

OPERATIONAL EXPERIENCE AND PERFORMANCE WITH THE ATLAS PIXEL DETECTOR AT THE LARGE HADRON COLLIDER AT CERN

Fabian Sohns on behalf of the ATLAS Collaboration II. Physikalisches Institut, Georg-August-Universität Göttingen

ATLAS PIXEL DETECTOR

- 4-Layer tracking detector with 2 End-Caps
- Insertable B-Layer (IBL) added during winter shutdown 2013/14
- Covers range of $|\eta| < 2.5$

- η dependend resolution up to $10 \times 115 \,\mu m^2 / 10 \times 40 \,\mu m^2$ (PIX/IBL)
- Good data quaility efficiency of 99.5% in Run-2 (2015-18)
- Accumulated fluence reaches from 4.5 to $9 \times 10^{15} \left[\frac{n_{eq}}{cm^2}\right]$ (PIXEL/IBL) $\rightarrow 40 - 50\%$ of nominal fluence to be withstand

80

	.	
Front-Ends	448 (FE-I4)	1744*16 (FE-I3)
Channels	12×10^6	80×10^{6}
ad. Hardn. $\left[\frac{n_{eq}}{cm^2}\right]$	5×10^{15}	1×10^{15}
Cooling	CO_2	C_3F_8
Installed	2013/14	$<\!\!2008$

DATA TAKING CONDITION

DETECTOR OPERATION

- Bandwidth consumption rises with μ
- \rightarrow bandwidth saturation, buffer overflow
- Occupancy decreases due to radiation damage
- \rightarrow thresholds were decreased in 2018
- Effects from total ionizing dose
- \rightarrow Constant retuning needed (IBL)

ing]	ATLAS Pixel Pr	eliminary	–––– Tune 30 Apr.	📥 Tune 2 May	- Tune 9 May	
SS 10			- Tune 18 May	🕴 🔶 Tune 19 May		
0 12		1	; 🔶 Tune 3 Jun.	; – <u>+</u> Tune 24 Jun.	: — Tune 4 Jul. ;	

- Peak pile-up (≈ 60) clearly above
- luminosity $(\approx 2 \times 10^{34})$ consistently above
- \rightarrow Challenging environment for data taking and hardware

RADIATION DAMAGE

SINGLE EVENT EFFECTS

• Effects on global/single pixel registers (paper in preparation)

- SEU: flip of single bit due to nuclei interactions

CONCLUSION

The ATLAS Pixel Detector was able to deal with the high level of radiation during Run-2. The effects of radiation damage become visible but the detector is operated in such a way that the physics performance stays stable.