γ0 = ρ1 ⊗ 1, γi = iρ2 ⊗ σi and

γ5 = −ρ3 ⊗ 1. Here both ρi and σi are just the usual 2 × 2 Pauli matrices. The former encode the chiral

and the latter the helicity degrees of freedom of a given spinor.
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their most important effect for the phase space structure in a rather simple manner. We

observe that the information encoded in the relative coordinate must be damped by the

rate of interactions that measure the state of the system (in this case whether the system is

a particle or an antiparticle). If we denote this rate by Γhk for each mode with momentum

k and helicity h, then the appropriately damped correlation function should be

S>hk,Γ(k0, t) ≡
∫

d4r eik0r0−ik·r−Γhk|r0|
〈
Ω
∣∣ψ̂h,free

(
x+

r

2

)
ψ̂h,free

(
x− r

2

)∣∣Ω〉γ0

=

∫ ∞
−∞

dr0 eik0r0−Γhk|r0|M>
hk

(
t+

r0

2
, t− r0

2

)
⊗ P (2)

hk

≡W>
hk,Γ(k0, t)⊗ P (2)

hk . (3.11)

The only difference to the exact free case (3.9) is the introduction of the exponential

damping factor e−Γhk|r0|, where the damping rate Γhk is the imaginary part of the pole of

the full propagator. The exponential accounts for the most relevant effect of interactions

here. Taking the self-energy fully into account would also modify the matrix M>
hk, which

we here approximate with the free result. Equation (3.11) is thus reasonable in the usual

weak coupling limit, where particles are assumed to propagate freely between relatively

infrequent collisions.5 When collisions occur they affect “measurements” of the quantum

state, which over time leads to a loss of coherence.

The appearance of the exponential damping factor in equation (3.11) can also be

motivated by studying the case of thermal equilibrium, where the full correlation function

in Wigner representation is given by S>hk(k0, t) = 2Ahk(k0, t)(1 − feq(k0)). (Remember

that S>hk + S<hk = 2Ahk). The damping factor in this case arises from the absorptive self-

energy corrections to the single particle poles of the pole propagators Sr,a
hk . When neglecting

gradient corrections one can show that in the small coupling limit

S>hk(k0, t) '
∫

dr0 eik0r0−Γhk(t)|r0|S>0,hk

(
t+

r0

2
, t− r0

2

)
, (3.12)

where

S>0,hk

(
t+

r0

2
, t− r0

2

)
=
∑
±

e∓iωk(t)r0
[
1− feq

(
±ωk(t)

)]
P (4)

hkP
±
k (t) (3.13)

is the two-time representation of the free thermal correlation function (derived using the

usual plane wave mode functions). We have only kept the absorptive corrections to the

single particle poles of Sr,a
hk(k0, t), which are then located at k0 = ωk(t) ∓ iΓhk(t). The

damping factor in equation (3.11) relates the free correlation function to the full one in

exactly the same way as in equation (3.12), generalising the latter into the case of a non-

thermal system with coherence structures.

3.3 Explicit solutions for mode functions

We shall now study the correlation function (3.11) explicitly in a simple toy model. For

quantitative results we must define the mass function m(t). We assume that it approaches

5In fact we are accounting also for the soft interactions with the background fields that lead to the

time-varying mass term. It would be straightforward to extend this to other dispersive processes by the

use of quasiparticle eigenstates.
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Figure 2. Left panel (a): the real part of the mass profile m(t) of equation (3.15), with parameters

m1 = 0.5 + 0.005i, m2 = 2 and τw = 5, in arbitrary units. Right panel (b): the positive energy

eigenvalue ωk(t) =
√
k2 + |m(t)|2 with the same mass function as in the left panel and with both

|k| = 1 and 0.4.

asymptotically constant values m∓ at early and late times, respectively, and that it changes

between the asymptotic values over a characteristic time interval τw around time t = 0. This

is the situation e.g. in a phase transition interpolating between the broken and unbroken

phases. At early and late times such solutions approach asymptotically plane waves (with

spinor normalisation U †hkUhk = V †hkVhk = 2ω−):

U∞hk =

[√
ω− − h|k|√
ω− + h|k|e−iθ

]
⊗ ξhke−iω−t, (3.14a)

V∞hk =

[ √
ω− + h|k|

−
√
ω− − h|k|eiθ

]
⊗ ξhkeiω−t, (3.14b)

where θ is the phase of the constant mass in the asymptotic limit: m → |m±|eiθ± . To

be specific, we use the following mass profile for which the mode functions can be solved

analytically [20]:

m(t) = m1 +m2 tanh

(
− t

τw

)
, (3.15)

where m1 = m1R + im1I and m2 = m2R + im2I are constant complex coefficients and τw

is a parameter describing the width of the transition in time. At early times (t → −∞)

we then have m → m− = m1 + m2 and at late times (t → ∞) m → m+ = m1 −m2. For

solving the mode functions, the imaginary part of m2 is removed by a global rotation of

the spinors (see ref. [20] for details), which of course does not change the dynamics of the

system. The remaining imaginary part is simply denoted by mI. Figure 2 illustrates the

shape of the mass function and the corresponding energy for representative parameters.
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Equations (3.7) with the mass profile (3.15) were solved in ref. [20] and here we just

quote the results relevant for our purposes. Defining a new basis for the mode functions,

φ±hk(t) ≡ 1√
2

[
ηhk(t)± ζhk(t)

]
, (3.16a)

φ±hk(t) ≡ 1√
2

[
ηhk(t)± ζhk(t)

]
, (3.16b)

one can show that the solutions can be written in terms of Gauss’ hypergeometric functions:

φ
±(1)
hk = C

±(1)
hk zα(1− z)β 2F 1(a±, b±, c; z), (3.17a)

φ
±(2)
hk = C

±(2)
hk z−α(1− z)β 2F 1(1 + a± − c, 1 + b± − c, 2− c; z), (3.17b)

where C
±(1,2)
hk are constants and

z =
1

2

[
1− tanh

(
− t

τw

)]
, α = − i

2
τwω−, β = − i

2
τwω+,

ω∓ =
√
k2 +m2

I + (m1R ±m2R)2,

a± ≡ 1 + α+ β ∓ iτwm2R, b± ≡ α+ β ± iτwm2R, c ≡ 1 + 2α.

(3.18)

Superscripts (1) and (2) label the two linearly independent solutions. The solutions for

φ±hk can be obtained by changing the sign of helicity in equations (3.17), h→ −h. (Helicity

enters the solution through the boundary conditions as will be seen below.)

Using the properties of the hypergeometric functions it is easy to check that at early

times

φ
±(1)
hk

t→−∞−−−−→ C
±(1)
hk e−itω− , φ

±(2)
hk

t→−∞−−−−→ C
±(2)
hk eitω− . (3.19)

At late times these solutions split into mixtures of positive and negative frequency states:

φ
±(1)
hk

t→∞−−−→ C
±(1)
hk

Γ(c)Γ(c− a± − b±)

Γ(c− a±)Γ(c− b±)
eitω+ + C

±(1)
hk

Γ(c)Γ(a± + b± − c)
Γ(a±)Γ(b±)

e−itω+ , (3.20)

which manifests the fact that a varying mass mixes particle and antiparticle states. Indeed,

in systems without time-translation invariance the division to particles and antiparticles is

not unique. Locally a clear identification can be made however, and with the asymptotic

limits given above we can construct different initial and final states we wish to study.

Let us now specify our initial state as a positive frequency particle, i.e. the solu-

tion (3.17a), corresponding to the constant mass one-particle state (3.14a) at t → −∞.

This determines the constants

C
±(1)
hk =

1√
2

(√
ω− − h|k| ±

√
ω− + h|k|e−iθ−

)
, (3.21)

where θ− = Arg(m1R +m2R + imI). Figure 3 shows these solutions for a representative set

of parameters. It is evident that the solutions asymptote to plane waves very quickly on

each side of the transition region.
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Figure 3. Shown are the real and imaginary parts of the exact free mode functions φ
±(1)
hk , defined

in equation (3.17a), across the transition defined by the mass profile (3.15). We used the initial

conditions (3.21) and the same parameters as in figure 2a with
∣∣k∣∣ = 0.4 and h = 1.

4 Phase space of the exact Wightman function

Having solved the mode functions, we can now calculate the Wightman functions Sshk and

Sshk,Γ. It suffices to concentrate on one type of them, say S>, since both functions exhibit

the same phase space structures. We evaluate the Wightman functions by inserting the

mode functions solved from equations (3.16) and (3.17) with the boundary conditions (3.21)

into the matrix M>
hk (3.10) and performing the integral over the relative coordinate in

equation (3.11) numerically for each k-mode. Results of these computations for varying

parameter sets are shown in figures 4–6.

Figure 4 shows the absolute value of the (1, 1)-component of the function W>
hk,Γ(k0, t),

defined in equation (3.11), for a system initially prepared to a pure positive frequency

state. (Other three chiral components are qualitatively similar.) The surface plot in the

left panel displays a clearly peaked structure, where the initial particle peak branches at

the transition region to three separate peaks corresponding to particle and antiparticle

solutions at k0 = ±ωk(t) and a coherence peak at k0 = 0. This reproduces the cQPA-

shell structure predicted in the previous section. Note that the coherence shell solution is

rapidly oscillating in time as predicted by the cQPA equation (2.18). The feature is slightly

obscured by the absolute value, but it shows up in the “digitised” structure of the coherence

solution in the projected plot on the right panel. Due to a rather large interaction rate

Γ the shell structures are wide enough in frequency to overlap a little, which can after

the transition be seen as a leakage of the coherence shell oscillations into the mass shells.

At early times the sole positive frequency shell contains no oscillations. Physically, what

we are seeing, is particle production by a temporally changing mass parameter and the
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Figure 4. Shown is the absolute value of the (1, 1)-component of the exact free Wightman function

W>
hk,Γ defined in equation (3.11), for parameters h = 1, |k| = 0.4, m1R = 0.5, m2R = 2, mI =

−0.005, τw = 5 and Γ = 0.4. Note that time flows from bottom to top in the right panel.

Figure 5. The same as in figure 4, but for parameters h = 1, |k| = 0.7, m1R = 0.5, m2R = 2,

mI = −0.005, τw = 5 and Γ = 0.1.

fundamental relation of the phenomenon to the quantum coherence between positive and

negative frequency states.

In figure 4 we assumed a quite large damping factor and correspondingly the shell struc-

tures were rather broad in frequency. In figure 5 we show for comparison a solution with a

smaller wavelength and a much smaller damping coefficient. As expected, the shell struc-

ture gets more sharply peaked because of the smaller width.6 At the same time the antipar-

ticle shell after the transition becomes much less pronounced, reflecting the fact that a larger

initial energy is less affected by the mass change. (The same qualitative behaviour would

of course be obtained by increasing the width of the wall, leading to less efficient particle

production.) Indeed, for a very large |k| the whole novel shell structure vanishes, making

way for a single shell following a classical energy path such as the ones shown in figure 2b.

Right at the transition region one can distinguish additional fine-structures, which are

not related to the cQPA solution of equation (2.15). This is partly because our derivation of

cQPA assumed lowest order expansion in gradients. It would be interesting (and possible)

to generalise cQPA to a singular higher order expansion in gradients and check if the

emerging discrete sequence of shells could reproduce the structures seen here. However,

6In fact it is easy to show in an even simpler toy model, where the mass-function is replaced by a step-

function, that the peaks become Breit-Wigner-functions in frequency [21]. The spectral cQPA-solution can

then be seen explicitly as the Breit-Wigner forms approach delta functions in the limit Γ → 0.
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Figure 6. The same as in figure 4, but for parameters h = 1,
∣∣k∣∣ = 0.4, m1R = 0.5, m2R = 2,

mI = −0.005, τw = 5 and Γ = 0.02.

these structures may also reflect the onset of the new non-local correlations that we shall

turn to next.7

4.1 Non-local coherence in time

In figure 6 we again plot |W>
hk,Γ,11| with the same parameters as in figure 4, but with a much

smaller decay term. The shells become even more peaked as expected, but in addition a

much richer phase space structure emerges, extending well outside the transition region.

From the projection plot one recognises that two new spectral shells have entered the play,

together with a rich network of secondary fine-structures around the transition region.

From the surface plot it is evident, compared to the earlier cases, that the cQPA-shells

are suppressed near the transition region, while the new shells grow in amplitude there.

Far away from the transition region the situation is reversed and the new shells (which are

also oscillating) fade away, making room for the usual cQPA-shells that allow for a clear

particle and antiparticle identification.

The new shells correspond to non-local correlations between the early- and late-time

solutions across the wall; in the particle interpretation the system appears to become

aware of the change in its energy levels already before the transition occurs. This is

completely expected behaviour for a quantum system and, again, these shells can also be

seen analytically in the simple step-function model [21]. One can show, and also observe

in the projection plot, that the new shells coincide with the average frequencies

k0 =
1

2

(√
k2 + |m−|2 ±

√
k2 + |m+|2

)
, (4.1)

which reveals that they correspond to particle-particle and particle-antiparticle correlations

across the wall. The reason why these solutions are suppressed at large time differences is

the damping; the information about the transition can be propagated only up to a distance

7Let us clarify our use of the notion of (non-)locality in this paper: first, by non-local coherence we mean

coherence over the relative coordinate in the two-point correlation function. Then, by local limit, we mean

the limit where the two time-arguments in the correlation function are the same. The local correlation

function still supports the particle-antiparticle coherence, which is non-local in the sense that creating it

requires coherent evolution over a finite interval in the average time uninterrupted by collisions, which

differentiate particles from antiparticles.
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∆t ∼ 1/Γ in the relative coordinate. Beyond this time interval only local correlations can

survive. Decreasing Γ further makes the non-local coherence structures ever more promi-

nent and if one removes damping entirely, the system becomes completely overwhelmed

by them. In this limit the system is intrinsically quantum; local particle-like solutions are

irrelevant and the system is globally sensitive to the initial conditions and the size of the

time-domain.

4.2 Physical and practical significance of the phase space structures

We have seen that a quantum system with negligible damping is strongly correlated over

large time intervals. However, in interacting systems damping suppresses non-local correla-

tions, eventually reducing correlation functions to the local limit. This decoherence enables

the quasiparticle picture and eventually the Boltzmann limit in slowly varying backgrounds.

In the language of a direct space Kadanoff-Baym approach, damping removes contributions

from memory integrals over long relative time differences. Note however, that damping does

not destroy the coherence shell at k0 = 0; spectral cQPA shells get finite widths, but the

coherence between particles and antiparticles survives. Of course, equations (2.6) and (2.7)

contain also other (hard) collisions terms, which we have omitted so far. If these collisions

depend on the particle-antiparticle nature of the state, they constitute measurements which

destroy this coherence. A complete treatment of particle production in phase transitions,

for example, should account for this effect as well, as was indeed done for example in

refs. [7, 8] in the cQPA context.

From a practical point of view our solutions show that in the weakly interacting limit

τwΓ � 1, a complete phase space solution of the interacting problem would require very

fine resolution in frequency space in order to account for all the fine-structures in the

transition region. In this region, because of the large number of transient shell structures,

the quasiparticle picture appears impractical.8 On the other hand, even for a moderately

strongly interacting system τwΓ & 0.5, the phase space structure is smoothed out and the

coherent quasiparticle picture of refs. [6–12] should provide a good description of the system.

5 Currents and connection to the semiclassical limit

In the previous sections we showed that the phase space of a system with a varying mass

profile has non-trivial phase space structures, whose intricacy depends on the size of the

mode momentum k and the damping strength Γ. We also argued that the quasiparticle

picture may provide a reasonable description of the system (even for very small τwΓ). We

now change slightly our perspective, and ask how our results compare with the semiclassical

treatment, which should be applicable when τw|k| � 1. Semiclassical methods have been

8The situation is not as bad as one might think even in the limit τwΓ� 1. Let us consider the problem

from the point of view of the cQPA method, which includes local coherence shells but ignores the non-local

structures. Because the quasiparticle picture is appropriate far from the transition region and one expects

only few interactions within the transition area, the evolution of the quasiparticle distributions may be only

weakly sensitive to the new transient structures (the evolution of the quasiparticle functions is affected by

the new shells only through the collision integrals). If the physics one is interested in is sensitive only to

the late time correlations, it should be rather well described by the cQPA.
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widely used to describe CP-violating dynamics in electroweak baryogenesis models [5, 19,

22–30]. While we are dealing with a purely time-dependent system here, the results should

be qualitatively representative.

To be specific, we shall compare different methods for computing the expectation

values of fermionic currents. A generic current corresponding to a Dirac operator O can

be computed as

jOhk(t) ≡
∫

d3r

(2π)3
eik·r〈ψ̂h(t,x+ r

)
Oψ̂h

(
t,x
)〉

=

∫
dk0

2π
Tr
[
O iS<hk(k0, t)

]
. (5.1)

In particular, we will be interested in the axial charge density

j5,hk(t) ≡
∫

d3r

(2π)3
eik·r〈ψ̂h(t,x+ r

)
γ0γ5ψ̂h

(
t,x
)〉

, (5.2)

which is related to particle asymmetries.

With the exact solutions (3.17) at hand it is a simple numerical task to compute j5,hk
for the kink profile using equation (5.1). Furthermore, in cQPA it can be calculated in

terms of the shell functions f
(m,c)±
hk as follows:

jcQPA
5,hk =

∑
s=±

[
−sh|k|

ωk
fmshk +

(
h|k|mR

ω2
k

+
ismI

ωk

)
f cshk

]
. (5.3)

5.1 Collisionless case

We first point out that currents computed with the exact Wightman function fully agree

with the cQPA currents in the collisionless limit. This may look surprising, because cQPA

relies on a spectral ansatz derived to lowest order in gradients. Yet, at the integrated

level the collisionless cQPA is in fact exact and cQPA shell functions are in one-to-one

correspondence with the local limit of the correlation functions [12], and the correspondence

is not affected by the introduction of a damping term. This can be illustrated explicitly

e.g. with equations (3.12) and (2.15): integrating equation (3.12) over k0 gives∫
dk0

2π
S<hk,Γ(k0, t) =

∫
dk0

2π

∫
dr0 eik0r0−Γhk|r0|S<hk

(
t+

r0

2
, t− r0

2

)
= S<hk(t, t)

cQPA−→
∑
±

[
Pm±hk fm±hk + P c±hk f

c±
hk

]
, (5.4)

where in the last line we used the cQPA-ansatz (2.15). Thus, the essential feature of

the cQPA is not the expansion in gradients or the ensuing spectral approximation, but

the assumption that non-local degrees of freedom are not dynamical. In particular this

result shows that cQPA retains the full quantum information relative to the average time

coordinate t.

Finally, let us stress the delicate role the decay width Γ plays in the emergence of the

cQPA-scheme. On one hand, we have seen that if Γ was vanishing, non-local temporal cor-

relations would dominate the correlation function; the quality of the local approximation

then crucially depends on a non-zero damping. Yet, the spectral limit formally corresponds

– 16 –



J
H
E
P
0
1
(
2
0
2
0
)
0
1
2

to taking Γ→ 0. That is, Γ must be large enough to ensure that non-local correlations can

be neglected, and yet small enough so that a spectral quasiparticle picture is valid. Fortu-

nately this is typically the case. We shall elaborate more on these issues in a forthcoming

publication [31].

5.2 Semiclassical approximation

While the cQPA is designed to capture the local quantum effects in a generic evolving

background, a different method exists for systems in slowly varying backgrounds. The

semiclassical approximation was introduced in refs. [22–25] for systems with spatial inho-

mogeneities, and the details for temporally varying systems can be found in ref. [5]. The

semiclassical approximation is also local, but in contrast to cQPA, one applies the gradient

expansion directly to the unintegrated equations of motion, eliminating off-diagonal chiral

degrees of freedom. This leads to a loss of information in comparison to cQPA.

We do not get into the details of the derivation, but merely quote the results relevant

for our purposes. The Wightman function is decomposed into a helicity block-diagonal form

2iγ0S<hk(k0, t) = σagahk(k0, t)⊗ P (2)

hk , (5.5)

where a ∈ {0, 1, 2, 3}, σ0 ≡ 1, σi are the Pauli matrices, and gah are the unknown coef-

ficient functions to be solved. The main outcome of the semiclassical formalism is that,

when considered to the first order in the gradients of a time-dependent mass m = |m|eiθ,

the axial part of the helicity correlation function g3hk is found to be living on a shifted

energy shell: g3hk ∼ δ
(
k2

0 − ω2
3hk

)
, with

ω3hk ≡ ωk(t) + h
|m|2∂tθ(t)
2|k|ωk(t)

. (5.6)

The shift has an opposite sign for particles with opposite helicities, and it obviously vanishes

for translationally invariant systems.9

Defining the integrated phase space densities

fahk(t) ≡
∫

dk0

2π
gahk(k0, t) (5.7)

one finds the following collisionless equation of motion for the axial density f3hk [5]:

[ω3hk∂t + Fhk∂k0 ] f3hk = 0, (5.8)

where Fhk is the semiclassical force

Fhk =
∂t|m|2

2ω3hk
+ h

∂t(|m|2∂tθ)
2|k|ωk

. (5.9)

This process of going from quantum equations (cQPA) to the semiclassical force is anal-

ogous to going from the Schrödinger equation to a spin-dependent force when calculating

9For problems with a spatially varying mass a similar shift occurs for the zeroth component g0, and is

proportional to the spin of the particle [24, 25].
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an electron’s movement in a magnetic field (the Stern-Gerlach experiment). Noticing that

Fhk = ∂tω3hk, one can see that the collisionless equation (5.8) is solved by

f sc
3hk(t) =

ω−f
−
3hk

ω3hk(t)
, (5.10)

where f−3hk ≡ f3hk(t→ −∞) is determined by the desired initial conditions. These formulae

are valid for an arbitrary form of the mass function. Note that the definition of the

phase space function f3hk exactly coincides with our definition of the current j5,hk in

equations (5.1) and (5.2).

5.3 Range of validity of the different formalism

Let us now compare the axial quantum currents to their semiclassical approximation in

different kinematical regions. We use the initial conditions described in section 3.3, which

correspond to choosing f−3hk = h|k|/ω− in equation (5.10). In cQPA the equivalent initial

configuration for S< is fm−hk (−∞) = 1 with other shell functions vanishing. In this case the

semiclassical approximation gives the following form for the helicity-summed axial density

of our kink-mass system:

jsc
5,k(t) =

∑
h

f sc
3hk(t) = − mIm2R

τw ω3
k(t) cosh2(t/τw)

. (5.11)

In figure 7 we show the helicity summed axial density j5,k ≡
∑

h j5,hk as a function

of time for a few representative values for |k|, computed from the semiclassical equa-

tion (5.11), using our exact solutions with equation (5.1) and using the cQPA methods via

equation (5.3). As explained above, the full cQPA-currents coincide with the exact cur-

rents in the collisionless limit. In this case the cQPA-current is pure coherence, since the

cQPA-solution restricted to mass shells (green dashed lines) gives a vanishing axial current.

The general comparison to the semiclassical approximation is as expected: prominent

oscillations appearing in the exact solutions for small |k| are absent in the semiclassical

solution. This is as it should be, since quantum coherence effects are included in the

semiclassical formalism only in an average sense. However, the oscillations turn off quickly

for large |k|, such that already for |k| = 1.5 the semiclassical and quantum currents are

practically identical. Moreover, the semiclassical current captures the average of the exact

solution very well for |k| = 0.8 and reasonably well even for |k| = 0.4. The broad range of

validity of the semiclassical approximation is slightly surprising. On general grounds one

would assume it to work when at least one wavelength fits to the wall width, corresponding

to 2π
|k| < τw. However, our results suggest that it works quite well even when the wall width

is but a fraction of the wave length of the mode.

The validity of the semiclassical approximation is even more pronounced when one

considers the integrated current

j5(t) ≡ 1

2π2

∫
d|k|k2

∑
h

j5,hk(t). (5.12)
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Figure 7. The helicity summed axial charge density j5,k from the exact solutions (red dashed

line), and from the semiclassical approximation (black line). Blue solid line (exactly matching the

red dashed line) is the full cQPA solution and the green line is cQPA solution restricted to the

mass shells. In each figure we have m1R = 0.1, m2R = 1, mI = 0.1, τw = 5 and Γ = 0.2, while

|k| = 0.1, 0.4, 0.8 and 1.5 in different panels as indicated.

-20 0 20 40 60 80 100

t

-0.1

0

0.1

0.2

n
+ 1

-20 0 20 40 60 80 100

t

-2.5

-2

-1.5

-1

-0.5

0

j 5

10
-3

cQPA

cQPA-ms

SC

Figure 8. Shown is the integrated number density n+
1 of positive helicity particles (left graph)

and the integrated axial charge density j5 (right graph) for a vacuum initial condition in the non-

interacting case. We used the same set of mass parameters as in figure 7.

In the right panel of figure 8 we show the result of the calculation of j5(t) for the same set

of parameters as considered in figure 7. Apart from the oscillations right after the mass

change, the semiclassical solution follows the full solution quite well. In the left panel we

show the behaviour of the integrated number density n+
1 of positive helicity particles. (The

individual number densities are defined below in section 6.) Indeed, oscillations tend to

be much larger in the individual components, but they mostly cancel out at the level of

currents.
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Our results in the non-interacting case are qualitatively similar to those of ref. [20]; the

semiclassical approximation captures the mean trend of the currents quite well. However,

while ref. [20] emphasized the fact that the semiclassical approximation misses the late

time oscillations, we do not think that this is necessarily a significant problem. First, we

see that the oscillations damp quite quickly. Second, a typical application of a calculation

presented here would be to compute the particle-antiparticle asymmetry arising from the

transition. The axial current would then be closely related to the source of the asymmetry.

In such a case the effect of oscillations around the mean would tend to cancel out, leaving

a mean effect that could be well captured by the semiclassical result.

Let us emphasize that the cQPA result for the current indeed contains and generalises

the semiclassical result. This is so despite the fact that the cQPA-dispersion relation was

derived formally to lower order in gradients than the semiclassical one. The reason for this

apparently contradicting result was already emphasized in the beginning of this section:

at the integrated level the non-interacting cQPA is in fact exact. Similarly then, the in-

teracting cQPA-equations (2.20) constitute a generalisation of the interacting semiclassical

Boltzmann theory to the fully quantum case. We now turn to study such interacting sys-

tems in the context of cQPA. This requires that we define explicitly the collision terms in

equations (2.20).

6 cQPA with collisions

Let us now assume that the self-energy satisfies the KMS-relation Σ> = eβk0Σ<. This

is perhaps the most often recurring application, so we write down the full single flavour

interacting cQPA-equations (2.20) explicitly for this case. After some algebra we find:

∂tn
±
hk =

1

2

∑
s

Φ̇s
hk f

cs
hk −

∑
s

[(
nshk − nseq

)
T hs±mm + f cshk T

hs±
cm

]
, (6.1a)

∂tf
c±
hk = ∓2iωkf

c±
hk + ξkΦ̇∓hk

[
mR

ωk
f c±hk +

1

2

(
1− n+

hk − n
−
hk

)]
(6.1b)

− ξk
∑
s

[(
nshk − nseq

)
T hs±mc + f cshk T

hs±
cc

]
,

where Φ̇±hk and ξk were defined in equation (2.22) and we replaced the mass shell functions

by the number densities n+
hk ≡ fm+

hk and n−hk ≡ 1 − fm−hk (these are the usual 1-particle

Boltzmann distribution functions) and nseq ≡ feq(+ωk). Finally, the T hs±ab -functions encode

the collision terms for generic thermal interactions. In the spatially homogeneous and

isotropic system the most general form of the self-energy function can be expanded as

ΣAk (k0, t) ≡
∑
i

cAi (k, t)σi(k). (6.2)

Here σi(k) are the Dirac structures given in the leftmost column of table 1 and cAi (k, t)

are some four-momentum- and possibly time-dependent functions.10 Interaction terms

10Note that the last four rows in table 1 contain redundant information. For example, using the fact that

/kPhk = (k0γ
0 − h|k|γ0γ5)Phk, one finds that (T/k)hss

′
ab = ωk(Tsgn(k0)γ0)hss

′
ab − h|k|(Tγ0γ5)hss

′
ab . It is easy to
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σi (Ti)hss
′

mm (Ti)hss
′

cm (Ti)hss
′

mc (Ti)hss
′

cc

1 2sδss′
mR
ωk

s′/ξk s/ξk 2sδss′
mR
ωk
/ξk

γ5 −2isδss′
mI
ωk

s′Bs
hk sB−s

′

hk −2isδss′
mI
ωk
/ξk

sgn(k0)γ0 2sδss′ 0 0 2sδss′/ξk

γ0γ5 2sδss′h
|k|
ωk

−s′Ashk −sA−s′hk 2sδss′h
|k|
ωk
/ξk

/k 2sδss′
|m|2
ωk

s′h|k|Ashk sh|k|A−s′hk 2sδss′
|m|2
ωk

/ξk

/kγ5 0 ωkA
s
hk −ωkA

−s′
hk 0

1
2 [γ0, /k] 2isδss′h|k|mI

ωk
−s′h|k|Bs

hk −sh|k|B−s′hk 2isδss′h|k|mI
ωk
/ξk

1
2 [γ0, /k]γ5 −2sδss′h|k|mR

ωk
−s′h|k|/ξk −sh|k|/ξk −2sδss′h|k|mR

ωk
/ξk

Table 1. Collision term coefficients for different self-energy components σi(k) of Σk.

corresponding to equation (6.2) are given by

T hss
′

mm (|k|, t) =
∑
i

cAi (s)(Ti)hss
′

mm(|k|),

T hss
′

cm (|k|, t) =
∑
i

[
cAi (s) + cAi (−s)

2
− ss′ c

A
i (s)− cAi (−s)

2

]
(Ti)hss

′
cm (|k|),

T hss
′

mc (|k|, t) =
∑
i

cAi (s)(Ti)hss
′

mc (|k|),

T hss
′

cc (|k|, t) =
∑
i

cAi (s)− cAi (−s)
2

(Ti)hss
′

cc (|k|),

(6.3)

where cAi (s) ≡ cAi (sωk, |k|, t) and the functions (Ti)hss
′

ab can be read from table 1, where we

further defined

Ashk ≡ h
|k|mR

ω2
k

+ is
mI

ωk
, (6.4)

Bs
hk ≡ sh

|k|
ωk

+ i
mRmI

ω2
k

. (6.5)

The collision terms of equations (6.3) together with table 1 allow for completely general

coefficient functions ci(k, t) of the self-energy (6.2). However, in thermal equilibrium the

functions ci(k, t) are typically either even or odd functions of k0. As an example, we

consider a thermal self-energy with a chiral interaction given by

ΣAk (k0) = (a/k + b/u)PL, (6.6)

check that this relation is satisfied by the entries of table 1. Similarly 1
2
[γ0, /k]Phk = −h|k|γ5Phk, which

implies that the last two rows are just −h|k| times the first two lines in reverse order. However, rather than

being minimalistic, we give a complete list of the possible structures.
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where uµ is the fluid four-velocity. We further assume that, in the rest frame of the thermal

plasma where /u → γ0, the coefficient a = a(k0, |k|) is an odd and b = b(k0, |k|) an even

function of k0. Using table 1, we then get the following collision terms for equations (6.1):

T hss
′

mm (|k|, t) =

[
|m|2

ωk
ak +

(
1− sh |k|

ωk

)
bk

]
δss′ ,

T hss
′

cm (|k|, t) =
s′

2

[
(ωk − s′h|k|)ak + bk

]
Ashk,

T hss
′

mc (|k|, t) =
s

2

[
(ωk + sh|k|)ak + bk

]
A−s

′

hk ,

T hss
′

cc (|k|, t) =
1

ξk

[
|m|2

ωk
ak + bk

]
δss′ .

(6.7)

Here ak ≡ a(ωk, |k|), bk ≡ b(ωk, |k|) and we used the parity properties a(sωk, |k|) = sak
and b(sωk, |k|) = bk. Also, given that ak, bk > 0, note how T hss

′
mm and T hss

′
cc are always

positive.

Let us finally point out that it is easy to generalise equations (6.1) to the case with a

non-thermal self-energy that does not obey the KMS-relation. One just needs to replace

the two terms involving the equilibrium distribution function nseq as follows:

(nshk − nseq)T hss
′

ma (|k|, t)→
∑
i

s

(
fmshk c

A
i (s)− 1

2
c<i (s)

)
(Ti)hss

′
ma (|k|, t) (6.8)

for a = m, c, where we defined iΣ<
k (k0, t) ≡

∑
i c
<
i (k, t)σi(k). We remind, however, that

evaluating the self-energy diagrams involving coherent propagators as internal lines requires

special techniques developed in refs. [11, 12].

6.1 A numerical example

In figure 9 we show a result of a model calculation with a non-vanishing interaction rate

using a self-energy of the form (6.6) with ak = 0.03 and bk = 0. The left panels, where we

imposed the vacuum initial conditions n±hk = f c±hk = 0, correspond to the interacting version

of the case studied in figure 8. Initially, the particle number approaches smoothly the

thermal value. At the onset of the transition it again starts oscillating, but the amplitude

is strongly damped in comparison to the non-interacting case. In the right panels we show

the analogous calculation with equilibrium initial conditions n±hk = n±eq with T = 1 in the

units we are working with and f c±hk = 0. Now the particle number stays unchanged until

the onset of the transition, after which it oscillates approaching asymptotically the same

post-transition equilibrium value as in the case with vacuum initial conditions. Pushing

the starting point further away from the transition region would make the later evolution

indistinguishable in the two cases.

The main difference to the non-interacting case is that the left-chiral interaction, in

connection with the coherent CP-violating oscillations, creates a temporary non-zero av-

erage chiral current after transition. This is due to the fact that the chiral interaction

term (6.6) breaks the helicity symmetry. The average current is well captured at late times

by the pure mass shell contribution, shown in green dashed line in figure 9. However at
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Figure 9. Shown is the integrated number density n+
1 of positive helicity particles (the upper

panels) and the integrated axial charge density j5 (the lower panels) in interacting cQPA. The

left panels correspond to the vacuum initial condition and the right panels to the thermal initial

condition with T = 1. We used the same set of mass parameters as in figure 7.

the transition point the main peak is still pure coherence. While the current eventually

equilibrates to zero, the region where it is non-vanishing could act as a seed for example

for a particle-antiparticle asymmetry creation in such a transition.

The calculation we presented here was just a toy model whose sole purpose was to show

how to implement the method and display some of the effects of interactions. There are

several interesting applications for the formalism that we shall pursue in the future. One

avenue is the study of baryogenesis in abrupt spatially homogeneous phase transitions in the

early universe, such as the models considered in the context of the cold baryogenesis [32–34].

Another application is to study the reheating phase after inflation. It is straightforward to

couple equations (6.1) with an equation of motion for the inflaton and model the reheating

phase including all quantum effects and interactions. Our formalism, extended to the

flavour mixing case [12], can also be applied to the study of leptogenesis. It is of particular

interest to compare our approach with several other transport theory formulations that

also employ the closed time path (CTP) methods, such as those presented in refs. [35–42].

7 Conclusions and outlook

We have studied the phase space structure of a fermionic two-point function with a varying

complex mass. We computed the Wightman function of a non-interacting system for a

specific mass profile, and demonstrated that its phase space contains, in addition to the

usual mass shell solutions, a shell-like structure located at k0 = 0. This zero-momentum
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shell describes local-in-time quantum coherence between particles and antiparticles and it

was discovered earlier in the context of the cQPA-formalism [6–12]. However, our present

derivation did not rely on any approximations, but derived the free Wightman function

from the exact mode functions of the system.

In addition to the cQPA-solutions we found other, non-local coherence structures in

the exact Wightman function. These structures look peculiar, appearing to let the system

become aware of the transition before it actually takes place in the local time coordinate,

but of course they are just a reflection of the usual quantum non-locality in the phase

space picture. We argued that the non-local correlations would dominate the phase space

structure in large non-dissipative systems. However, when dissipation is included (modelled

here by a damping term coupled to the relative time coordinate), the non-locality gets

confined to the neighbourhood of the transition region. These results underline the delicate

role of dissipation in the emergence of the local (cQPA) limit, and eventually (in the nearly

translationally invariant systems) of the familiar Boltzmann transport theory.

In section 2 we introduced a new and particularly useful way to reorganise the gradi-

ent expansion in the mixed representation Kadanoff-Baym equations. Then, based on this

form, we gave a simple and transparent derivation of the cQPA equations. In section 6

we completed the analysis by providing explicit collision integrals for generic interaction

self-energies. The resulting equations (6.1) are one of the main results of this paper: they

generalise the Boltzmann transport theory to systems with local coherence between par-

ticles and antiparticles. In particular they fully encompass the well known semiclassical

effects. Such coherences may be relevant for example for baryogenesis during phase tran-

sitions and for particle production at the end of inflation.

We further computed axial phase space densities out of the Wightman functions and

compared these to the same quantities obtained from the semiclassical approximation. We

found out that the semiclassical methods work reasonably well even in systems where the

relevant modes have wavelengths down to a half of the wall width. This is encouraging for

baryogenesis studies in very strong electroweak phase transitions, often encountered in the

context of models producing large, observable gravitational wave signals [17, 18].

In this work we only considered a time-dependent mass. A natural follow-up, relevant

for the baryogenesis problem, would be to generalise the analysis to a mass depending

on one spatial coordinate. Part of this program is straightforward, but some new features

emerge as well, such as the tunneling solutions, whose proper description at the phase space

level is non-trivial. But there are practical applications of the time-dependent formalism as

well, which we shall be pursuing. One is the baryogenesis at a phase transition as discussed

in section 6 and already studied in the context of a simple toy model in ref. [11]. Another

immediate goal is to use equations (6.1), coupled to the one-point function of the inflaton,

to model accurately the reheating phase at the end of the inflation. Also, we are pursuing

a generalisation of the present formalism to the case with mixing fermion fields, in the

context of resonant leptogenesis [43].
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