
GPU Usage in ATLAS
Reconstruction and Analysis

Attila Krasznahorkay
on behalf of the ATLAS Collaboration

Overview

● Short introduction about ATLAS and its software / computing infrastructure
● Some details about multi-threading in Gaudi / AthenaMT
● Overview of current GPU programming possibilities
● Tests with offloaded calculations in the Gaudi / AthenaMT environment
● Future outlook

2

The ATLAS Experiment

● Since I’m the first person to talk about
ATLAS in this session… 😛

● ATLAS is:
○ One of the general purpose experiments at

the Large Hadron Collider
○ Collecting ~1.6 MB proton-proton (and

sometimes Pb-Pb, Pb-p) data events with
O(1) kHz rate, which our offline software
has to process/analyse

○ Using hundreds of thousands of CPUs all
over the world to process O(100) PB of
data 24/7

○ Undergoing major hardware and software
updates for LHC’s Run-3/4

3

http://atlas.cern/
https://home.cern/science/accelerators/large-hadron-collider

The (Current) Computing Landscape

● Up until the very last steps of a
physics analysis all our data can be
processed in an embarrassingly
parallel way

○ Every collision event recorded by the
detector can be processed individually

● Up until now we do this by splitting the
processing of events across many
single-threaded x86 processes

○ We use a large infrastructure for this, which
is being discussed in tracks 3, 4, 7 and
(partly) 9

■ I.e. most of the tracks/sessions
4

https://en.wikipedia.org/wiki/X86
https://indico.cern.ch/event/773049/sessions/323856
https://indico.cern.ch/event/773049/sessions/323857
https://indico.cern.ch/event/773049/sessions/323862
https://indico.cern.ch/event/773049/sessions/323865

The (Evolving) Computing Landscape

● Is a complicated one…
○ We are clearly moving towards a very

heterogeneous environment for the
foreseeable future

● Many different accelerators are on the
market

○ NVidia GPUs are the most readily available in
general, and also used in Summit and
Perlmutter

○ AMD GPUs are not used too widely in
comparison, but will be in Frontier

○ Intel GPUs are used even less at the moment,
but will get center stage in Aurora

○ FPGAs are getting more and more attention,
but they come with even more
questionmarks… 5

https://www.olcf.ornl.gov/summit/
https://www.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/frontier/
https://www.cray.com/customers/argonne-national-laboratory
https://www.cray.com/customers/argonne-national-laboratory
https://www.olcf.ornl.gov/frontier/
https://www.intel.com/
https://www.amd.com/
https://www.nvidia.com/

Gaudi / Athena

● ATLAS and LHCb share Gaudi as the
basis of their software frameworks

○ ATLAS calls its own framework, built on top
of Gaudi, Athena

● The framework defines “algorithms”
as the base unit of execution

○ Classes that have an execute(...)
function, which performs some data
processing with the help of various
“services” and “tools”

6

https://gitlab.cern.ch/gaudi/Gaudi/
https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/gaudi/Gaudi/

ATLAS’s Offline and Analysis Software

● All of ATLAS’s central offline software is
kept in https://gitlab.cern.ch/atlas/athena

○ Some pieces, mainly those shared with
other experiments, do sit in separate
places though

● This allows us to build a number of
different software projects from the same
repository

○ The different projects build different
selections of the code included in the
repository

○ Providing us with (small) projects aimed at
event generation, simulation and analysis
beside our big reconstruction (Athena)
project

7

https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/athena/tree/21.6/Projects/AthGeneration
https://gitlab.cern.ch/atlas/athena/tree/master/Projects/AthSimulation
https://gitlab.cern.ch/atlas/athena/tree/master/Projects/AnalysisBase
https://gitlab.cern.ch/atlas/athena/tree/master/Projects/Athena
https://gitlab.cern.ch/atlas/athena

Task Scheduling in AthenaMT

● Athena (Gaudi) uses TBB to execute
algorithms on multiple CPU threads in
parallel

○ The framework’s scheduler takes care of
creating TBB tasks that execute algorithms,
at the “right times”

● The goal, of course, is to fully utilise
all CPU cores assigned to the job, but
not to use more

○ So any offloading needs to thoughtfully
integrate into this infrastructure

8

TBB
Thread 1

TBB
Thread 2

TBB
Thread 3

TBB
Thread 4

Alg. 1

Alg. 2

Alg. 3

Alg. 2

Alg. 3

Alg. 1

Alg. 3

Alg. 1

Alg. 2

Alg. 1

Alg. 2

Alg. 3

https://github.com/intel/tbb

Previous ATLAS GPU Efforts

● The idea of using accelerators in
offline/trigger software is not new of
course

● ATLAS presented some of its earlier
efforts in:

○ https://iopscience.iop.org/article/10.1088/
1742-6596/898/3/032003

○ https://twiki.cern.ch/twiki/bin/view/AtlasPubl
ic/TriggerSoftwareUpgradePublicResults

● Previously the conclusion was not to
pursue the usage of GPGPUs

○ The overall benefit was not worth the cost
at that point

9

https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003
https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032003/pdf

GPU / Accelerator Programming

● The general way of offloading calculations to an accelerator is fairly simple
○ Copy all information necessary for the calculation onto the accelerator, run the calculation, and copy

the results back into the host’s memory

● The naive way of doing this leaves the CPU/GPU idle for long periods
○ For calculations that can be done on a GPU much faster than on a CPU, this is acceptable
○ Unfortunately calculations used in reconstruction/analysis tend not to be like that ☹

● Our goal was to see how to efficiently offload calculations from our TBB based
framework 10

CPU

GPU

Prepare
Data

H → D
Copy

Launch
Calculation

GPU
Calculation

D → H
Copy

Idle? Idle?

Idle

Idle Idle?

Programming Languages/Methods

● There is absolutely no general agreement currently on how to write accelerated calculations
○ Each hardware manufacturer has its own methods, which overlap very little

● OpenCL
○ Had the most promise as a standard
○ Initially supported by most manufacturers, but the support disappeared by now

■ The best features of the standard were never implemented by NVidia or AMD
● CUDA

○ Is the clear market leader at the moment, and the most well developed programming environment for GPUs
○ Runs only on NVidia GPUs

● HIP/ROCm
○ AMD’s version of a combination of CUDA’s and OpenCL’s best features
○ Can in principle target both AMD and NVidia GPUs, but support for NVidia GPUs in the future is anything but

certain
● OpenMP/OpenACC

○ Not appropriate for integrating with out TBB based framework, even though these are the most widely
supported ways of writing accelerated code at the moment ☹ 11

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone
https://rocm.github.io/languages.html
https://www.openmp.org/
https://www.openacc.org/

Programming Languages/Methods

● SYCL
○ A very promising standard from the same group that oversees (oversaw) OpenCL as well
○ Very actively supported by Intel as the programming interface for their (future) accelerators

● Single source portability
○ Our big issue is that not only don’t we want to implement calculations separately for all different

accelerators, we don’t want to implement them separately for (classical) CPUs and accelerators
either

■ Our codebase is much too large to reliably maintain (and validate) multiple implementations of
the same components

○ Only OpenMP, OpenACC and SYCL provide single source portability like this out of the box
■ And as said previously, OpenMP/OpenACC are inappropriate for us for other reasons

○ CUDA/HIP allow us to write our own layer on top of them that provides this sort of single source
feature

■ But these layers are in all cases quite intimately tied to the underlying accelerator programming
interface

12

https://www.khronos.org/sycl/
https://www.khronos.org/

AsyncGaudi

● I collected all of my “Athena test code” into
https://gitlab.cern.ch/akraszna/asyncgaudi

○ The code combines parts of
atlas/atlasexternals, atlas/athena and
gaudi/Gaudi with accelerator test code built
on top of these, into a single software
project

■ In order to make it possible to
compile/use it on multiple different
platforms

○ Contains some code using OpenCL, CUDA
and SYCL

■ With the CUDA code being the most
developed/tested

13

https://gitlab.cern.ch/akraszna/asyncgaudi
https://gitlab.cern.ch/atlas/atlasexternals
https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/gaudi/Gaudi
https://gitlab.cern.ch/akraszna/asyncgaudi

(A)synchronous Execution

● Based on discussions with CMS
software developers, I wrote a Gaudi
algorithm scheduler that can handle
“asynchronous algorithms”

○ Algorithms that have a “main” and a
post-execute step, and have to notify the
scheduler when they are ready for their
post-execute step

● CUDA provides asynchronous
execution through its Stream API

○ OpenCL and HIP provide similar features,
but SYCL at the moment does not support
this sort of execution natively

14

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AsyncBaseComps/AsyncBaseComps/Algorithm.h

Reconstruction Emulation

● During the development of GaudiHive snapshots were taken of the behaviour of
ATLAS reconstruction jobs

○ Recording how algorithms depended on each others’ data products, and how long each of them took
to run on a reference host

○ The data is still kept in GaudiHive/data/atlas in GraphML + JSON files

● This information was used extensively in the development of the algorithm
scheduling code of Gaudi not that long ago

○ And now I taught my project how to construct asynchronous test jobs using it 15

https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiHive/data/atlas
http://graphml.graphdrawing.org/
http://www.json.org/
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDATests/share/CPUGPUCrunch_mcreco_jobOptions.py

CPU / GPU Crunching

● The tests were not using any “real” ATLAS
reconstruction code

● To emulate the behaviour of “CPU-only”
algorithms, I used the same
CPUCrunchSvc that was developed for the
GaudiHive tests originally

● For the GPU emulation I did something
different…

○ The test jobs measure during initialisation how
many FPOPS the CPU can do in a single thread in
a unit of time

○ With this information I associate FPOPS values to
the time values stored in the GaudiHive data files

○ The GPU tasks then execute this number of
FPOPS on small arrays, with some configurable
multipliers applied 16

https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiSvc/src/CPUCrunchSvc
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDATests/src/CPUGPUCruncherAlg.cxx

Reconstruction Emulation Results

● Did a number of tests…
○ As reference ran jobs with only using the

sort of CPU crunching that was developed
previously

○ As a validation I exchanged some of the
algorithms to run my CPU/GPU crunching
code, but running only on the CPU

■ Checking that I’d get the same results
as in the first case

○ Finally configured 3 of the CPU intensive
reconstruction algorithms to run on the
GPU instead

■ Applying also an additional multiplier
to the number of FPOPS that they’d
have to execute on the GPU

17

Setup Time [s]

50 events, 8 threads, CPU-only
algorithms 68.3 ± 0.47

50 events, 8 threads, 3
“critical-path” CPU/GPU algorithms,
run only on CPUs

68.1 ± 0.66

50 events, 8 threads, 3
“critical-path” algorithms offloaded
with ideal FPOPS

54.5 ± 0.47

50 events, 8 threads, 3 “critical
path” algorithms offloaded with 10x
FPOPS

151.2 ± 27.2

50 event, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with ideal FPOPS

49.5 ± 1.51

50 events, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with 3x FPOPS

70.3 ± 10.0

Reconstruction Emulation Results

● Did a number of tests…
○ As reference ran jobs with only using the

sort of CPU crunching that was developed
previously

○ As a validation I exchanged some of the
algorithms to run my CPU/GPU crunching
code, but running only on the CPU

■ Checking that I’d get the same results
as in the first case

○ Finally configured 3 of the CPU intensive
reconstruction algorithms to run on the
GPU instead

■ Applying also an additional multiplier
to the number of FPOPS that they’d
have to execute on the GPU

18

Setup Time [s]

50 events, 8 threads, CPU-only
algorithms 68.3 ± 0.47

50 events, 8 threads, 3
“critical-path” CPU/GPU algorithms,
run only on CPUs

68.1 ± 0.66

50 events, 8 threads, 3
“critical-path” algorithms offloaded
with ideal FPOPS

54.5 ± 0.47

50 events, 8 threads, 3 “critical
path” algorithms offloaded with 10x
FPOPS

151.2 ± 27.2

50 event, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with ideal FPOPS

49.5 ± 1.51

50 events, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with 3x FPOPS

70.3 ± 10.0

Some takeaways:
● One has to be very careful with offloading algorithms that many

other algorithms depend on
○ Making these too slow can cause big issues for the job

● Algorithms off of the “critical path” can handle being executed
less efficiently on an accelerator, but not by much

● My ASync::SchedulerSvc code is clearly not scheduling
asynchronous algorithms as efficiently as it should at the
moment

○ As it turns out, that is very important to do, otherwise the job is not
able to fill its CPU/GPU resources efficiently.

Summary

● ATLAS (and HEP in general) has to take computations on heterogeneous
hardware very seriously

○ Our computing pattern is quite distinct from other fields, requiring different methods for using
accelerators efficiently

● We are currently evaluating different programming methods for the ATLAS offline
software in close collaboration with Intel and NVidia

○ Whatever programming model we choose to migrate some of our code to, has to stay viable for a
“reasonable” period of time

○ Will only start large scale migrations after further evaluations

● Asynchronous scheduling of calculations in our TBB based software framework
show promising results so far

○ Although it is a concern how inefficient algorithms can get before we lose any advantage from
running them asynchronously

○ Efficient parallel execution of GPU kernels using TBB is very important for us!
19

Backup

20

AthCUDA::AuxStore

● The ATLAS (analysis) Event Data Model
uses the concept of “auxiliary stores” to
store event data

○ The whole idea with that setup was to abstract
the storage of data from the way that we
interact with it

● For my tests with CUDA I implemented
AthCUDA::AuxStore

○ It manages arrays of primitive types in
unpinned host memory through the
SG::IAuxStore interface

○ It provides functions setting up the H→D and
D→H copies of those arrays asynchronously

○ Finally it provides a non-virtual interface to the
arrays for CUDA device code

21

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAAuxStore/AthCUDAAuxStore/AuxStore.cuh
https://gitlab.cern.ch/atlas/athena/blob/master/Control/AthContainersInterfaces/AthContainersInterfaces/IAuxStore.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAAuxStore/AthCUDAAuxStore/AuxStore.cuh

AthCUDA::IKernelRunnerSvc

● Since “memory operations” and kernel
offloads with CUDA need to happen
one at a time, I introduced a service
for serialising these tasks

○ The tasks are still executed as TBB tasks,
the service just uses a custom task arena
to make sure that these tasks are executed
one at a time

○ The service also takes care of scheduling
the post-execute task for asynchronous
algorithms

22

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAServices/src/KernelRunnerSvc.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDACore/AthCUDACore/TaskArena.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAInterfaces/AthCUDAInterfaces/IKernelRunnerSvc.h

AthCUDA::AuxKernelTask

● The actual calculations happen in
specialisations of the
AthCUDA::IKernelTask interface

● AthCUDA::AuxKernelTask is a
variadic template that can be used to
run calculations on
AthCUDA::AuxStore objects

○ It can wrap user provided functors, which
would be executed either on a CUDA
device, or on the host depending on the
circumstances

23

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAInterfaces/AthCUDAInterfaces/IKernelTask.h
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/AuxKernelTask.cuh
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAAuxStore/AthCUDAAuxStore/AuxStore.cuh
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/AuxKernelTask.cuh

AthCUDA::ArrayKernelTask

● AthCUDA::ArrayKernelTask is a
variadic template that can execute
user functors that have a custom set
of primitive and primitive array
arguments

○ The code assumes that all pointer type
variables point at arrays of equal sizes

● Is probably the least trivial part of the
akraszna/asyncgaudi code…

24

https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/ArrayKernelTask.cuh
https://gitlab.cern.ch/akraszna/asyncgaudi
https://gitlab.cern.ch/akraszna/asyncgaudi/blob/master/AthCUDA/AthCUDAKernel/AthCUDAKernel/ArrayKernelTask.cuh

OpenCL Experiences

● Tried to use it in a few different ways
○ Directly, by getting/compiling OpenCL-Headers, OpenCL-ICD-Loader and POCL as part of our

project
■ In order not to rely on OpenCL libraries/devices being present on the build/run host

○ Through tbb::flow::opencl_node

● If OpenCL 2.X would be widely supported in the industry, that would clearly be our
choice for writing GPU code

○ Even with the inconvenience of keeping the OpenCL source files completely separately from the C++
ones

○ OpenCL 1.2 by itself does not fit our requirements

● But since nobody is expressing interest in it any longer, we have also given up on
it…

25

https://github.com/KhronosGroup/OpenCL-Headers
https://github.com/KhronosGroup/OpenCL-ICD-Loader
http://portablecl.org/
https://gitlab.cern.ch/akraszna/asyncgaudi
https://gitlab.cern.ch/akraszna/asyncgaudi
https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview

OpenACC Experiences

● Only did some very minimal testing with it so far
● Unfortunately, just as OpenMP, it does not fit our offline software

○ Our software does not have well identifiable hot spots, accelerated code will in all cases have to be
fairly complex

● Support in GCC 8 is/was very shaky
○ Did not try with GCC 9 yet

26

27

Test Job Profiling

28

Test Job Profiling

http://home.cern

29

http://home.cern

