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1. Introduction

In Refs. [1, 2] a parton branching (PB) equation has been proposed for the evolution of trans-
verse momentum dependent (TMD) parton distribution functions. In this approach, soft gluon
emission and transverse momentum recoils in the QCD evolution are treated by introducing the
soft-gluon resolution scale zM to separate resolvable and non-resolvable branchings, and the Su-
dakov form factors ∆a (where a = 1, . . . ,2N f +1 is the flavor index, with N f the number of quark
flavors) to express the probability for no resolvable branching in a given evolution interval.

The purpose of the study reported in this article is to extend the PB TMD approach to include
effects of small-x dynamics. The study consists of two parts: a numerical analysis of the PB method
at leading order (LO) in the strong coupling αs, for which in particular we carry out a detailed
investigation of the role of the soft-gluon resolution scale zM; an extension of the PB evolution
kernels to the small-x region by including, besides the Sudakov form factors, also the non-Sudakov
form factors according to CCFM methods [3, 4, 5].

The article is organized as follows. In Sec. 2 we describe the LO PB analysis, performing
a new fit to inclusive-DIS precision data [6]. In Sec. 3 we study the dependence of the fit on
the parameter q0, which controls the minimum transverse momentum emitted in the branching
evolution and is related to the soft-gluon resolution scale zM according to angular ordering [1, 7].
In Sec. 4 we introduce modified CCFM kernels and investigate their effect on the results of parton
evolution. We give conclusions in Sec. 5.

2. PB method at LO

The PB method has been developed in [1, 2] evaluating the evolution kernels up to next-
to-leading order (NLO). These results have been used in Ref. [8] to perform NLO fits to preci-
sion HERA1+2 measurements [6] and in Ref. [9], along with NLO matrix elements for Drell-Yan
hadroproduction, to make predictions for Z-boson transverse momentum spectra at the LHC.

Our goal in this work is to explore the extension of the PB method to include small-x CCFM
effects and for this purpose it is useful to start from the formulation of the PB method at LO. To
this end, we have performed an analysis at LO analogous to that of Ref. [8] and obtained PB TMD
fits at LO. These LO fits may be useful in their own right for further applications.

The fits are performed using the open-source fitting platform xFitter [10] and the numerical
techniques developed in [11, 12] to treat the transverse momentum dependence in the fitting pro-
cedure. Similarly to Ref. [8], we consider the two angular ordered TMD sets (Set1 and Set2) using
two different choices for the αs evolution. We consider the same functional forms for initial den-
sities and proceed with the LO approximation for an extension towards the LO CCFM evolution.
The integrated TMD is fitted within xFitter at LO, where the PB method is implemented, to
precision HERA1+2 measurements in the range of 3.5 < Q2 < 50000 GeV2 and 4.10−5 < x < 0.65
[6]. Our χ2/do f for both sets are reasonably good (1.24 and 1.26 for set1 and set2, respectively)
and comparable to the NLO fit.

3. Soft-gluon resolution effects

Partons emitted with a transverse momentum smaller than a certain value given by the resolu-
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tion scale cannot be resolved. The resolution scale zM can change dynamically with the evolution
scale. For angular ordering condition we consider zM = 1− q0

qi
, while q0 is chosen to be very small

(q0 = 0.01 GeV) to ensure that the PB evolution coincides with the standard DGLAP evolution.

We perform fits to DIS data with different choices of q0. In Fig. 1 we illustrate how much
would be the actual distribution changed by varying zM. We observe that with higher q0 (smaller
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Figure 1: Parton densities for different values of q0 at Q2 = 1.9 GeV2

zM), the gluon distribution becomes significantly larger, essentially in the small x region and the
χ2/do f also increases.

We investigate further how the choice of Q2
min, the minimum Q2 of the data within the fit,

influences the quality of fit. We perform several fits with the different Q2
min. As illustrated in Fig 1,

a reasonable fit can be determined for larger q0 if Q2
min > 10 GeV2.

4. Extension to include small x processes

In this section we describe how the full angular ordering condition enlarges the phase space.
We go from the DGLAP ordering (qi > q,i−1) to the angular ordering (qi > zi−1qi−1). Here qi are
the rescaled transverse momenta. In terms of the transverse momentum in the t-channel, DGLAP
ordering means k⊥ < qi, while angular ordering also covers k⊥ > qi. This is due to the coherent
effects. We need to introduce a non-Sudakov form factor to sum all virtual corrections in which
the rescaled transverse momenta of on-shell emitted gluons are smaller than the k⊥ (k⊥ > qi).The

2



Extending PB TMDs to small x Sara Taheri Monfared

Figure 2: The dependence of χ2/do f on Q2
min of LO fit for q0 = 0.1,0.5,0.8 GeV

modified CCFM splitting functions at LO including the non-Sudakov form factor are given by

P(0)
gg = 6 (

αs

2π
) (

1
z
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1

1− z
−2+ z(1− z)) ∆̃s ,

P(0)
gq =

4
3
(
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2π
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2
z
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P(0)
qg =

1
2
(

αs

2π
) (z2 +(1− z)2) ∆̃s ,

P(0)
qiqi =

4
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1+ z2

1− z
) ∆̃s . (4.1)

with ∆̃s and ∆̃ns defined as

∆̃s = exp
(
−
∫ qi

zi−1qi−1

dq′2

q′2

∫ zM

dz
1

1− z

)
,

∆̃ns = exp
(
−
∫ k⊥

zi−1qi−1

dq′2

q′2

∫ zM

dz
1
z

)
. (4.2)

The non-Sudakov form factor is relevant only when the emitted gluon is fast and therefore it is
important only in presence of the 1/z term in the DGLAP splitting function. Therefore we included
them in Pgg and Pgq splitting functions.

In the next step, we re-write the CCFM splitting functions in terms of the full DGLAP splitting
function with the DGLAP Sudakov form factor:

∆̃s→ ∆s = exp
(
−
∫ qi

zi−1qi−1

dq′2

q′2

∫ zM

dz (
1
z
+

1
1− z

−2+ z(1− z))
)

. (4.3)

We observe that 1
z ∆ns∆s is already covered by 1

z ∆s for k⊥ < qi and the non-Sudakov form factor
acts only if k⊥ > qi. We obtain the following ∆ns form factors:

∆̃ns→ ∆ns = exp
(
−
∫ k⊥

qi

dq′2

q′2

∫ zM

dz
1
z

)
for k⊥ > qi

∆̃ns→ ∆ns = 1 for k⊥ < qi (4.4)
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In Fig. 3 the gluon density is shown as a function of x for the evolution scale µ2 = 100 GeV2 using
the benchmark starting distribution with a black curve. QCDNUM [13] agrees with PB method in
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Figure 3: The black curve represents the QCDNUM prediction. The red curve includes full angular
ordering. The non-Sudakov form factors are included in pgg and pgq in the green and blue curves,
respectively.

the DGLAP limit as shown in ref. [1]. The red curve shows the results when the phase space is
opened up to include angular ordering. It allows for unordered emission and increases the gluon
density at small x, essentially below 10−3. Including virtual corrections via non-Sudakov form
factor (for k⊥ > qi) into Pgg leads to small x suppression (green curve in Fig. 3). Including the
non-Sudakov form factor also for Pgq leads to the blue curve which is slightly below the green one.
However, the gluon density at small x is still larger compared to DGLAP based curve.

This step by step study is possible via the PB method because it can solve the evolution equa-
tion via an iterative procedure.

5. Conclusion

TMD formalisms are relevant in QCD to describe contributions to the initial states of hadronic
collisions both for high x and for low x (see e.g. [14]). An essential ingredient is provided by
parameterizations and fits to experimental data for TMD distribution functions [15].

The PB method has been recently proposed as a flexible approach which can be applied to a
wide range of processes and observables.

In this article we have performed new PB TMD fits at LO, and we have presented a method to
incorporate CCFM effects into the PB formulation. Our results can be used to extend the existing
simulations of QCD cascades into the semi-hard regime.
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