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Abstract: We study the phase space structure of exact quantum Wightman functions in
spatially homogeneous, temporally varying systems. In addition to the usual mass shells,
the Wightman functions display additional coherence shells around zero frequency k0 = 0,
which carry the information of the local quantum coherence of particle-antiparticle pairs.
We find also other structures, which encode non-local correlations in time, and discuss
their role and decoherence. We give a simple derivation of the cQPA formalism, a set of
quantum transport equations, that can be used to study interacting systems including
the local quantum coherence. We compute quantum currents created by a temporal
change in a particle’s mass, comparing the exact Wightman function approach, the cQPA
and the semiclassical methods. We find that the semiclassical approximation, which is
fully encompassed by the cQPA, works surprisingly well even for very sharp temporal
features. This is encouraging for the application of semiclassical methods in electroweak
baryogenesis with strong phase transitions.
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1 Introduction

Quantum coherence plays an important role in many physical problems in cosmology.
Examples include CP-violating particle-wall interactions during the electroweak phase
transition, out-of-equilibrium decay of nearly degenerate heavy neutrinos during leptoge-
nesis, particle production during phase transitions and reheating at the end of inflation.
The key quantity in the analysis of such intrinsically quantum systems is the two-point cor-
relation function, whose evolution is described by the Schwinger–Dyson equations [1, 2],
or in the phase space picture by the Kadanoff–Baym equations [3–5]. The phase space
picture in particular has provided a useful basis for deriving approximate transport
formalisms, the prime example being the standard Boltzmann theory.

In this paper we study an exact, damped, spatially homogeneous and isotropic
two-point correlation function of a fermion with a possibly complex, time-varying mass
term. We show that the mixed representation correlation function contains novel shell
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structures which carry information about different types of quantum coherences. For
example we find a shell at k0 = 0, which encodes the information of a coherently mixing
particle-antiparticle system. This shell was previously seen in the context of the coherent
quasiparticle approximation (cQPA) [6–12] in the spectral limit, but our derivation is
more general, being exact in the non-interacting case. In addition we find also other
shell-structures, corresponding to non-local (in the relative time coordinate), long range
correlations.

All phase space structures depend sensitively on the existence and the magnitude of
damping. In the non-interacting case non-local coherences dominate the system, prevent-
ing a free particle interpretation of the phase space structure in non-trivial backgrounds.
Damping suppresses the non-local coherences and leads to the emergence of a local limit
for time intervals ∆t > 1/Γ, where Γ is the damping width. For small enough Γ the
local correlation function can be well approximated by a spectral ansatz, leading to the
cQPA-picture mentioned above.

We will introduce a new, elegant way to reorganise the gradient expansion in the
mixed representation Kadanoff–Baym equations. We then use it to give a simple derivation
of the cQPA equations complete with explicit collision integrals for arbitrary types of
interactions. These equations are one of the main results of this paper: they generalise
the usual Boltzmann transport theory to systems including coherent particle-antiparticle
states. In particular we argue that the cQPA completely encompasses the well known
semiclassical effects. Possible applications of these equations include baryogenesis during
phase transitions and particle production during and after inflation.

We compute the axial current densities using the exact mixed representation cor-
relation functions as well as their cQPA counterparts and compare these to the ones
obtained in the semiclassical approximation. We find that the semiclassical methods work
reasonably well even in systems where the relevant modes have a wavelength as small as
half of the wall width.1 This is encouraging for the application of semiclassical methods
in the related problem of electroweak phase baryogenesis with very strong electroweak
phase transitions. These typically create sharp transition walls and are often encountered
in the context of models producing large, observable gravitational wave signals [13–18].

This paper is organised as follows: in section 2 we first review the derivation of the
cQPA formalism including the spectral Wightman functions. In section 3 we construct
the exact free Wightman function from mode functions, generalised to account for the
damping. Some numerical examples for the phase space solutions are shown in section 4.
In section 5, we compute and compare currents in different approximations in the non-
interacting case. In section 6 we present cQPA transport equations in the interacting case
with explicit expressions for collision terms and compute cQPA currents with interactions.
Finally, in section 7, we give our conclusions.

1Throughout this paper we use the word ‘wall’ to refer to the temporal transition in the mass, see e.g.
figure 2a.
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2 Wightman functions and cQPA

We are using the Schwinger–Keldysh formalism [1, 2] of finite temperature field theory.
The key quantities are the two-point Wightman functions

iS<(u, v) =
〈
ψ(v)ψ(u)

〉
,

iS>(u, v) =
〈
ψ(u)ψ(v)

〉
,

(2.1)

which describe the quantum statistical properties of the non-equilibrium system.2 We also
need the retarded and advanced correlation functions iSr(u, v) = 2θ(u0 − v0)A(u, v) and
iSa(u, v) = −2θ(v0 − u0)A(u, v), where the spectral function is A ≡ 1

2 〈{ψ(u), ψ(v)}〉 =
i
2 (S

> + S<) = i
2 (S

r − Sa).
To get a phase space description of the system we perform the Wigner transformation

S(k, x) ≡
∫

d4r eik·rS
(
x + r

2 , x− r
2

)
, (2.2)

where r ≡ u− v and x ≡ 1
2 (u + v) are the relative and average coordinates, corresponding

to microscopic and macroscopic scales, respectively. In this mixed Wigner representation
correlation functions obey the Kadanoff–Baym equations [3](

/k + i
2 /∂
)
Sp − e−i♦{Σp}{Sp} = 1, (2.3)(

/k + i
2 /∂
)
Ss − e−i♦{Σr}{Ss} = e−i♦{Σs}{Sa}, (2.4)

where s = <,> and p = r, a refer to the retarded and advanced functions, respectively, Σ
is the fermion self-energy and ♦{ f }{g} ≡ 1

2 [∂x f · ∂kg− ∂k f · ∂xg] is the Moyal product.
Note that we absorb the mass terms into the singular parts of Σr,a, unless explicitly stated
otherwise.

Moyal products are not the optimal way for organising the gradient expansions, and
we find it useful to introduce another self-energy function:

Σout(k, x) ≡
∫

d4z eik·(x−z)Σ(x, z) = e
i
2 ∂Σ

x ·∂Σ
k Σ(k, x). (2.5)

Using equation (2.5) we can rewrite Moyal products in a form that reorganises the
gradients into total k-derivatives controlled by the scale of variation of Σ, while all
dependence on (dynamical) gradients acting on S is fully accounted for by iterative
resummation:

/̂KSp − e−
i
2 ∂Σ

x ·∂k [Σp
out(K̂, x)Sp] = 1, (2.6)

/̂KSs − e−
i
2 ∂Σ

x ·∂k [Σr
out(K̂, x)Ss] = e−

i
2 ∂Σ

x ·∂k [Σs
out(K̂, x)Sa], (2.7)

where K̂ ≡ k + i
2 ∂x. This form of the Kadanoff–Baym equations is particularly well

suited for obtaining finite order expansions and iterative solutions. The mass operator is
included in the singular part Σsg of the retarded/advanced self-energy functions:

Σr,a(k, x) = Σsg(x) + ΣH
nsg(k, x)∓ iΣA(k, x), (2.8)

2Note that we define the Wightman function S< with a positive sign. We also suppress Dirac indices
when there is no danger of confusion.
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where ΣH
nsg is the non-singular Hermitian part and ΣA is the anti-Hermitian part of the self-

energy. To be specific, we consider a fermion field with a complex, spacetime-dependent
mass m(x):

L = iψ/∂ψ−m∗(x)ψRψL −m(x)ψLψR, (2.9)

where ψL,R ≡ 1
2 (1∓ γ5)ψ. In the Wigner representation the spacetime-dependent mass

gives rise to an operator:

(m̂R + iγ5m̂I)S(k, x) ≡ e−
i
2 ∂m

x ·∂k
{
[mR(x) + iγ5mI(x)]S(k, x)

}
, (2.10)

where mR(x) and mI(x) are the real and imaginary parts of m(x), respectively.
Equations (2.6) and (2.7) are practically impossible to solve exactly and one needs to

find approximation schemes that maintain the essential physics at hand. The cQPA devel-
oped in refs. [6–12] is one such scheme, which allows to study particular non-equilibrium
systems with quantum coherence. The crux of the cQPA is to solve equations (2.6) and (2.7)
in two steps. First one solves for the phase space structure of the system at the lowest
order in gradients and ignoring collision terms. This leads to spectral solutions for both
pole and Wightman functions, where the latter contain new coherence shells in addition
to the usual mass shell solutions. In the second step, one inserts these solutions back
to the full equations, which are then reduced to a set of Boltzmann-like equations for
generalised particle distribution functions [10, 11].

2.1 cQPA-solution in a spatially homogeneous system

Let us consider a spatially homogeneous and isotropic system, where m(x) → m(t) in
equations (2.9) and (2.10). The Wigner transform (2.2) with respect to spatial coordinates
then reduces to a Fourier transform, and we will denote the Wigner transform S(k, x) as
Sk(k0, t). We also consider explicitly only the equation for S<, as the derivation for S> is
completely analogous. At first we will ignore interactions and work to the lowest order in
gradients. The Hermitian part of equation (2.7) for S< ≡ iS<γ0 then reduces to

2k0S<
k (k0, t) = {Hk(t), S<

k (k0, t)}, (2.11)

where Hk(t) ≡ α · k+ γ0[mR(t) + iγ5mI(t)] is the free Dirac Hamiltonian.
In spatially homogeneous and isotropic systems the Wightman functions have 8

independent components and can be parametrised without any loss of generality as
follows:

S<
k (k0, t) ≡ ∑

h,±,±′
P(4)

hkP±k γ0P±
′

k D±±
′

hk (k0, t), (2.12)

where the helicity and energy projection operators are defined, respectively, as

P(4)
hk ≡

1
2
(
1+ hα · k̂γ5), P±k ≡

1
2

(
1± Hk

ωk

)
, (2.13)

with k̂ ≡ k/|k| and ωk ≡
√
k2 + |m(t)|2. Inserting the parametrisation (2.12) to equa-

tion (2.11) gives algebraic constraints to the time- and energy-dependent coefficient
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Figure 1. The shell structure of the cQPA Wightman function S<
k (k0, t), showing the particle

shell where k0 = ωk (purple), the antiparticle shell where k0 = −ωk (orange) and the particle-
antiparticle coherence shell where k0 = 0 (brown).

functions D±±
′

hk (k0, t):
(k0 ∓ωk)D±±hk (k0, t) = 0,

k0D±∓hk (k0, t) = 0.
(2.14)

Functions D±±hk (k0, t) ∝ δ(k0 ∓ωk) correspond to the usual mass shell excitations, while
D±∓hk (k0, t) ∝ δ(k0) are the new coherence functions found in refs. [7–11]. The spectral
cQPA-solution can then be written as:

S<
k (k0, t) = 2π ∑

h,±

[
Pm±

hk f m±
hk δ(k0 ∓ωk) + Pc±

hk f c±
hk δ(k0)

]
. (2.15)

where we defined the projection operators

Pm±
hk ≡ ±

ωk

mR
P(4)

hkP±k γ0P±k = P(4)
hkP±k ,

Pc±
hk ≡ P(4)

hkP±k γ0P∓k = P(4)
hk

(
γ0 ± mR

ωk

)
P∓k .

(2.16)

With this normalisation the mass shell functions f m±
hk (t) coincide with the usual Fermi–

Dirac distributions in the thermal limit: f m±
hk → feq(±ωk), where feq(k0) ≡ (ek0/T + 1)−1.

Note that due to the Hermiticity of S<
hk(k0, t) the shell functions obey ( f m±

hk )∗ = f m±
hk and

( f c±
hk )
∗ = f c∓

hk . The phase space structure of the cQPA Wightman functions is shown in
figure 1.

The cQPA evolution equations are then obtained by inserting the spectral ansatz (2.15)
to the anti-Hermitian part of equation (2.7), now including all gradients and interaction
terms, and integrating over the energy. However, let us again first consider this equation
in the non-interacting limit and to lowest order in gradients:

i∂tS
<
k (k0, t) =

[
Hk, S<

k (k0, t)
]
. (2.17)
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Substituting the spectral solution (2.15) for S<
k (k0, t) to equation (2.17) and integrating

over k0 it is easy to derive the leading behaviour of the shell-functions:

∂t f m±
hk = . . . ,

∂t f c±
hk = ∓2iωk f c±

hk + . . . ,
(2.18)

where the ellipses denote terms proportional to gradient terms (and eventually self-energy
terms when interactions are included).

The point we wish to make here is that the coherence shell solutions f c±
hk are oscillating

rapidly with frequencies that are not suppressed by gradients. Anticipating this oscillation
was the reason for our careful organisation of gradient terms in equations (2.6) and (2.7):
whenever the operator K̂0 = k0 +

i
2 ∂t is acting on a coherence shell function f c±

hk , one must
replace K̂0 → k0 ±ωk as the effective momentum argument of the operator, at the lowest
order in gradients. Indeed, in cQPA:∫ dk0

2π
e−

i
2 ∂Σ

x ·∂k
[
Σout,k

(
k0 +

i
2 ∂t
)
S<

hk(k0, t)
]

= ∑
±

∫
dk0 Σout,k

(
k0 +

i
2 ∂t
)[

Pm±
hk (t) f m±

hk (t)δ(k0 ∓ωk) + Pc±
hk (t) f c±

hk (t)δ(k0)
]

'∑
±

∫
dk0

[
Σout,k(k0)Pm±

hk (t) f m±
hk (t)δ(k0 ∓ωk) + Σout,k(k0 ±ωk)Pc±

hk (t) f c±
hk (t)δ(k0)

]
= ∑
±

Σout,k(±ωk)
[

Pm±
hk (t) f m±

hk (t) + Pc±
hk (t) f c±

hk (t)
]

(2.19)

for a generic self-energy function Σ. That is, coherence shell projections are not evaluated
at the shell k0 = 0, but on the mass shells instead. It would be straightforward to include
higher order gradient corrections to shell positions generated by the K̂0-operator, but
doing so consistently, we should also solve the cQPA-ansatz to higher order in gradients.
The gradient corrections to collision terms arising from such an expansion (collisional
source terms) were studied in ref. [19] for the electroweak baryogenesis problem using
semiclassical methods. They were in general found to be very small and we shall not
pursue them here further. For the same reason we shall, in what follows, set Σout,k → Σk,
dropping the corrections coming from the expansion of the Σout-function in equation (2.5).3

We will also work with the vacuum dispersion relations, setting ΣH
nsg → 0 and

Σsg → mR + iγ5mI. Furthermore, we shall drop the term ∝ SHΣ<, as this is required by
the consistency of the spectral limit with respect to the pole equations [7]. With these
simplifications it is now straightforward to show that the full cQPA equations can be
written as

∂t f m±
hk = ± 1

2 ∑
s

Φ̇s
hk f cs

hk + Tr
[
CcollPm±

hk

]
, (2.20a)

∂t f c±
hk = ∓ 2iωk f c±

hk + ξkΦ̇∓hk

[
mR

ωk
f c±
hk −

1
2
(

f m+
hk − f m−

hk

)]
+ ξk Tr

[
CcollPc∓

hk

]
, (2.20b)

3Note however that the expansion of Σout,k may contain lowest order gradients that need to be resummed
in the same way as we did above in equation (2.19). This is the case whenever the self-energy function
contains an internal propagator containing the coherence function connected to the external leg in the
diagram. For more details see refs. [11, 12].

– 6 –



where

Ccoll = ∑
h,s

[(1
2

Σ<
k (sωk)− f ms

hk ΣAk (sωk)
)

Pms
hk − f cs

hk ΣAk (sωk)Pcs
hk

]
+ h.c. (2.21)

and we defined

Φ̇±hk ≡ ∂t

(
mR

ωk

)
± i

h|k|
ω2

k

∂tmI, ξk ≡
ω2

k

ω2
k −m2

R
. (2.22)

We shall return to study interacting theories in section 6. For now, we shall take a closer
look into the phase space structure of the exact non-interacting Wightman functions.

3 Constructing the exact Wightman function

In the previous section we showed that Wightman functions may acquire novel phase
space structures in the spectral limit. The new coherence functions f c±

hk on the k0 = 0 shell
describe quantum coherence in correlated particle-antiparticle states. These correlations
can be interpreted in terms of squeezed states and the functions f c±

hk can be related to
Bogolyubov coefficients [12]. Condensation of the coherence information onto a sharp
phase space shell is still surprising. It is therefore of interest to see how such structures
arise in an exactly solvable system.

3.1 Non-interacting Wightman function

The Lagrangian density (2.9) provides a suitable system for our study. In the spatially
homogeneous case it implies the equation of motion

i/∂ψ−m∗(t)ψL −m(t)ψR = 0. (3.1)

We quantise this model with the usual canonical procedure. Because three-momentum k

and helicity h are conserved, the field operator ψ̂(x) may be expanded in terms of mode
functions as

ψ̂free(t,x) = ∑
h

∫ d3k

(2π)32ω−

[
âhkUhk(t)eik·x + b̂†

hkVhk(t)e−ik·x
]
, (3.2)

where ω− =
√
k2 + |m(−∞)|2. The vacuum state is annihilated as âhk|Ω〉 = b̂hk|Ω〉 = 0

and our normalisation is such that

{âhk, â†
h′k′} = (2π)32ω−δ(3)(k− k′)δhh′ ,

{b̂hk, b̂†
h′k′} = (2π)32ω−δ(3)(k− k′)δhh′ ,

(3.3)

while all other anticommutators vanish. The normalisation of the spinor ψ̂free is chosen to
be such that

{ψ̂free,α(t,x), ψ̂†
free,β(t,y)} = δαβδ(3)(x− y), (3.4)
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with the mode functions Uhk and Vhk normalised accordingly. The particle and antiparticle
spinors can be decomposed in terms of helicity as follows:

Uhk(t) =

[
ηhk(t)
ζhk(t)

]
⊗ ξhk, Vhk(t) =

[
ηhk(t)
ζhk(t)

]
⊗ ξhk, (3.5)

where ξhk are the eigenfunctions of helicity satisfying

(σ · k̂)ξhk = h ξhk, h = ±1, (3.6)

and ηhk, ζhk, ηhk and ζhk are yet unknown mode functions that depend on m(t).4 The
particle mode functions ηhk and ζhk satisfy the equations

i∂tηhk + h|k|ηhk = m(t)ζhk, (3.7a)

i∂tζhk − h|k|ζhk = m∗(t)ηhk, (3.7b)

while the equations for the antiparticle mode functions ηhk and ζhk contained in Vhk(t)
can be obtained from equations (3.7) by the replacements h→ −h and m→ −m∗.

The exact Wightman functions for the non-interacting system can now be constructed
as expectation values of field operators in the vacuum defined by our annihilation
operators. While both Wightman functions S> and S< contain the same degrees of
freedom, the positive energy solutions, which we shall be using as an example below, are
most straightforward to identify from S>. Continuing to work in the helicity basis we find

iS>
hh′k(k0, t) =

∫
d4r eik0r0−ik·r〈Ω∣∣ψ̂h,free

(
x + r

2

)
ψ̂h′,free

(
x− r

2

)∣∣Ω〉. (3.8)

Using the definition (3.2) (with ψ̂free ≡ ∑h ψ̂h,free), decompositions (3.5) and spatial trans-
lation invariance, this can be written as

S>
hh′k(k0, t) = δhh′

∫ ∞

−∞
dr0 eik0r0 M>

hk
(
t + r0

2 , t− r0
2

)
⊗ P(2)

hk, (3.9)

where P(2)
hk = ξhkξ†

hk = 1
2 (1+ hσ · k̂) and only the chiral component matrix M>

hk depends
on the mode functions:

M>
hk
(
t + r0

2 , t− r0
2

)
≡ 1

2ω−

[
ηhk
(
t + r0

2

)
η∗hk
(
t− r0

2

)
ηhk
(
t + r0

2

)
ζ∗hk
(
t− r0

2

)
ζhk
(
t + r0

2

)
η∗hk
(
t− r0

2

)
ζhk
(
t + r0

2

)
ζ∗hk
(
t− r0

2

)] . (3.10)

When the component mode functions are solved, it is straightforward to construct the
Wightman function using fast Fourier transform methods.

4We are using the chiral basis, where the Dirac matrices are given by γ0 = ρ1 ⊗ 1, γi = iρ2 ⊗ σi and
γ5 = −ρ3 ⊗ 1. Here both ρi and σi are just the usual 2× 2 Pauli matrices. The former encode the chiral and
the latter the helicity degrees of freedom of a given spinor.
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3.2 Including damping

In the absence of dissipative processes, the free particle solutions (3.9) are correlated over
arbitrarily large time intervals, because the Wigner transform correlates mode functions
over all relative times ± r0

2 at each value of t. This is of course a physical result. However,
our typical applications concern interacting systems, where such correlations are naturally
suppressed by decohering interactions.

Taking interactions completely into account would require solving the full Kadanoff–
Baym equations, which is beyond the scope of this paper. However, one can account for
their most important effect for the phase space structure in a rather simple manner. We
observe that the information encoded in the relative coordinate must be damped by the
rate of interactions that measure the state of the system (in this case whether the system is
a particle or an antiparticle). If we denote this rate by Γhk for each mode with momentum
k and helicity h, then the appropriately damped correlation function should be

S>
hk,Γ(k0, t) ≡

∫
d4r eik0r0−ik·r−Γhk|r0|

〈
Ω
∣∣ψ̂h,free

(
x + r

2

)
ψ̂h,free

(
x− r

2

)∣∣Ω〉γ0

=
∫ ∞

−∞
dr0 eik0r0−Γhk|r0|M>

hk
(
t + r0

2 , t− r0
2

)
⊗ P(2)

hk

≡W>
hk,Γ(k0, t)⊗ P(2)

hk. (3.11)

The only difference to the exact free case (3.9) is the introduction of the exponential
damping factor e−Γhk|r0|, where the damping rate Γhk is the imaginary part of the pole of
the full propagator. The exponential accounts for the most relevant effect of interactions
here. Taking the self-energy fully into account would also modify the matrix M>

hk, which
we here approximate with the free result. Equation (3.11) is thus reasonable in the usual
weak coupling limit, where particles are assumed to propagate freely between relatively
infrequent collisions.5 When collisions occur they affect “measurements” of the quantum
state, which over time leads to a loss of coherence.

The appearance of the exponential damping factor in equation (3.11) can also be
motivated by studying the case of thermal equilibrium, where the full correlation function
in Wigner representation is given by S>

hk(k0, t) = 2Ahk(k0, t)(1− feq(k0)). (Remember that
S>

hk + S<
hk = 2Ahk). The damping factor in this case arises from the absorptive self-energy

corrections to the single particle poles of the pole propagators Sr,a
hk. When neglecting

gradient corrections one can show that in the small coupling limit

S>
hk(k0, t) '

∫
dr0 eik0r0−Γhk(t)|r0|S>

0,hk
(
t + r0

2 , t− r0
2

)
, (3.12)

where

S>
0,hk
(
t + r0

2 , t− r0
2

)
= ∑
±

e∓iωk(t)r0
[
1− feq

(
±ωk(t)

)]
P(4)

hkP±k (t) (3.13)

is the two-time representation of the free thermal correlation function (derived using
the usual plane wave mode functions). We have only kept the absorptive corrections

5In fact we are accounting also for the soft interactions with the background fields that lead to the
time-varying mass term. It would be straightforward to extend this to other dispersive processes by the use
of quasiparticle eigenstates.
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to the single particle poles of Sr,a
hk(k0, t), which are then located at k0 = ωk(t)∓ iΓhk(t).

The damping factor in equation (3.11) relates the free correlation function to the full one
in exactly the same way as in equation (3.12), generalising the latter into the case of a
non-thermal system with coherence structures.

3.3 Explicit solutions for mode functions

We shall now study the correlation function (3.11) explicitly in a simple toy model. For
quantitative results we must define the mass function m(t). We assume that it approaches
asymptotically constant values m∓ at early and late times, respectively, and that it changes
between the asymptotic values over a characteristic time interval τw around time t = 0.
This is the situation e.g. in a phase transition interpolating between the broken and
unbroken phases. At early and late times such solutions approach asymptotically plane
waves (with spinor normalisation U†

hkUhk = V†
hkVhk = 2ω−):

U∞
hk =

[√
ω− − h|k|√
ω− + h|k|e−iθ

]
⊗ ξhke−iω−t, (3.14a)

V∞
hk =

[ √
ω− + h|k|

−
√

ω− − h|k|eiθ

]
⊗ ξhkeiω−t, (3.14b)

where θ is the phase of the constant mass in the asymptotic limit: m → |m±|eiθ± . To be
specific, we use the following mass profile for which the mode functions can be solved
analytically [20]:

m(t) = m1 + m2 tanh
(
− t

τw

)
, (3.15)

where m1 = m1R + im1I and m2 = m2R + im2I are constant complex coefficients and τw

is a parameter describing the width of the transition in time. At early times (t → −∞)
we then have m → m− = m1 + m2 and at late times (t → ∞) m → m+ = m1 −m2. For
solving the mode functions, the imaginary part of m2 is removed by a global rotation of
the spinors (see ref. [20] for details), which of course does not change the dynamics of the
system. The remaining imaginary part is simply denoted by mI. Figure 2 illustrates the
shape of the mass function and the corresponding energy for representative parameters.

Equations (3.7) with the mass profile (3.15) were solved in ref. [20] and here we just
quote the results relevant for our purposes. Defining a new basis for the mode functions,

φ±hk(t) ≡
1√
2

[
ηhk(t)± ζhk(t)

]
, (3.16a)

φ±hk(t) ≡
1√
2

[
ηhk(t)± ζhk(t)

]
, (3.16b)

one can show that the solutions can be written in terms of Gauss’ hypergeometric
functions:

φ
±(1)
hk = C±(1)hk zα(1− z)β

2F1(a±, b±, c; z), (3.17a)

φ
±(2)
hk = C±(2)hk z−α(1− z)β

2F1(1 + a± − c, 1 + b± − c, 2− c; z), (3.17b)
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Figure 2. Left panel (a): the real part of the mass profile m(t) of equation (3.15), with parameters
m1 = 0.5 + 0.005i, m2 = 2 and τw = 5, in arbitrary units. Right panel (b): the positive energy
eigenvalue ωk(t) =

√
k2 + |m(t)|2 with the same mass function as in the left panel and with both

|k| = 1 and 0.4.

where C±(1,2)
hk are constants and

z =
1
2

[
1− tanh

(
− t

τw

)]
, α = − i

2
τwω−, β = − i

2
τwω+,

ω∓ =
√
k2 + m2

I + (m1R ±m2R)2,

a± ≡ 1 + α + β∓ iτwm2R, b± ≡ α + β± iτwm2R, c ≡ 1 + 2α.

(3.18)

Superscripts (1) and (2) label the two linearly independent solutions. The solutions for
φ±hk can be obtained by changing the sign of helicity in equations (3.17), h→ −h. (Helicity
enters the solution through the boundary conditions as will be seen below.)

Using the properties of the hypergeometric functions it is easy to check that at early
times

φ
±(1)
hk

t→−∞−−−→ C±(1)hk e−itω− , φ
±(2)
hk

t→−∞−−−→ C±(2)hk eitω− . (3.19)

At late times these solutions split into mixtures of positive and negative frequency states:

φ
±(1)
hk

t→∞−−→ C±(1)hk
Γ(c)Γ(c− a± − b±)
Γ(c− a±)Γ(c− b±)

eitω+ + C±(1)hk
Γ(c)Γ(a± + b± − c)

Γ(a±)Γ(b±)
e−itω+ , (3.20)

which manifests the fact that a varying mass mixes particle and antiparticle states. Indeed,
in systems without time-translation invariance the division to particles and antiparticles is
not unique. Locally a clear identification can be made however, and with the asymptotic
limits given above we can construct different initial and final states we wish to study.

Let us now specify our initial state as a positive frequency particle, i.e. the solu-
tion (3.17a), corresponding to the constant mass one-particle state (3.14a) at t→ −∞. This
determines the constants

C±(1)hk =
1√
2

(√
ω− − h|k| ±

√
ω− + h|k|e−iθ−

)
, (3.21)
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Figure 3. Shown are the real and imaginary parts of the exact free mode functions φ
±(1)
hk , defined

in equation (3.17a), across the transition defined by the mass profile (3.15). We used the initial
conditions (3.21) and the same parameters as in figure 2a with

∣∣k∣∣ = 0.4 and h = 1.

where θ− = Arg(m1R + m2R + imI). Figure 3 shows these solutions for a representative
set of parameters. It is evident that the solutions asymptote to plane waves very quickly
on each side of the transition region.

4 Phase space of the exact Wightman function

Having solved the mode functions, we can now calculate the Wightman functions Ss
hk and

Ss
hk,Γ. It suffices to concentrate on one type of them, say S>, since both functions exhibit the

same phase space structures. We evaluate the Wightman functions by inserting the mode
functions solved from equations (3.16) and (3.17) with the boundary conditions (3.21)
into the matrix M>

hk (3.10) and performing the integral over the relative coordinate in
equation (3.11) numerically for each k-mode. Results of these computations for varying
parameter sets are shown in figures 4–6.

Figure 4 shows the absolute value of the (1, 1)-component of the function W>
hk,Γ(k0, t),

defined in equation (3.11), for a system initially prepared to a pure positive frequency
state. (Other three chiral components are qualitatively similar.) The surface plot in the
left panel displays a clearly peaked structure, where the initial particle peak branches at
the transition region to three separate peaks corresponding to particle and antiparticle
solutions at k0 = ±ωk(t) and a coherence peak at k0 = 0. This reproduces the cQPA-
shell structure predicted in the previous section. Note that the coherence shell solution
is rapidly oscillating in time as predicted by the cQPA equation (2.18). The feature is
slightly obscured by the absolute value, but it shows up in the “digitised” structure of
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Figure 4. Shown is the absolute value of the (1, 1)-component of the exact free Wightman function
W>

hk,Γ defined in equation (3.11), for parameters h = 1, |k| = 0.4, m1R = 0.5, m2R = 2, mI = −0.005,
τw = 5 and Γ = 0.4. Note that time flows from bottom to top in the right panel.

the coherence solution in the projected plot on the right panel. Due to a rather large
interaction rate Γ the shell structures are wide enough in frequency to overlap a little,
which can after the transition be seen as a leakage of the coherence shell oscillations into
the mass shells. At early times the sole positive frequency shell contains no oscillations.
Physically, what we are seeing, is particle production by a temporally changing mass
parameter and the fundamental relation of the phenomenon to the quantum coherence
between positive and negative frequency states.

In figure 4 we assumed a quite large damping factor and correspondingly the shell
structures were rather broad in frequency. In figure 5 we show for comparison a solution
with a smaller wavelength and a much smaller damping coefficient. As expected, the
shell structure gets more sharply peaked because of the smaller width.6 At the same time
the antiparticle shell after the transition becomes much less pronounced, reflecting the
fact that a larger initial energy is less affected by the mass change. (The same qualitative
behaviour would of course be obtained by increasing the width of the wall, leading to less
efficient particle production.) Indeed, for a very large |k| the whole novel shell structure
vanishes, making way for a single shell following a classical energy path such as the ones
shown in figure 2b.

Right at the transition region one can distinguish additional fine-structures, which are
not related to the cQPA solution of equation (2.15). This is partly because our derivation of
cQPA assumed lowest order expansion in gradients. It would be interesting (and possible)
to generalise cQPA to a singular higher order expansion in gradients and check if the
emerging discrete sequence of shells could reproduce the structures seen here. However,
these structures may also reflect the onset of the new non-local correlations that we shall
turn to next.7

6In fact it is easy to show in an even simpler toy model, where the mass-function is replaced by a
step-function, that the peaks become Breit–Wigner-functions in frequency [21]. The spectral cQPA-solution
can then be seen explicitly as the Breit–Wigner forms approach delta functions in the limit Γ→ 0.

7Let us clarify our use of the notion of (non-)locality in this paper: first, by non-local coherence we mean
coherence over the relative coordinate in the two-point correlation function. Then, by local limit, we mean the
limit where the two time-arguments in the correlation function are the same. The local correlation function
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Figure 5. The same as in figure 4, but for parameters h = 1, |k| = 0.7, m1R = 0.5, m2R = 2,
mI = −0.005, τw = 5 and Γ = 0.1.

Figure 6. The same as in figure 4, but for parameters h = 1,
∣∣k∣∣ = 0.4, m1R = 0.5, m2R = 2,

mI = −0.005, τw = 5 and Γ = 0.02.

4.1 Non-local coherence in time

In figure 6 we again plot |W>
hk,Γ,11| with the same parameters as in figure 4, but with

a much smaller decay term. The shells become even more peaked as expected, but
in addition a much richer phase space structure emerges, extending well outside the
transition region. From the projection plot one recognises that two new spectral shells
have entered the play, together with a rich network of secondary fine-structures around
the transition region. From the surface plot it is evident, compared to the earlier cases,
that the cQPA-shells are suppressed near the transition region, while the new shells grow
in amplitude there. Far away from the transition region the situation is reversed and the
new shells (which are also oscillating) fade away, making room for the usual cQPA-shells
that allow for a clear particle and antiparticle identification.

The new shells correspond to non-local correlations between the early- and late-time
solutions across the wall; in the particle interpretation the system appears to become
aware of the change in its energy levels already before the transition occurs. This is
completely expected behaviour for a quantum system and, again, these shells can also be

still supports the particle-antiparticle coherence, which is non-local in the sense that creating it requires
coherent evolution over a finite interval in the average time uninterrupted by collisions, which differentiate
particles from antiparticles.
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seen analytically in the simple step-function model [21]. One can show, and also observe
in the projection plot, that the new shells coincide with the average frequencies

k0 =
1
2

(√
k2 + |m−|2 ±

√
k2 + |m+|2

)
, (4.1)

which reveals that they correspond to particle-particle and particle-antiparticle correlations
across the wall. The reason why these solutions are suppressed at large time differences
is the damping; the information about the transition can be propagated only up to
a distance ∆t ∼ 1/Γ in the relative coordinate. Beyond this time interval only local
correlations can survive. Decreasing Γ further makes the non-local coherence structures
ever more prominent and if one removes damping entirely, the system becomes completely
overwhelmed by them. In this limit the system is intrinsically quantum; local particle-like
solutions are irrelevant and the system is globally sensitive to the initial conditions and
the size of the time-domain.

4.2 Physical and practical significance of the phase space structures

We have seen that a quantum system with negligible damping is strongly correlated
over large time intervals. However, in interacting systems damping suppresses non-local
correlations, eventually reducing correlation functions to the local limit. This decoherence
enables the quasiparticle picture and eventually the Boltzmann limit in slowly varying
backgrounds. In the language of a direct space Kadanoff–Baym approach, damping
removes contributions from memory integrals over long relative time differences. Note
however, that damping does not destroy the coherence shell at k0 = 0; spectral cQPA
shells get finite widths, but the coherence between particles and antiparticles survives.
Of course, equations (2.6) and (2.7) contain also other (hard) collisions terms, which we
have omitted so far. If these collisions depend on the particle-antiparticle nature of the
state, they constitute measurements which destroy this coherence. A complete treatment
of particle production in phase transitions, for example, should account for this effect as
well, as was indeed done for example in refs. [7, 8] in the cQPA context.

From a practical point of view our solutions show that in the weakly interacting limit
τwΓ� 1, a complete phase space solution of the interacting problem would require very
fine resolution in frequency space in order to account for all the fine-structures in the
transition region. In this region, because of the large number of transient shell structures,
the quasiparticle picture appears impractical.8 On the other hand, even for a moderately
strongly interacting system τwΓ & 0.5, the phase space structure is smoothed out and
the coherent quasiparticle picture of refs. [6–12] should provide a good description of the
system.

8The situation is not as bad as one might think even in the limit τwΓ� 1. Let us consider the problem
from the point of view of the cQPA method, which includes local coherence shells but ignores the non-local
structures. Because the quasiparticle picture is appropriate far from the transition region and one expects
only few interactions within the transition area, the evolution of the quasiparticle distributions may be only
weakly sensitive to the new transient structures (the evolution of the quasiparticle functions is affected by the
new shells only through the collision integrals). If the physics one is interested in is sensitive only to the late
time correlations, it should be rather well described by the cQPA.
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5 Currents and connection to the semiclassical limit

In the previous sections we showed that the phase space of a system with a varying
mass profile has non-trivial phase space structures, whose intricacy depends on the
size of the mode momentum k and the damping strength Γ. We also argued that
the quasiparticle picture may provide a reasonable description of the system (even for
very small τwΓ). We now change slightly our perspective, and ask how our results
compare with the semiclassical treatment, which should be applicable when τw|k| � 1.
Semiclassical methods have been widely used to describe CP-violating dynamics in
electroweak baryogenesis models [5, 19, 22–30]. While we are dealing with a purely
time-dependent system here, the results should be qualitatively representative.

To be specific, we shall compare different methods for computing the expectation
values of fermionic currents. A generic current corresponding to a Dirac operator O can
be computed as

jOhk(t) ≡
∫ d3r

(2π)3 eik·r〈ψ̂h
(
t,x+ r

)
Oψ̂h

(
t,x
)〉

=
∫ dk0

2π
Tr
[
O iS<

hk(k0, t)
]
. (5.1)

In particular, we will be interested in the axial charge density

j5,hk(t) ≡
∫ d3r

(2π)3 eik·r〈ψ̂h
(
t,x+ r

)
γ0γ5ψ̂h

(
t,x
)〉

, (5.2)

which is related to particle asymmetries.
With the exact solutions (3.17) at hand it is a simple numerical task to compute j5,hk

for the kink profile using equation (5.1). Furthermore, in cQPA it can be calculated in
terms of the shell functions f (m,c)±

hk as follows:

jcQPA
5,hk = ∑

s=±

[
− sh|k|

ωk
f ms
hk +

(
h|k|mR

ω2
k

+
ismI

ωk

)
f cs
hk

]
. (5.3)

5.1 Collisionless case

We first point out that currents computed with the exact Wightman function fully agree
with the cQPA currents in the collisionless limit. This may look surprising, because cQPA
relies on a spectral ansatz derived to lowest order in gradients. Yet, at the integrated level
the collisionless cQPA is in fact exact and cQPA shell functions are in one-to-one corre-
spondence with the local limit of the correlation functions [12], and the correspondence
is not affected by the introduction of a damping term. This can be illustrated explicitly
e.g. with equations (3.12) and (2.15): integrating equation (3.12) over k0 gives∫ dk0

2π
S<

hk,Γ(k0, t) =
∫ dk0

2π

∫
dr0 eik0r0−Γhk|r0|S<

hk(t +
r0
2 , t− r0

2 )

= S<
hk(t, t) cQPA−→ ∑

±

[
Pm±

hk f m±
hk + Pc±

hk f c±
hk

]
, (5.4)

where in the last line we used the cQPA-ansatz (2.15). Thus, the essential feature of the cQPA
is not the expansion in gradients or the ensuing spectral approximation, but the assumption
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that non-local degrees of freedom are not dynamical. In particular this result shows that cQPA
retains the full quantum information relative to the average time coordinate t.

Finally, let us stress the delicate role the decay width Γ plays in the emergence
of the cQPA-scheme. On one hand, we have seen that if Γ was vanishing, non-local
temporal correlations would dominate the correlation function; the quality of the local
approximation then crucially depends on a non-zero damping. Yet, the spectral limit
formally corresponds to taking Γ→ 0. That is, Γ must be large enough to ensure that non-
local correlations can be neglected, and yet small enough so that a spectral quasiparticle
picture is valid. Fortunately this is typically the case. We shall elaborate more on these
issues in a forthcoming publication [31].

5.2 Semiclassical approximation

While the cQPA is designed to capture the local quantum effects in a generic evolving
background, a different method exists for systems in slowly varying backgrounds. The
semiclassical approximation was introduced in refs. [22–25] for systems with spatial inho-
mogeneities, and the details for temporally varying systems can be found in ref. [5]. The
semiclassical approximation is also local, but in contrast to cQPA, one applies the gradient
expansion directly to the unintegrated equations of motion, eliminating off-diagonal chiral
degrees of freedom. This leads to a loss of information in comparison to cQPA.

We do not get into the details of the derivation, but merely quote the results relevant
for our purposes. The Wightman function is decomposed into a helicity block-diagonal
form

2iγ0S<
hk(k0, t) = σagahk(k0, t)⊗ P(2)

hk, (5.5)

where a ∈ {0, 1, 2, 3}, σ0 ≡ 1, σi are the Pauli matrices, and gah are the unknown coefficient
functions to be solved. The main outcome of the semiclassical formalism is that, when
considered to the first order in the gradients of a time-dependent mass m = |m|eiθ , the
axial part of the helicity correlation function g3hk is found to be living on a shifted energy
shell: g3hk ∼ δ

(
k2

0 −ω2
3hk

)
, with

ω3hk ≡ ωk(t) + h
|m|2∂tθ(t)
2|k|ωk(t)

. (5.6)

The shift has an opposite sign for particles with opposite helicities, and it obviously
vanishes for translationally invariant systems.9

Defining the integrated phase space densities

fahk(t) ≡
∫ dk0

2π
gahk(k0, t) (5.7)

one finds the following collisionless equation of motion for the axial density f3hk [5]:

[ω3hk∂t + Fhk∂k0 ] f3hk = 0, (5.8)

9For problems with a spatially varying mass a similar shift occurs for the zeroth component g0, and is
proportional to the spin of the particle [24, 25].
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where Fhk is the semiclassical force

Fhk =
∂t|m|2
2ω3hk

+ h
∂t(|m|2∂tθ)

2|k|ωk
. (5.9)

This process of going from quantum equations (cQPA) to the semiclassical force is
analogous to going from the Schrödinger equation to a spin-dependent force when
calculating an electron’s movement in a magnetic field (the Stern–Gerlach experiment).
Noticing that Fhk = ∂tω3hk, one can see that the collisionless equation (5.8) is solved by

f sc
3hk(t) =

ω− f−3hk
ω3hk(t)

, (5.10)

where f−3hk ≡ f3hk(t → −∞) is determined by the desired initial conditions. These
formulae are valid for an arbitrary form of the mass function. Note that the definition of
the phase space function f3hk exactly coincides with our definition of the current j5,hk in
equations (5.1) and (5.2).

5.3 Range of validity of the different formalisms

Let us now compare the axial quantum currents to their semiclassical approximation in
different kinematical regions. We use the initial conditions described in section 3.3, which
correspond to choosing f−3hk = h|k|/ω− in equation (5.10). In cQPA the equivalent initial
configuration for S< is f m−

hk (−∞) = 1 with other shell functions vanishing. In this case
the semiclassical approximation gives the following form for the helicity-summed axial
density of our kink-mass system:

jsc
5,k(t) = ∑

h
f sc
3hk(t) = −

mIm2R

τw ω3
k(t) cosh2(t/τw)

. (5.11)

In figure 7 we show the helicity summed axial density j5,k ≡ ∑h j5,hk as a function
of time for a few representative values for |k|, computed from the semiclassical equa-
tion (5.11), using our exact solutions with equation (5.1) and using the cQPA methods
via equation (5.3). As explained above, the full cQPA-currents coincide with the exact
currents in the collisionless limit. In this case the cQPA-current is pure coherence, since
the cQPA-solution restricted to mass shells (green dashed lines) gives a vanishing axial
current.

The general comparison to the semiclassical approximation is as expected: prominent
oscillations appearing in the exact solutions for small |k| are absent in the semiclassical
solution. This is as it should be, since quantum coherence effects are included in the
semiclassical formalism only in an average sense. However, the oscillations turn off
quickly for large |k|, such that already for |k| = 1.5 the semiclassical and quantum
currents are practically identical. Moreover, the semiclassical current captures the average
of the exact solution very well for |k| = 0.8 and reasonably well even for |k| = 0.4. The
broad range of validity of the semiclassical approximation is slightly surprising. On
general grounds one would assume it to work when at least one wavelength fits to the
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Figure 7. The helicity summed axial charge density j5,k from the exact solutions (red dashed
line), and from the semiclassical approximation (black line). Blue solid line (exactly matching
the red dashed line) is the full cQPA solution and the green line is cQPA solution restricted to
the mass shells. In each figure we have m1R = 0.1, m2R = 1, mI = 0.1, τw = 5 and Γ = 0.2, while
|k| = 0.1, 0.4, 0.8 and 1.5 in different panels as indicated.

wall width, corresponding to 2π
|k| < τw. However, our results suggest that it works quite

well even when the wall width is but a fraction of the wave length of the mode.
The validity of the semiclassical approximation is even more pronounced when one

considers the integrated current

j5(t) ≡
1

2π2

∫
d|k|k2 ∑

h
j5,hk(t). (5.12)

In the right panel of figure 8 we show the result of the calculation of j5(t) for the same set
of parameters as considered in figure 7. Apart from the oscillations right after the mass
change, the semiclassical solution follows the full solution quite well. In the left panel
we show the behaviour of the integrated number density n+

1 of positive helicity particles.
(The individual number densities are defined below in section 6.) Indeed, oscillations
tend to be much larger in the individual components, but they mostly cancel out at the
level of currents.

Our results in the non-interacting case are qualitatively similar to those of ref. [20]; the
semiclassical approximation captures the mean trend of the currents quite well. However,
while ref. [20] emphasized the fact that the semiclassical approximation misses the late
time oscillations, we do not think that this is necessarily a significant problem. First, we
see that the oscillations damp quite quickly. Second, a typical application of a calculation
presented here would be to compute the particle-antiparticle asymmetry arising from the
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Figure 8. Shown is the integrated number density n+
1 of positive helicity particles (left graph)

and the integrated axial charge density j5 (right graph) for a vacuum initial condition in the
non-interacting case. We used the same set of mass parameters as in figure 7.

transition. The axial current would then be closely related to the source of the asymmetry.
In such a case the effect of oscillations around the mean would tend to cancel out, leaving
a mean effect that could be well captured by the semiclassical result.

Let us emphasize that the cQPA result for the current indeed contains and generalises
the semiclassical result. This is so despite the fact that the cQPA-dispersion relation
was derived formally to lower order in gradients than the semiclassical one. The reason
for this apparently contradicting result was already emphasized in the beginning of
this section: at the integrated level the non-interacting cQPA is in fact exact. Similarly
then, the interacting cQPA-equations (2.20) constitute a generalisation of the interacting
semiclassical Boltzmann theory to the fully quantum case. We now turn to study such
interacting systems in the context of cQPA. This requires that we define explicitly the
collision terms in equations (2.20).

6 cQPA with collisions

Let us now assume that the self-energy satisfies the KMS-relation Σ> = eβk0 Σ<. This is
perhaps the most often recurring application, so we write down the full single flavour
interacting cQPA-equations (2.20) explicitly for this case. After some algebra we find:

∂tn±hk =
1
2 ∑

s
Φ̇s

hk f cs
hk −∑

s

[(
ns

hk − ns
eq
)
Ths±

mm + f cs
hk Ths±

cm

]
, (6.1a)

∂t f c±
hk = ∓ 2iωk f c±

hk + ξkΦ̇∓hk

[
mR

ωk
f c±
hk +

1
2
(
1− n+

hk − n−hk
)]

(6.1b)

− ξk ∑
s

[(
ns

hk − ns
eq
)
Ths±

mc + f cs
hk Ths±

cc

]
,

where Φ̇±hk and ξk were defined in equation (2.22) and we replaced the mass shell functions
by the number densities n+

hk ≡ f m+
hk and n−hk ≡ 1− f m−

hk (these are the usual 1-particle
Boltzmann distribution functions) and ns

eq ≡ feq(+ωk). Finally, the Ths±
ab -functions encode

the collision terms for generic thermal interactions. In the spatially homogeneous and
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isotropic system the most general form of the self-energy function can be expanded as

ΣAk (k0, t) ≡∑
i

cAi (k, t)σi(k). (6.2)

Here σi(k) are the Dirac structures given in the leftmost column of table 1 and cAi (k, t)
are some four-momentum- and possibly time-dependent functions.10 Interaction terms
corresponding to equation (6.2) are given by

Thss′
mm (|k|, t) = ∑

i
cAi (s)(Ti)

hss′
mm(|k|),

Thss′
cm (|k|, t) = ∑

i

[
cAi (s) + cAi (−s)

2
− ss′

cAi (s)− cAi (−s)
2

]
(Ti)

hss′
cm (|k|),

Thss′
mc (|k|, t) = ∑

i
cAi (s)(Ti)

hss′
mc (|k|),

Thss′
cc (|k|, t) = ∑

i

cAi (s)− cAi (−s)
2

(Ti)
hss′
cc (|k|),

(6.3)

where cAi (s) ≡ cAi (sωk, |k|, t) and the functions (Ti)
hss′
ab can be read from table 1, where

we further defined

As
hk ≡ h

|k|mR

ω2
k

+ is
mI

ωk
, (6.4)

Bs
hk ≡ sh

|k|
ωk

+ i
mRmI

ω2
k

. (6.5)

The collision terms of equations (6.3) together with table 1 allow for completely gen-
eral coefficient functions ci(k, t) of the self-energy (6.2). However, in thermal equilibrium
the functions ci(k, t) are typically either even or odd functions of k0. As an example, we
consider a thermal self-energy with a chiral interaction given by

ΣAk (k0) = (a/k + b/u)PL, (6.6)

where uµ is the fluid four-velocity. We further assume that, in the rest frame of the thermal
plasma where /u → γ0, the coefficient a = a(k0, |k|) is an odd and b = b(k0, |k|) an even
function of k0. Using table 1, we then get the following collision terms for equations (6.1):

Thss′
mm (|k|, t) =

[
|m|2
ωk

ak +
(

1− sh |k|ωk

)
bk
]
δss′ ,

Thss′
cm (|k|, t) = s′

2

[
(ωk − s′h|k|)ak + bk

]
As

hk,

Thss′
mc (|k|, t) = s

2

[
(ωk + sh|k|)ak + bk

]
A−s′

hk ,

Thss′
cc (|k|, t) = 1

ξk

[
|m|2
ωk

ak + bk
]
δss′ .

(6.7)

10Note that the last four rows in table 1 contain redundant information. For example, using the fact
that /k Phk = (k0γ0 − h|k|γ0γ5)Phk, one finds that (T/k )

hss′
ab = ωk(Tsgn(k0)γ0 )hss′

ab − h|k|(Tγ0γ5 )hss′
ab . It is easy

to check that this relation is satisfied by the entries of table 1. Similarly 1
2 [γ

0, /k ]Phk = −h|k|γ5Phk, which
implies that the last two rows are just −h|k| times the first two lines in reverse order. However, rather than
being minimalistic, we give a complete list of the possible structures.
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σi (Ti)
hss′
mm (Ti)

hss′
cm (Ti)

hss′
mc (Ti)

hss′
cc

1 2sδss′
mR
ωk

s′/ξk s/ξk 2sδss′
mR
ωk

/ξk

γ5 −2isδss′
mI
ωk

s′Bs
hk sB−s′

hk −2isδss′
mI
ωk

/ξk

sgn(k0)γ0 2sδss′ 0 0 2sδss′/ξk

γ0γ5 2sδss′h
|k|
ωk

−s′As
hk −sA−s′

hk 2sδss′h
|k|
ωk

/ξk

/k 2sδss′
|m|2
ωk

s′h|k|As
hk sh|k|A−s′

hk 2sδss′
|m|2
ωk

/ξk

/kγ5 0 ωkAs
hk −ωkA−s′

hk 0

1
2 [γ

0, /k ] 2isδss′h|k| mI
ωk

−s′h|k|Bs
hk −sh|k|B−s′

hk 2isδss′h|k| mI
ωk

/ξk

1
2 [γ

0, /k ]γ5 −2sδss′h|k|mR
ωk

−s′h|k|/ξk −sh|k|/ξk −2sδss′h|k|mR
ωk

/ξk

Table 1. Collision term coefficients for different self-energy components σi(k) of Σk.

Here ak ≡ a(ωk, |k|), bk ≡ b(ωk, |k|) and we used the parity properties a(sωk, |k|) = sak
and b(sωk, |k|) = bk. Also, given that ak, bk > 0, note how Thss′

mm and Thss′
cc are always

positive.
Let us finally point out that it is easy to generalise equations (6.1) to the case with a

non-thermal self-energy that does not obey the KMS-relation. One just needs to replace
the two terms involving the equilibrium distribution function ns

eq as follows:

(ns
hk − ns

eq)T
hss′
ma (|k|, t)→∑

i
s
(

f ms
hk cAi (s)−

1
2

c<i (s)
)
(Ti)

hss′
ma (|k|, t) (6.8)

for a = m, c, where we defined iΣ<
k (k0, t) ≡ ∑i c<i (k, t)σi(k). We remind, however, that

evaluating the self-energy diagrams involving coherent propagators as internal lines
requires special techniques developed in refs. [11, 12].

6.1 A numerical example

In figure 9 we show a result of a model calculation with a non-vanishing interaction rate
using a self-energy of the form (6.6) with ak = 0.03 and bk = 0. The left panels, where
we imposed the vacuum initial conditions n±hk = f c±

hk = 0, correspond to the interacting
version of the case studied in figure 8. Initially, the particle number approaches smoothly
the thermal value. At the onset of the transition it again starts oscillating, but the
amplitude is strongly damped in comparison to the non-interacting case. In the right
panels we show the analogous calculation with equilibrium initial conditions n±hk = n±eq
with T = 1 in the units we are working with and f c±

hk = 0. Now the particle number
stays unchanged until the onset of the transition, after which it oscillates approaching
asymptotically the same post-transition equilibrium value as in the case with vacuum
initial conditions. Pushing the starting point further away from the transition region
would make the later evolution indistinguishable in the two cases.

– 22 –



-20 0 20 40 60 80 100

t

-0.05

0

0.05

0.1

n
+ 1

Vacuum

-20 0 20 40 60 80 100

t

-0.05

0

0.05

0.1

n
+ 1

Thermal

-20 0 20 40 60 80 100

t

-15

-10

-5

0

5

j 5

10
-4

cQPA

cQPA-ms

-20 0 20 40 60 80 100

t

-15

-10

-5

0

5

j 5

10
-4

cQPA

cQPA-ms

Figure 9. Shown is the integrated number density n+
1 of positive helicity particles (the upper

panels) and the integrated axial charge density j5 (the lower panels) in interacting cQPA. The
left panels correspond to the vacuum initial condition and the right panels to the thermal initial
condition with T = 1. We used the same set of mass parameters as in figure 7.

The main difference to the non-interacting case is that the left-chiral interaction, in
connection with the coherent CP-violating oscillations, creates a temporary non-zero
average chiral current after transition. This is due to the fact that the chiral interaction
term (6.6) breaks the helicity symmetry. The average current is well captured at late times
by the pure mass shell contribution, shown in green dashed line in figure 9. However at
the transition point the main peak is still pure coherence. While the current eventually
equilibrates to zero, the region where it is non-vanishing could act as a seed for example
for a particle-antiparticle asymmetry creation in such a transition.

The calculation we presented here was just a toy model whose sole purpose was
to show how to implement the method and display some of the effects of interactions.
There are several interesting applications for the formalism that we shall pursue in the
future. One avenue is the study of baryogenesis in abrupt spatially homogeneous phase
transitions in the early universe, such as the models considered in the context of the
cold baryogenesis [32–34]. Another application is to study the reheating phase after
inflation. It is straightforward to couple equations (6.1) with an equation of motion for
the inflaton and model the reheating phase including all quantum effects and interactions.
Our formalism, extended to the flavour mixing case [12], can also be applied to the study
of leptogenesis. It is of particular interest to compare our approach with several other
transport theory formulations that also employ the closed time path (CTP) methods, such
as those presented in refs. [35–42].
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7 Conclusions and outlook

We have studied the phase space structure of a fermionic two-point function with a varying
complex mass. We computed the Wightman function of a non-interacting system for a
specific mass profile, and demonstrated that its phase space contains, in addition to the
usual mass shell solutions, a shell-like structure located at k0 = 0. This zero-momentum
shell describes local-in-time quantum coherence between particles and antiparticles and it
was discovered earlier in the context of the cQPA-formalism [6–12]. However, our present
derivation did not rely on any approximations, but derived the free Wightman function
from the exact mode functions of the system.

In addition to the cQPA-solutions we found other, non-local coherence structures
in the exact Wightman function. These structures look peculiar, appearing to let the
system become aware of the transition before it actually takes place in the local time
coordinate, but of course they are just a reflection of the usual quantum non-locality in
the phase space picture. We argued that the non-local correlations would dominate the
phase space structure in large non-dissipative systems. However, when dissipation is
included (modelled here by a damping term coupled to the relative time coordinate), the
non-locality gets confined to the neighbourhood of the transition region. These results
underline the delicate role of dissipation in the emergence of the local (cQPA) limit, and
eventually (in the nearly translationally invariant systems) of the familiar Boltzmann
transport theory.

In section 2 we introduced a new and particularly useful way to reorganise the
gradient expansion in the mixed representation Kadanoff–Baym equations. Then, based
on this form, we gave a simple and transparent derivation of the cQPA equations. In
section 6 we completed the analysis by providing explicit collision integrals for generic
interaction self-energies. The resulting equations (6.1) are one of the main results of this
paper: they generalise the Boltzmann transport theory to systems with local coherence
between particles and antiparticles. In particular they fully encompass the well known
semiclassical effects. Such coherences may be relevant for example for baryogenesis
during phase transitions and for particle production at the end of inflation.

We further computed axial phase space densities out of the Wightman functions and
compared these to the same quantities obtained from the semiclassical approximation. We
found out that the semiclassical methods work reasonably well even in systems where the
relevant modes have wavelengths down to a half of the wall width. This is encouraging
for baryogenesis studies in very strong electroweak phase transitions, often encountered
in the context of models producing large, observable gravitational wave signals [17, 18].

In this work we only considered a time-dependent mass. A natural follow-up, relevant
for the baryogenesis problem, would be to generalise the analysis to a mass depending
on one spatial coordinate. Part of this program is straightforward, but some new features
emerge as well, such as the tunneling solutions, whose proper description at the phase
space level is non-trivial. But there are practical applications of the time-dependent
formalism as well, which we shall be pursuing. One is the baryogenesis at a phase
transition as discussed in section 6 and already studied in the context of a simple toy
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model in ref. [11]. Another immediate goal is to use equations (6.1), coupled to the
one-point function of the inflaton, to model accurately the reheating phase at the end of
the inflation. Also, we are pursuing a generalisation of the present formalism to the case
with mixing fermion fields, in the context of resonant leptogenesis [43].
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