N\

cEn) ATLAS

NS EXPERIMENT

GPU Usage in ATLAS
Reconstruction and Analysis

Attila Krasznahorkay
on behalf of the ATLAS Collaboration

CHEP‘ :

24th International Conference on Computing in High Energy & Nuclear Physics 4-8 November 2019, Adelaide, Australia

Overview

Short introduction about ATLAS and its software / computing infrastructure
Some details about multi-threading in Gaudi / AthenaMT

Overview of current GPU programming possibilities

Tests with offloaded calculations in the Gaudi / AthenaMT environment
Future outlook

The ATLAS Experiment

e Since I’'m the first person to talk about
ATLAS in this session... 44m
o ATLAS s:)
o One of the general purpose experiments at :’ s e N, |
the Large Hadron Collider
o Collecting ~1.6 MB proton-proton (and
sometimes Pb-Pb, Pb-p) data events with
O(1) kHz rate, which our offline software 2m
has to process/analyse
o Using hundreds of thousands of CPUs all
over the world to process O(100) PB of . s
data 24/7 Muon chambers Solenoid magnet | Transition radiation fracker

o Undergoing major hardware and software sieenaucoriacter
updates for LHC’s Run-3/4

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

Pixel defector

LAr eleciromagnetic calorimeters

http://atlas.cern/
https://home.cern/science/accelerators/large-hadron-collider

=
)

Up until the very last steps of a
physics analysis all our data can be
processed in an embarrassingly

parallel way
o Every collision event recorded by the
detector can be processed individually

Up until now we do this by splitting the
processing of events across many
single-threaded x86 processes

o We use a large infrastructure for this, which
is being discussed in tracks 3, 4, 7 and

(partly) 9
m |l.e. most of the tracks/sessions

https://en.wikipedia.org/wiki/X86
https://indico.cern.ch/event/773049/sessions/323856
https://indico.cern.ch/event/773049/sessions/323857
https://indico.cern.ch/event/773049/sessions/323862
https://indico.cern.ch/event/773049/sessions/323865

The (Evolving) Computing Landscape

e |s acomplicated one...
<D o We are clearly moving towards a very
heterogeneous environment for the
foreseeable future

Many different lerat th
nVI DIA ¢ m::]kyetl erent accelerators are on tne

o NVidia GPUs are the most readily available in
general, and also used in Summit and

Ll N"ZLh BRI Perimutter
e ——— AM D o AMD GPUs are not used too widely in
comparison, but will be in Frontier

o Intel GPUs are used even less at the moment,
but will get center stage in Aurora

o FPGAs are getting more and more attention,
but they come with even more
questionmarks... 5

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/frontier/
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

Gaudi / Athena

o Gaudi/ Gaudi - GitL

File Edit View History Bookmarks

A Gaudi / Gaud - GitLab

€. c @ Ua cemn.ch w

e ATLAS and LHCDb share Gaudi as the

basis of their software frameworks

o ATLAS calls its own framework, built on top
of Gaudi, Athena

e The framework defines “algorithms”

&p GitLab Projects Groups Snippets Help

“\QY, Gaudi Gaudi Gaudi > Details

whl

& Project (\m Gaudi @ @ Star | 33
I

Project ID: 38
Details

Activity No license. Al rights reserved -o-6,650 Commits ¥ 27 Branches & 455Tags [46.3 MB Files
o The Gaudi project is an open project for providing the necessary interfaces and services for building HEP experiment
eleases

frameworks in the domain of event data processing applications. The Gaudi framework is experiment independent.

Cycle Analytics

B Repository master Gaudi History Q Findfile @ «
O Issues [l L]
a Merge branch 'clemenci-master-patch-12803' into 'master’ © cseascd @
H st 8 : as the pase unit or execution

C1/CD
B CHANGELOG B® CI/CD configuration

& Members

o Classes that have an execute (...)

— function, which performs some data
o processing with the help of various

W GaudiCommonsve

ally-evaluated-expression warning

“services” and “tools”

W GaudiCoresve pport

W GaudiExamples as const correct ToolHandles

« Collapse sidebar = GaudiHive

https://gitlab.cern.ch/gaudi/Gaudi/
https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/gaudi/Gaudi/

ATLAS’s Offline and Analysis Software

e All of ATLAS’s central offline software is

kept in https://qitlab.cern.ch/atlas/athena
o Some pieces, mainly those shared with
other experiments, do sit in separate

places though " @ W | | e

e This allows us to build a number of T | e et ey -
different software projects from the same 0. o e
repository T S ”

o The different projects build different e
selections of the code included in the Somm——
repository

W Build

o Providing us with (small) projects aimed at
event generation, simulation and analysis
beside our big reconstruction (Athena)
project

mmmmmmmmm

https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/athena/tree/21.6/Projects/AthGeneration
https://gitlab.cern.ch/atlas/athena/tree/master/Projects/AthSimulation
https://gitlab.cern.ch/atlas/athena/tree/master/Projects/AnalysisBase
https://gitlab.cern.ch/atlas/athena/tree/master/Projects/Athena
https://gitlab.cern.ch/atlas/athena

Task Scheduling in AthenaMT

TBB
Thread 1

TBB
Thread 2

)

Alg. 2

———/

Alg. 1

TBB
Thread 3

TBB
Thread 4

Alg. 1

Athena (Gaudi) uses TBB to execute
algorithms on multiple CPU threads in

parallel

o The framework’s scheduler takes care of
creating TBB tasks that execute algorithms,
at the “right times”

The goal, of course, is to fully utilise
all CPU cores assigned to the job, but

not to use more

o So any offloading needs to thoughtfully
integrate into this infrastructure

https://github.com/intel/tbb

Previous ATLAS GPU Efforts

CHEP 1OP Publishing

‘ The idea Of using accelerators in [OP Conf. Series: Journal of Physxs: Conf. Series 898 (2017) 032003 do1:10. 1088/1742-659%898/3.032003
offline/trigger software is not new of

course
e ATLAS presented some of its earlier fT‘fA;“H;dL"f‘ig;; for GPGPU in the

eﬁo rtS In : P. Conde Muinio on behalf of the ATLAS Collaboration

LIP (Laboratdrio de Instrumentagio e Fiska Experimental de Particulas),
Elias Garcia 14, 1000- 149 Lisban, T

o https://iopscience.iop.org/article/10.1088/
1742-6596/898/3/032003 N e e B R

a demanstrator mchding GPGPU uu;v}-uwm aons I Iun T l)- ! ctor ml \lu n tracking and

. H H H H H H Calarimeter clustering within the ATLAS saftware framework. ATLAS is a general purpose

o https://twiki.cern.ch/twiki/bin/view/AtlasPubl e b he D T T A e TTe
k, with Level-l imple

nning on a fa

cansists of two le { in hardware and the High Level Trigger
madity CPU

ic/TriggerSoftwareUpgradePublicResults L O e ek A

1.5 kHz for recording, requiring an average perevent processing time of ~ 250 ms for this task

gxer reduces the tngg

The selection in the high level trigger 5 based an reconstructing tracks in the Inner Detector

° Previous|y the conclusion was not to and Mo Specrmcte and chsers of cacrgy depiatid i the Coaimtes Performing this

recanstruction within the available farm resources presents a significant challenge that will
Lumincsity will

significantly with future LHC upgrades. During the LHC data taking peniod starting

luminosity will reach up to three wmal design val
pursue the usage of GPGPUs o bt el ks e Ry g
Corresponding improvements in the spead of the reconstruction code will be nesded to provide

the required trigger selection power within affordable computing

o The overall benefit was not worth the cost = ming 1) GEC] put o e LT
o) Ve o ¢ v 5 serial ¢ remaining \\h CPruU |h
H lmlul T I(l(PU required, ml!h relative hnane nl rﬂ Ith sekcted GPGPU. We give a
at that p0|nt brief overview of the algorithns mplemented and present new measurements that compare the

ential benefit of includ
perfarmance of various configurations explaiting GPGPU cards

mes the

Toes
PGPU s part of the HLT

https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003
https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003/pdf

GPU / Accelerator Programming

‘ Idle H ldle? H ldle? | - ‘ ldle? |
GPU

e [y e e S
CPU

The general way of offloading calculations to an accelerator is fairly simple
o Copy all information necessary for the calculation onto the accelerator, run the calculation, and copy
the results back into the host’'s memory

The naive way of doing this leaves the CPU/GPU idle for long periods
o For calculations that can be done on a GPU much faster than on a CPU, this is acceptable
o Unfortunately calculations used in reconstruction/analysis tend not to be like that (=2

Our goal was to see how to efficiently offload calculations from our TBB based
framework 10

Programming Languages/Methods

There is absolutely no general agreement currently on how to write accelerated calculations
o Each hardware manufacturer has its own methods, which overlap very little

OpenCL

o Had the most promise as a standard
o Initially supported by most manufacturers, but the support disappeared by now
m The best features of the standard were never implemented by NVidia or AMD

CUDA

o Is the clear market leader at the moment, and the most well developed programming environment for GPUs
o Runs only on NVidia GPUs
HIP/ROCm
o AMD’s version of a combination of CUDA’'s and OpenCL’s best features
o Canin principle target both AMD and NVidia GPUs, but support for NVidia GPUs in the future is anything but
certain

OpenMP/OpenACC

o Not appropriate for integrating with out TBB based framework, even though these are the most widely
supported ways of writing accelerated code at the moment (=

11

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone
https://rocm.github.io/languages.html
https://www.openmp.org/
https://www.openacc.org/

Programming Languages/Methods

e SYCL

(@)

(@)

A very promising standard from the same group that oversees (oversaw) OpenCL as well
Very actively supported by Intel as the programming interface for their (future) accelerators

e Single source portability

(@)

Our big issue is that not only don’t we want to implement calculations separately for all different
accelerators, we don’t want to implement them separately for (classical) CPUs and accelerators
either

m Our codebase is much too large to reliably maintain (and validate) multiple implementations of

the same components

Only OpenMP, OpenACC and SYCL provide single source portability like this out of the box

m And as said previously, OpenMP/OpenACC are inappropriate for us for other reasons
CUDA/HIP allow us to write our own layer on top of them that provides this sort of single source
feature

m But these layers are in all cases quite intimately tied to the underlying accelerator programming

interface
12

https://www.khronos.org/sycl/
https://www.khronos.org/

AsyncGaudi

>

File Edit View History Bookmarks Tools Help

A Attila Krasznahorkay / A= X

€ c @ U @ hitpsy/gitiab.cem.cl h w

Attila Krasznahorkay > # AsyncGaudi » Details
AsyncGaudi @ @ star
Project ID: 69707

D Apache License 2.0 -o-161 Commits ¥ 1Branch ¢ 0Tags [3 922 KB fFiles

Activity
o Code experimenting with asynchronous (GPU) execution in Gaudi.
eleases
Cycle Analytics —
master asyncgaudi History Q Findfile @ v
® Repository
£ cl/co #& s Added a multiplier for the idealised number of floating point operations. @ c32563f0
Attila Krasznahorkay ¢ d 1 !
@ Packages
& Members B README B cweD configuration
Name
. vsco d

W AsyncComps
W AsyncEventLoop
W AsyncEventLoopInterfaces

W AsyncEventLoopTests

 AthCL

e | collected all of my “Athena test code” into
https://qgitlab.cern.ch/akraszna/asyncgaudi

(@)

The code combines parts of
atlas/atlasexternals, atlas/athena and
gaudi/Gaudi with accelerator test code built
on top of these, into a single software
project
m In order to make it possible to
compile/use it on multiple different
platforms
Contains some code using OpenCL, CUDA
and SYCL
m With the CUDA code being the most
developed/tested

13

https://gitlab.cern.ch/akraszna/asyncgaudi
https://gitlab.cern.ch/atlas/atlasexternals
https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/gaudi/Gaudi
https://gitlab.cern.ch/akraszna/asyncgaudi

(A)synchronous Execution

Based on discussions with CMS
software developers, | wrote a Gaudi
algorithm scheduler that can handle

“asynchronous algorithms”

o Algorithms that have a “main” and a
post-execute step, and have to notify the
scheduler when they are ready for their
post-execute step

CUDA provides asynchronous

execution through its Stream AP
o OpenCL and HIP provide similar features,
but SYCL at the moment does not support
this sort of execution natively

virtual StatusCode mainExecute(const EventContext& ctx,
AlgTaskPtr_t postExecTask) const;

virtual StatusCode postExecute(const EventContext& ctx) const;

14

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AsyncBaseComps/AsyncBaseComps/Algorithm.h

Reconstruction Emulation

e During the development of GaudiHive snapshots were taken of the behaviour of

ATLAS reconstruction jobs
o Recording how algorithms depended on each others’ data products, and how long each of them took

to run on a reference host
o The data is still kept in GaudiHive/data/atlas in GraphML + JSON files

e This information was used extensively in the development of the algorithm

scheduling code of Gaudi not that long ago
o And now | taught my project how to construct asynchronous test jobs using it 15

https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiHive/data/atlas
http://graphml.graphdrawing.org/
http://www.json.org/
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDATests/share/CPUGPUCrunch_mcreco_jobOptions.py

CPU / GPU Crunching

StatusCode CPUGPUCruncherAlg::mainExecute(const EventContexté&,
async::AlgTaskPtr_t pet) const { []

auto array =

([J
std::make_unique< std::vector< float > >(m_floatArraySize.value(),
0);
auto task = make CPUGPUCruncherTask(m_fpOps, *array,
std::move(pet));
ATH_CHECK(m_kernelRunnerSvc->execute(std::move(task)));
([J

ATH_CHECK(evtStore()->record(std::move(array),
m_outputKeys.value()[0]l.objKey()));

return StatusCode::SUCCESS;
}
StatusCode CPUGPUCruncherAlg::postExecute(const EventContext&) const {

ATH_MSG_DEBUG("CPU / GPU crunching task finished");

return StatusCode::SUCCESS;
}

The tests were not using any “real” ATLAS
reconstruction code

To emulate the behaviour of “CPU-only”
algorithms, | used the same
CPUCrunchSvc that was developed for the
GaudiHive tests originally

For the GPU emulation | did something

different...

o The test jobs measure during initialisation how
many FPOPS the CPU can do in a single thread in
a unit of time

o With this information | associate FPOPS values to
the time values stored in the GaudiHive data files

o The GPU tasks then execute this number of
FPOPS on small arrays, with some configurable
multipliers applied

16

https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiSvc/src/CPUCrunchSvc
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDATests/src/CPUGPUCruncherAlg.cxx

Reconstruction Emulation Results

Setup

50 events, 8 threads, CPU-only
algorithms

50 events, 8 threads, 3

“critical-path” CPU/GPU algorithms,

run only on CPUs

50 events, 8 threads, 3
“critical-path” algorithms offloaded
with ideal FPOPS

50 events, 8 threads, 3 “critical
path” algorithms offloaded with 10x
FPOPS

50 event, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with ideal FPOPS

50 events, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with 3x FPOPS

Time [s]

68.3 + 0.47

68.1 + 0.66

54.5 + 0.47

151.2+27.2

49.5 + 1.51

70.3+10.0

e Did a number of tests...

@)

As reference ran jobs with only using the
sort of CPU crunching that was developed
previously
As a validation | exchanged some of the
algorithms to run my CPU/GPU crunching
code, but running only on the CPU
m Checking that I'd get the same results
as in the first case
Finally configured 3 of the CPU intensive
reconstruction algorithms to run on the
GPU instead
m Applying also an additional multiplier
to the number of FPOPS that they’'d

have to execute on the GPU
17

Reconstruction Emulation Results

Setup

Time [s] e Did a niimher of tests

50 events, 8 thread
algorithms

50 events, 8 thread
“critical-path” CPU
run only on CPUs

50 events, 8 thread
“critical-path” algor
with ideal FPOPS

50 events, 8 threac
path” algorithms off
FPOPS

50 event, 8 threads
non-critical-path” a
offloaded with idea

50 events, 8 thread

non-critical-path” algorithms

Some takeaways:

e One has to be very careful with offloading algorithms that many
other algorithms depend on
o Making these too slow can cause big issues for the job
e Algorithms off of the “critical path” can handle being executed
less efficiently on an accelerator, but not by much
e My ASync::SchedulerSvc code is clearly not scheduling
asynchronous algorithms as efficiently as it should at the

moment

o Asitturns out, that is very important to do, otherwise the job is not
able to fill its CPU/GPU resources efficiently.

70.3+10.0

offloaded with 3x FPOPS

ome of the
U crunching
CPU

same results

U intensive
n on the

nal multiplier
that they’d

have to execute on the GPU

18

Summary

ATLAS (and HEP in general) has to take computations on heterogeneous

hardware very seriously
o Our computing pattern is quite distinct from other fields, requiring different methods for using
accelerators efficiently
We are currently evaluating different programming methods for the ATLAS offline

software in close collaboration with Intel and NVidia
o Whatever programming model we choose to migrate some of our code to, has to stay viable for a
“reasonable” period of time
o Will only start large scale migrations after further evaluations

Asynchronous scheduling of calculations in our TBB based software framework

show promising results so far
o Although it is a concern how inefficient algorithms can get before we lose any advantage from
running them asynchronously

o Efficient parallel execution of GPU kernels using TBB is very important for us! .

Backup

AthCUDA::AuxStore

class AuxStore : public SG::IAuxStore {

e The ATLAS (analysis) Event Data Model public:

uses the concept of “auxiliary stores” to B gl

ATHCUDA_HOST_AND_DEVICE

Store event data AuxStore(std::size_t size, std::size_t nVars, void** vars);
o The whole idea with that setup was to abstract il e

the storage of data from the way that we
interact with it

ATHCUDA_HOST_AND_DEVICE

e For my tests with CUDA | implemented A TN
AthCUDA::AuxStore Pagrsis Typiiias T

ATHCUDA_HOST_AND _DEVICE

o It manages arrays of primitive types in 7= array{ SGitauxid t suxid);
unpinned host memory through the e Ty T
SG::lIAuxStore interface const 1 arrayl Sarrandi § ansdi consi;

o It provides functions setting up the H—D and
D—H copies of those arrays asynchronously .

o Finally it provides a non-virtual interface to the i BeiETO! GNASGER.E EHEE 15
arrays for CUDA device code

typedef std::pair< std::size_t, void** > ExposedVars_t;

ATHCUDA_HOST
void retrieveFrom(cudaStream_t stream);

21

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAAuxStore/AthCUDAAuxStore/AuxStore.cuh
https://gitlab.cern.ch/atlas/athena/blob/master/Control/AthContainersInterfaces/AthContainersInterfaces/IAuxStore.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAAuxStore/AthCUDAAuxStore/AuxStore.cuh

AthCUDA::IKernelRunnerSvc

namespace AthCUDA {

class IKernelRunnerSvc : public virtual IService {
public:

DeclareInterfaceID(AthCUDA::IKernelRunnerSvc, 1, 0);

virtual StatusCode execute(std::unique_ptr< IKernelTask > task) = 0;

Since “memory operations” and kernel
offloads with CUDA need to happen
one at a time, | introduced a service

for serialising these tasks

o The tasks are still executed as TBB tasks,
the service just uses a custom task arena
to make sure that these tasks are executed
one at a time

o The service also takes care of scheduling
the post-execute task for asynchronous
algorithms

22

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAServices/src/KernelRunnerSvc.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDACore/AthCUDACore/TaskArena.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAInterfaces/AthCUDAInterfaces/IKernelRunnerSvc.h

AthCUDA::AuxKernelTask

The actual calculations happen in
specialisations of the
AthCUDA::IKernelTask interface
AthCUDA::AuxKernelTask is a
variadic template that can be used to
run calculations on
AthCUDA::AuxStore objects

o It can wrap user provided functors, which
would be executed either on a CUDA
device, or on the host depending on the
circumstances

template< class FUNCTOR, typename... ARGS >
class AuxKernelTask : public IKernelTask {

static_assert(sizeof...(ARGS) > 0,
"At least one functor argument must be provided");
public:

AuxKernelTask(ASync::AlgTaskPtr_t postExecTask, AuxStore& aux,
ARGS... args);

AuxKernelTask(KernelStatus& status, AuxStore& aux, ARGS... args);

virtual StatusCode execute(StreamHolder& stream) override;

virtual StatusCode finished(StatusCode code,
KernelExecMode mode) override;

private:
ASyn;::Algfasthr t m‘postExécTask;
KernélStatus* m_status; ‘
AuxStore& ﬁ,aﬁx;

std::tuple< ARGS... > m_args

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAInterfaces/AthCUDAInterfaces/IKernelTask.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/AuxKernelTask.cuh
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAAuxStore/AthCUDAAuxStore/AuxStore.cuh
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/AuxKernelTask.cuh

AthCUDA::ArrayKernelTask

class ArrayKernelTask : public IKernelTask {

static_assert(sizeof...(ARGS) > 0,
"At least one functor argument must be provided");

public:

ArrayKernelTask(ASync::AlgTaskPtr_t postExecTask
std::size_t arraySizes, ARGS... args);

ArrayKernelTask(KernelStatus& status
std::size_t arraySizes, ARGS... args);

virtual StatusCode execute(StreamHolder& stream) override;

virtual StatusCode finished(StatusCode code,
KernelExecMode mode) override;

private:
ASyn;::Algfasthr t m_postExecTask;
Kern;lstatus* m_status
std::size;t m_arraySizes;
std:;tuple< ARGS. .. >>mrargs;
typen;me ::Ar}ayKernel%askHos£Variable;< ARGS... >::type 5 hostObjs;
typename ::Ar}ayKérneITaskDteceVa}lables< ARGS... >::type m_deviceObjs;
std::tup1e<‘ARGS..A > ﬁ dev;ceArgs;

bool m_ranOnDevice;

AthCUDA::ArrayKernelTask is a
variadic template that can execute
user functors that have a custom set
of primitive and primitive array
arguments

o The code assumes that all pointer type
variables point at arrays of equal sizes

Is probably the least trivial part of the
akraszna/asyncgaudi code...

24

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/ArrayKernelTask.cuh
https://gitlab.cern.ch/akraszna/asyncgaudi
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/ArrayKernelTask.cuh

OpenCL Experiences

Tried to use it in a few different ways
o Directly, by getting/compiling OpenCL-Headers, OpenCL-ICD-Loader and POCL as part of our

project
m Inorder not to rely on OpenCL libraries/devices being present on the build/run host
o Through tbb::flow::opencl_node

If OpenCL 2.X would be widely supported in the industry, that would clearly be our

choice for writing GPU code

o Even with the inconvenience of keeping the OpenCL source files completely separately from the C++
ones
o OpenCL 1.2 by itself does not fit our requirements

But since nobody is expressing interest in it any longer, we have also given up on
it...

25

https://github.com/KhronosGroup/OpenCL-Headers
https://github.com/KhronosGroup/OpenCL-ICD-Loader
http://portablecl.org/
https://gitlab.cern.ch/akraszna/asyncgaudi
https://gitlab.cern.ch/akraszna/asyncgaudi
https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview

OpenACC Experiences

e Only did some very minimal testing with it so far

e Unfortunately, just as OpenMP, it does not fit our offline software

o Our software does not have well identifiable hot spots, accelerated code will in all cases have to be
fairly complex

e Supportin GCC 8 is/was very shaky
o Did not try with GCC 9 yet

26

Test Job Profiling

= r Intel VTune Profiler voeR

Project Navigator = & % P & O = @ [Critical Path, Ideal FPOPS % | | Critical Path, 10x FPOPS
« CHEP 2019 - CPU-GPU Crunchcupa. B Threading Threading Efficiency ~ @ INTEL VTUNE PROFILER

Critical Path, 10x FPOPS Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Critical Path, Ideal FPOPS Grouping:| Function / Call Stack v|[5][2][2] | [cPuTIme v

CPUTime v Viewing 1of 3 » selected stack(s)
] SpinTime : 88.1% (154.850s of 175.7515)
Function / Call Stack Effective Time by Utilization libGaudiSvc.s0!CPUCrunct findPrimes - CPUCrunchSvc.cpp
Bide @Poor ©Ok @Ideal @Over Imbalance or Serial Spinning | Lock Contention Other Creal || ibGaudiSvc.soltbb::tick_count - tick_count.h:102
ey 5 o T 175751 A = G o libGaudiSve.so!CPUCrunchSve:crunch_for+0x7ebd9 - MsgStream.h:110
= 5 : 5 Z)
< thb:tick_count:now & CPUCrunchSvc:crunch_for|| 154.850s (G 0s 0s 0s :fz:‘yncg"’"p"s"":‘:" g §t3‘1”5€°d9':"2f4 e SrameElielh
e ibAsyncComps.so!Statu: atusCode::ErrorCode, void> - StatusCode.h...
S ibttiekicaintiow ¢ cCRUCchsveEalbrate ¢y 120792580 0s e] libAsyncComps.s0!ASync::CPUCruncherA ute+0x1a4 - CPUCruncherAlg.cxx:46
R CPUCrunchSvc:calibrate « StatusCode:default_ca 0.109s 0s 0s 0s S o StatusCode h269
ASync::CPUGPUCruncherCalibSvc::getTimeNeededFor 17.792s @ 0Os 0s 0s IibAszncEventLooz so! 2 ok ieraat +(.lx.49(6vllnterfaceh269
R ASync:CPUGPUCruncherCalibSvc:initialize < Stat 17.792s @ 0s 0Os 0s Btk TBESe o ORI o T adufes T3 o
cuMemfree_v2 0.6185]) 3 0s) 0001s libtbb.s0.2![TBE Dispatch Loop|+0x167 - custom_scheduler.h:635
cuMemFreeHost 0.238s 0Os 0s 0s libtbb.so. \ : it onE)s withi:aciiine
[vmlinux] 0.219s 0s 0s 0s libtbb.so. acquire<int> - tbb_machine.h:710
operator new 0.133s Os 0s Os libtbb.s0.2!tbb ml::private_worker::run+Ox4a - private_server.cpp:265
tbbztick_count::now 0.092s 0Os 0Os 0Os libtbb.s0.2![TBB worker]+0x6 - private_server.cpp:220
GI 0.069s 0s 0s 0s libpthread-2.27.so!start_thread+Oxdb - pthread_create.c:463
[nvidia] 0.063s 0s 0s 0s libc-2.27.s0!clone+0x3f - clone.5:97
__dlopen 0.047s 0s 0s 0s
PyEval_EvalFrameEx 0.031s 0s 0s 0s
clang:TokenLexer:Lex 0.025s 0Os 0s 0Os
ASync:EventStoreContent::isAlgExecutable 0.008s 0s 0s 00165
BitstreamCursor::readRecord 0.023s 0s 0s 0s
llvm::FoldingSetBase::FindNodeOrlInsertPos 0.022s 0s 0s 0s
O:d = | @ [Thread v
python (TID: 3983)]) [Running

@ Context Switches
[C] Preemption
[Synchronization

#| saa CPU Time

@) #a Spin and Overhead ..
@ Clocktick Sample

Thread

TBB Worker Thread (TID: 40...
TBB Worker Thread (TID: 40...
TBB Worker Thread (TID: 40...
TBB Worker Thread (TID: 40.
TBB Worker Thread (TID:

@ = Task
TBB Worker Thread (TID: ¥ CPU Time
TBB Worker Thread (TID: 40... ! #aa CPU Time

@/ #aa Spin and Overhead ...

TBB Worker Thread (TID: 40.

Thread (TID: 4061) [[10 [1 T T [T N R
Theead 04058} (ITTTRTTTTTTTITIIEE 1 M AT RO CICTRPICr (AT AL 71 (IR T AT T (e,

S Time EEE—_ R, ——— T | R

27

FILTER 100.0% % [Process Any Process v | Thread | Any Thread v | Module Any Module v | Call Stack Mode User functions +1 ¥ Loop Mode Functions only ¥ Inline Mode | show inline functi ¥

Test Job Profiling

w Intel VTune Profiler

)

Project Navigator = 5 & P & O = @ | Critical Path, Ideal FPOPS Critical Path, 10x FPOPS

§&3 Threading Threading Efficiency ~ @ 1%

INTEL VTUNE PROFILER

v CHEP 2019 - CPU-GPU Crunch CUDA

Critical Path, 10x FPOPS

Critical Path, Ideal FPOPS

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping:| Function / Call Stack v ‘EHEH:‘ CPU Time v

CPUTime v Viewing 1of 3 » selected stack(s)
] SpinTime : 86.3% (131.397s of 152.2815)
Function / Call Stack Effective Time by Utilization libGaudiSvc.so!CPUCrunch findPrimes - CPUCrunchSvc.cpp
Olidle @Poor Ok @Ideal @ Over Imbalance or Serial Spinning | Lock Contention | Other | Creal | bGaudiSve.soltbb::tick count - tick_count h:102
CPUCrunchSve:findPrimes 152281 — 0s 0s 0s :fzia“d'iw‘som - Ctnanve i Wowwd: € Mégsd"e:r;gno
x tbbstick_count:now < CPUCrunchSvezcrunch_for| 131.397s (S 0s 0s 0s lfbA‘V"(c"’"p"S""’:‘:" o '(tati”s e Seatustolieh
. " IbAsyncComps.so:Status atusCode::ErrorCode, void> - StatusCode.h...
N tb:tick « CPUCrunchSvc:calibrate < 20.771; 0 o 0
CReCoLIEnon TRV catnte s @ = 2 2 libAsyncComps.so!ASync::CPUCruncherA ute+Ox1a4 - CPUCruncherAlg.cxx:46
K CPUCrunchSvc:calibrate « StatusCodexdefault_ca 0.113s 0s 0s 0s) i
S CPUGRU G e Gl TR o T8 o o o libAsyncEventLoop.so!Stat - StatusCode.h:269
A funchersal vEssel Imeeececton 78¢s @ i . a libAsyncEventLoop.so! UtioriTask::execute+0x49c6 - linterface.h:269
R ASync:CPUGPUCruncherCalibSvc:initialize < Stat| 17.786s [l Os 0s 0Os libtbb.s0.21TEE Sct Shr0%1 b~ custom schaduler 473
cuMemFree_v2 15.524s B 3 9s) 00075 libtbb.s0.2![TBE Dispatch Loop|+0x167 - custom_scheduler.:635
cuMemFreeHost 102165 @ 0s 0s 0.005s libtbb.so. \ : it onE)s withi:aciiine
[vmlinux] 0.151s Os 0Os Os libtbb.so0. jire<int> - tbb_machine.h:710
_INTERNAL28098ad0::__TBB_machine_pause 0.137s 0Os Os 0s libtbb.so.: ml:private_worker::run+Ox4a - private_server.cpp:265
operator new 0.132s 0s 0Os 0s libtbb.s0.2![TBB wc +0x6 - private_server.cpp:220
_GL 0.079s 0Os 0Os 0s libpthread-2.27.s0!start_thread+Oxdb - pthread_create.c:463
tbb::tick_count::now 0.070s 0s 0s 0s libc-2.27.s0!clone+0x3f - clone.S$:97
[nvidia] 0.058s 0s 0Os 0s
tbbrinternal:machine_load_storex<int, (unsigned long)4> 0.000s 0.005s 0s 0050s O
__dlopen 0.052s 0Os 0s 0s
PyEval_EvalFrameEx 0.029s 0s 0s 0s
ASync:EventStoreContent::isAlgExecutable 0.009s 0s 0s 00185
clang::SourceManager::getFilelDLocal 0.027s 0s 0s 0s
| O b == e ot QA:‘:L:)_L::}; 60s o5 70 7 #s B 90s 95s | @ [Thread v
| python (TID: 7473) ———) [Running
2 — — - - I — @ i
=] TBB Worker Thread (TID: 75... f I T i Mk
- _ — [[]Preemption
TBB Worker Thread (TID: 75... [= Synchronization
TBB Worker Thread (TID: 75... [] I saa CPU Time
TBB Worker Thread (TID: 75 [I i & :.(S;m;;d;;verh‘ead s
— ocktick Sample
TBB Worker Thread (TID: 0 BTN @ = Task
TBB Worker Thread (TID: 1] I I @ CPUTime
TBB Worker Thread (TID: 75... | [LI [) taa CPU Time
TBB Worker Thread (TID: 7] L T Il R] 64t Soin and Overhead -
Thread (TID: 7553) [] [T [T [N | N T [LI
Thread (TID: 7550)
CPU Time N — . - a |
FILTER 100.0% % Process | Any Process v | Thread | Any Thread v | Module Any Module v | Call Stack Mode User functions +1 ¥ Loop Mode Functions only ¥ Inline Mode | show inline functi ¥

Cﬁw
\
N/ A

http://home.cern

http://home.cern

