CERN Accelerating science

002696276 001__ 2696276
002696276 003__ SzGeCERN
002696276 005__ 20241025033944.0
002696276 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-IPAC2019-MOPGW082
002696276 0248_ $$aoai:inspirehep.net:1743346$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002696276 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1743346$$d2019-10-24T08:55:26Z$$h2019-10-25T07:37:01Z$$mmarcxml
002696276 035__ $$9Inspire$$a1743346
002696276 041__ $$aeng
002696276 084__ $$2CERN Library$$aCLIC-Note-01181
002696276 088__ $$aCERN-ACC-2019-061
002696276 088__ $$aCLIC-Note-1181
002696276 100__ $$aGohil, [email protected]$$uCERN$$uJAI, UK$$uOxford U.
002696276 245__ $$9JACoW$$aMitigation of stray magnetic field effects in CLIC with passive shielding
002696276 260__ $$c2019
002696276 300__ $$a4 p
002696276 520__ $$9JACoW$$aSimulations have shown the Compact Linear Collider (CLIC) is sensitive to external dynamic magnetic fields (stray fields) to the nT level. Due to these extremely tight tolerances, mitigation techniques will be required to prevent performance loss. A passive shielding technique is envisaged as a potential solution. A model for passive shielding is presented along with calculations of its transfer function. Measurements of the transfer function of a promising material (mu-metal) that can be used for passive shielding are presented. The validity of passive shielding models in small amplitude magnetic fields is also discussed.
002696276 540__ $$3Publication$$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002696276 595__ $$aCLICARCHIVE
002696276 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002696276 6531_ $$2JACoW$$ashielding
002696276 6531_ $$2JACoW$$afeedback
002696276 6531_ $$2JACoW$$acollider
002696276 6531_ $$2JACoW$$asimulation
002696276 6531_ $$2JACoW$$ahadron
002696276 690C_ $$aCERN
002696276 693__ $$aCERN CLIC
002696276 700__ $$aBlaskovic Kraljevic, Neven$$jJACoW-00055281$$jORCID:[email protected]$$uCERN
002696276 700__ $$aBurrows, Philip$$iINSPIRE-00070201$$jJACoW-00001906$$uJAI, UK$$uOxford U.
002696276 700__ $$aSchulte, Daniel$$jJACoW-00001631$$uCERN
002696276 773__ $$cMOPGW082$$qIPAC2019$$wC19-05-19.1$$y2019
002696276 8564_ $$81525980$$s602959$$uhttp://cds.cern.ch/record/2696276/files/mopgw082.pdf$$yFulltext from publisher
002696276 960__ $$a13
002696276 962__ $$b2672790$$kMOPGW082$$nmelbourne20190519
002696276 980__ $$aARTICLE
002696276 980__ $$aConferencePaper
002696276 980__ $$aCLICNOTE
002696276 999C5 $$9refextract$$9CURATOR$$hM. Aicheler et al.$$mCERN, Geneva, Switzerland, Rep$$m-M, Dec$$o1$$rCERN-2018-010-M$$tThe Compact Linear Collider (CLIC) Project Implementation Plan$$x[1] M. Aicheler et al., “The Compact Linear Collider (CLIC) Project Implementation Plan”, CERN, Geneva, Switzerland, Rep. CERN-2018-010-M, Dec. 2018.$$y2018
002696276 999C5 $$9refextract$$9CURATOR$$hJ. Snuverink, W. Herr, C. Jach, J. B. Jeanneret, D. Schulte, and F. Stulle$$min Proc. 1st Int. Particle Accelerator Conf. (IPAC’10), Kyoto, Japan, May 2010, paper WEPE023, pp. 3398-3400. [10] O. Brüning et al$$mCERN, Geneva, Switzerland, Rep$$m-V-1, Jul$$o2$$rIPAC-2010-WEPE023$$tImpact of Dynamic Magnetic Fields on the CLIC Main Beam$$tLarge Hadron Collider Design Report$$x[2] J. Snuverink, W. Herr, C. Jach, J. B. Jeanneret, D. Schulte, and F. Stulle, “Impact of Dynamic Magnetic Fields on the CLIC Main Beam”, in Proc. 1st Int. Particle Accelerator Conf. (IPAC’10), Kyoto, Japan, May 2010, paper WEPE023, pp. 3398–3400. [10] O. Brüning et al., “Large Hadron Collider Design Report”, CERN, Geneva, Switzerland, Rep. CERN-2004-003-V-1, Jul. 2004.$$y2004
002696276 999C5 $$01626356$$9refextract$$9CURATOR$$hE. Marin, D. Schulte, B. Heilig, and J. Pfingstner$$min Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark, May 2017, pp. 708-711. doi:10.18429/ JACoW$$m[11] M. Morrone et al$$mCERN, Geneva, Switzerland, Rep$$mJan$$o3$$rIPAC2017-MOPIK077$$rCERN-ACC-2019-0004$$tImpact of Dynamical Stray Fields on CLIC$$tMagnetic Frequency Response of High Luminosity Large Hadron Collider Beam Screens$$x[3] E. Marin, D. Schulte, B. Heilig, and J. Pfingstner, “Impact of Dynamical Stray Fields on CLIC”, in Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark, May 2017, pp. 708–711. doi:10.18429/ JACoW-IPAC2017-MOPIK077 [11] M. Morrone et al., “Magnetic Frequency Response of High Luminosity Large Hadron Collider Beam Screens”, CERN, Geneva, Switzerland, Rep. CERN-ACC-2019-0004, Jan. 2019.$$y2019
002696276 999C5 $$01690366$$9refextract$$9CURATOR$$adoi:10.18429/JACoW-IPAC2018-THPAF047$$hC. Gohil, M. C. L. Buzio, E. Marin, D. Schulte, and P. N. Burrows$$min Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, Canada, Apr.-May, pp. 3072-3075$$o4$$tMeasurements and Impact of Stray Fields on the 380 GeV Design of CLIC$$x[4] C. Gohil, M. C. L. Buzio, E. Marin, D. Schulte, and P. N. Burrows, “Measurements and Impact of Stray Fields on the 380 GeV Design of CLIC”, in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, Canada, Apr.-May 2018, pp. 3072–3075. doi:10.18429/JACoW-IPAC2018-THPAF047$$y2018
002696276 999C5 $$01743345$$9refextract$$9CURATOR$$hC. Gohil, N. Blaskovic Kraljevic, D. Schulte, and P. N. Burrows$$mpresented at the 10th Int. Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May, paper MOPGW081, this conference$$o5$$tMeasurements of Stray Magnetic Fields at CERN for CLIC$$x[5] C. Gohil, N. Blaskovic Kraljevic, D. Schulte, and P. N. Burrows, “Measurements of Stray Magnetic Fields at CERN for CLIC”, presented at the 10th Int. Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019, paper MOPGW081, this conference.$$y2019
002696276 999C5 $$9refextract$$hC. Gohil, D. Schulte, and P. N. Burrows$$mCERN, Geneva, Switzerland, Rep$$mNov$$o6$$rCERN-ACC-2018-0052$$tStray Magnetic Field Tolerances for the 380 GeV CLIC Design$$x[6] C. Gohil, D. Schulte, and P. N. Burrows, “Stray Magnetic Field Tolerances for the 380 GeV CLIC Design”, CERN, Geneva, Switzerland, Rep. CERN-ACC-2018-0052, Nov. 2018.$$y2018
002696276 999C5 $$9refextract$$9CURATOR$$hS. Celozzi, R. Araneo and G. Lovat$$mHoboken, NJ, USA: IEEE Press$$o7$$tElectromagnetic shielding$$x[7] S. Celozzi, R. Araneo and G. Lovat, Electromagnetic shielding. Hoboken, NJ, USA: IEEE Press, 2005.$$y2005
002696276 999C5 $$9refextract$$9CURATOR$$adoi:10.1109/15.485702$$hJ. F. Hoburg$$o8$$sIEEE Trans.Electromagn.Compat.,38,92-103$$tA Computational Methodology and Results for Quasistatic Multilayered Magnetic Shielding$$x[8] J. F. Hoburg, “A Computational Methodology and Results for Quasistatic Multilayered Magnetic Shielding”. IEEE Trans. Electromagn. Compatibility, vol. 38, pp. 92-103, Feb. 1996. doi:10.1109/15.485702$$y1996
002696276 999C5 $$9CURATOR$$mBartington Instruments Limited, Oxford, UK, Dec.$$o9$$tOperational Manual for Mag-13 Three-Axis Magnetic Field Sensors,$$uhttp://www.bartington.com/Literaturepdf/Operation\%20Manuals/Mag-13\%20OM3143.pdf$$y2018
002696276 999C5 $$9CURATOR$$o10$$rCERN-2004-003-V-1
002696276 999C5 $$9CURATOR$$hM. Morrone et al$$mCERN,Geneva, Switzerland, Rep., Jan$$o11$$rCERN-ACC-2019-0004$$tMagnetic Frequency Response of High Luminosity Large Hadron Collider Beam Screens
002696276 999C5 $$9CURATOR$$mMagnetic Shield Corporation$$o12$$uhttp://www.magnetic-shield.com/index.html
002696276 999C5 $$9CURATOR$$adoi:10.1016/0168-9002(86)90989-7$$hD. Dubbers$$o13$$sNucl.Instrum.Meth.,A243,511$$tSimple formula for multiple mu-metal shields$$y1986
002696276 999C5 $$9CURATOR$$o14$$sConf.Proc.,C060626,505
002696276 999C5 $$9CURATOR$$hB. D. Cullity and C. D. Graham$$mPiscataway, NJ, USA: IEEE Press$$o15$$tIntroduction to Magnetic Materials$$y2009
002696276 999C5 $$9CURATOR$$adoi:10.1109/INTMAG.2006.376390$$hP. Sergeant et al$$o16$$sIEEE Trans.Magnetics,42,3189$$tMagnetic Shielding of a Cylindrical Shieldin Nonlinear Hysteretic Material$$y2006
002696276 999C5 $$9CURATOR$$adoi:10.1108/03321640510615733$$hP. Sergeant et al$$o17$$sCOMPEL,24,1470-1491$$tAnalytical formulation for magnetic shieldstaking into account hysteresis effects in the Rayleigh region$$y2005
002696276 999C5 $$9CURATOR$$hW. H. Campbell$$mCambridge, UK: Cambridge University Press$$o18$$tIntroduction to geomagnetic fields$$y2003