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Abstract

The high instantaneous luminosities expected following the upgrade of the Large Hadron Collider
(LHC) to the High Luminosity LHC (HL-LHC) pose major experimental challenges for the CMS
experiment. A central component to allow efficient operation under these conditions is the reconstruc-
tion of charged particle trajectories and their inclusion in the hardware-based trigger system. There
are many challenges involved in achieving this: a large input data rate of about 20–40 Tb/s; processing
a new batch of input data every 25 ns, each consisting of about 15,000 precise position measurements



and rough transverse momentum measurements of particles (“stubs”); performing the pattern recogni-
tion on these stubs to find the trajectories; and producing the list of trajectory parameters within 4 µs.
This paper describes a proposed solution to this problem, specifically, it presents a novel approach
to pattern recognition and charged particle trajectory reconstruction using an all-FPGA solution. The
results of an end-to-end demonstrator system, based on Xilinx Virtex-7 FPGAs, that meets timing
and performance requirements are presented along with a further improved, optimized version of the
algorithm together with its corresponding expected performance.
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Abstract: The high instantaneous luminosities expected following the upgrade of the Large
HadronCollider (LHC) to theHighLuminosity LHC (HL-LHC) posemajor experimental challenges
for the CMS experiment. A central component to allow efficient operation under these conditions
is the reconstruction of charged particle trajectories and their inclusion in the hardware-based
trigger system. There are many challenges involved in achieving this: a large input data rate
of about 20–40Tb/s; processing a new batch of input data every 25 ns, each consisting of about
15,000 precise position measurements and rough transverse momentum measurements of particles
(“stubs”); performing the pattern recognition on these stubs to find the trajectories; and producing the
list of trajectory parameters within 4 µs. This paper describes a proposed solution to this problem,
specifically, it presents a novel approach to pattern recognition and charged particle trajectory
reconstruction using an all-FPGA solution. The results of an end-to-end demonstrator system,
based on Xilinx Virtex-7 FPGAs, that meets timing and performance requirements are presented
along with a further improved, optimized version of the algorithm together with its corresponding
expected performance.

Keywords: Trigger algorithms; Trigger concepts and systems (hardware and software); Digital
electronic circuits; Digital signal processing (DSP); Particle tracking detectors; Pattern recognition,
cluster finding, calibration and fitting methods
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1 Introduction

This paper describes a novel implementation of a charged particle trajectory reconstruction approach
based on field-programmable gate arrays (FPGAs) for the CMS experiment [1] at the CERN LHC.
The LHC accelerator complex will undergo major upgrades, to be completed in 2026, to increase
the instantaneous luminosity to approximately 7.5×1034 cm−2s−1 [2]. The “High Luminosity LHC”
(HL-LHC) upgrades will enable searches for undiscovered rare particle physics processes as well
as detailed measurements of the properties of the Higgs boson. The HL-LHC will collide proton
bunches every 25 ns, and each of these bunch collisions (an “event”) will consist of an average of
200 proton-proton (pp) collisions. Only a small fraction of these collisions are of interest for further
study. A fast real-time selection, referred to as the Level-1 (L1) “trigger”, is applied to decide
whether a given collision should be considered for further analysis. The L1 trigger is implemented
in custom hardware. The number of overlapping pp collisions per event, referred to as pileup (PU),
in the HL-LHC era represents a large increase over previous data-taking eras (∼200 at the HL-LHC
versus ∼30 during LHC Run-2), resulting in a significant challenge to the CMS trigger system –
new handles are required. One such handle is the inclusion of information from the charged particle
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Figure 1. The efficiency of a single muon trigger with a L1 threshold of pT > 20 GeV as a function of muon
pT (left) and the trigger rate as a function of the muon trigger threshold (right), shown for the stand-alone
muon trigger (red) and when including L1 tracking (black) for various pseudorapidity (η) ranges [3].

tracking system. This will be the first time that information from a solid-state tracking detector has
been included in the hardware trigger at the high collision rates of the LHC.

Integrating charged particle tracking in the L1 trigger will improve lepton identification and
momentum measurements as well as provide track isolation and vertex reconstruction. These
additional handles have the potential to reduce the L1 trigger rates while maintaining trigger
thresholds acceptable for the CMS physics program. One example of this is shown in Figure 1,
where the efficiency of a single muon trigger as a function of the muon generated pT (left) and the
corresponding L1 trigger rate (right) are shown [3]. The red curves show the behavior of a stand-
alone L1 muon trigger system, while the black curves show the performance of the same triggers
when including L1 tracking. In particular, L1 tracking improves the momentum measurement,
which translates to a sharper turn-on curve at the trigger threshold and hence a reduced trigger rate.
The tracks must be delivered within 4 µs in order to be used in the trigger decision.

To reconstruct the trajectories of charged particles, the CMS experiment includes a tracking
detector, which will be replaced for the HL-LHC operation. This upgraded tracking detector will
consist of an inner tracker based on silicon pixel modules (not available in the L1 trigger), and an
outer tracker based on silicon modules with strips and macro-pixel sensors [4]. The layout of the
upgraded outer tracker, as proposed in Ref. [4], is illustrated in Figure 21. Particles are produced
at the interaction point and travel outwards in a 3.8 T uniform magnetic field, which is parallel to
the z axis. The trajectory of a charged particle traversing this magnetic field is bent such that it
forms a helix. In the r-φ plane, the helix forms a circle. The radius of this circle is proportional
to the momentum in this plane, the transverse momentum, or pT, of the particle. The tracking
detector is based on the concept that charged particles leave energy deposits (“hits”) when crossing
the sensitive detector material. In the upgraded outer tracker, closely spaced pairs of such hits will
be linked on the detector front-end to form “stubs”. With a sensor spacing of 1–4mm, the relative
position of the pairs of hits can be used to read out only those stubs that are likely to come from

1We use a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the
center of the LHC, the y axis pointing up (perpendicular to the LHC plane), and the z axis along the counterclockwise-
beam. The azimuthal angle φ is measured in the x-y plane.
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Figure 2. One quarter of the layout of the upgraded CMS charged particle tracking detector (left), as
proposed in Re. [4]. Not shown is the inner pixel part of the CMS charged particle tracking detector, as
it is not available to use for the L1 tracking. The LHC beams cross at (0,0). In the central barrel region
(extending to |z | . 125 cm), there are six layers at radii from 23 cm to 110 cm. In the forward region
(covering |z | & 125 cm), there are five disks at z positions from 130 cm to 270 cm. The detector is divided
into sectors, slices in φ that cover the entire length of the detector along z, for L1 track finding. In the x-y
view of the barrel (right), 28 sectors are shown.

a particle with pT > 2 GeV (corresponding to a radius of curvature greater than 1.75m). This
momentum selection on the stubs reduces the readout bandwidth requirement by a factor of 10 [3].
In the L1 trigger, the stubs can be linked together to reconstruct the trajectories of the charged
particles.

The upgraded outer tracker consists of a central portion with six detector layers parallel to
the beam line, called the barrel, and five layers perpendicular to the beam line at large |z |, called
the disks. The inner three layers in the barrel consist of so-called pixel-strip (PS) modules. The
modules have a top sensor with 2.5 cm long silicon strips with 100 µm “pitch" (segmentation in the
bending plane), and a bottom sensor consisting of 1.5mm wide macro-pixels, again with 100 µm
pitch. The inner three layers of the barrel are further divided into two regions: the “flat” region,
near z = 0, where the modules are parallel to the beamline, and the “tilted” region, at higher |z |,
where the modules are tilted toward the interaction point. The outer three barrel layers instead
use “strip-strip” (2S) modules, where both sensors have 5 cm long strips with 90 µm pitch. The
modules on each of the five disks in each half of the detector are arranged in concentric circles,
or “rings”, around the beamline. The two disks closest to the interaction point in each half of the
detector have 15 rings (ten consisting of PS modules and five of 2S modules), and the remaining
three have twelve rings (seven consisting of PS modules and five of 2S modules). Both PS and
2S modules provide a precise position and momentum coordinate for stubs in the transverse plane,
while only the PS modules give a precise measurement of the z coordinate. Further details on the
upgraded CMS tracker detector are available in Ref. [4].

This paper discusses the linking of the stubs to form trajectories of charged particles, known
as L1 tracking, and its associated challenges. In each collision of counter-rotating proton bunches
(every 25 ns), about 15,000 stubs are formed. However, only about 10% of the stubs belong
to trajectories of interest, so the majority of stubs need to be filtered. The remaining stubs are
combined to form, on average, 180 trajectories every 25 ns. This is the first time that data from the
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tracking detector is included in the CMS L1 trigger; previously, the amount of data to be processed
and the computational complexity required placed this task out of reach of FPGAs.

To summarize, some of the challenges involved in reconstructing trajectories of charged parti-
cles for the CMS L1 trigger are:

• Absorb approximately 15,000 stubs arriving each 25 ns. This corresponds to an input band-
width of about 20–40 Tb/s.

• Perform pattern recognition to identify the stubs that belong to a given trajectory, rejecting
stubs from low-momentum particles.

• Fit the stubs to extract optimal trajectory parameters.

• Complete all above steps within the available processing time (“latency”) of 4 µs, in order to
feed into the decision of whether to retain the event, or discard it, before the on-detector data
buffers are exhausted.

The “tracklet” approach for real-time track reconstruction in the hardware-based trigger system
of CMS, presented in this paper, is one of three possible implementations that were considered
by the collaboration. The other two approaches that were studied were a Hough-transform based
approach using FPGAs [5] and an associative memory based approach using a custom ASIC [6].
The tracklet approach is a “road-search” algorithm, implemented using commercially available
FPGA technology. Ever-increasing capability and programming flexibility make FPGAs ideal for
performing fast track finding. The tracklet approach allows a naturally pipelined implementation
with a modest overall system size. It also allows for simple software emulation of the algorithm.
We present here the design of such a system and results from a hardware demonstrator system that
implements end-to-end reconstruction, from input stubs to output trajectories, within the available
latency and with a reasonable system size, for a slice of the detector. In addition to the results from
the hardware demonstrator, some further improvements to the algorithm are presented.

Many software-based particle tracking algorithms use a road-search technique where track
seeds are found and the trajectories extrapolated to look for matching stubs. This technique works
well with the high-precision hits in particle detectors such as the CMS tracker. In the cylindrical part
of the detector, the typical spatial position resolution of the stubs is about 30 µm in r–φ and either
0.5mm (inner layers) or 1.5 cm (outer layers) in z in a cylindrical detector volume of about 2m in
diameter and 5m in length [4]. Therefore, the search window (road) around the projected trajectory
is small and the probability for finding false matches is low. However, with previous generations of
FPGAs, the required computational power for implementing this type of tracking algorithm in the
trigger was not available. Today, the large number of digital signal processing (DSP) blocks and
random access memory (RAM) resources available in FPGAs make such an approach feasible. The
use of FPGAs for the implementation of this algorithm provides a good match to the requirements.
FPGAs provide high-speed serial, low-latency links that are well suited to bring the data into the
FPGA for processing. The resources of FPGAs allow the implementation of a highly parallelized
architecture, and their reconfigurability allows flexibility to changing needs. The precise space
points from the stubs are used to determine trajectories of the particles using the DSP blocks in
the FPGA. The DSP blocks are also used to calculate the final track parameters. The RAMs in the
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FPGA are used to implement the data movement and distributed storage required for this highly
pipelined algorithm.

This paper is organized as follows. First, the tracklet algorithm is discussed in Section 2.
Two configurations of the system are discussed in this paper. The first configuration (referred to as
“tracklet 1.0”) corresponds to that employed for a test that implemented a vertical slice of the system
as a hardware demonstrator. Since the hardware demonstrator, extensions to the tracklet approach
have been implemented that further improve the load balancing and resulting physics performance.
This corresponds to the second configuration (referred to as “tracklet 2.0”). Section 3 explains
the structure of the firmware, and in Section 4 we detail the results of the hardware demonstrator
test. Section 5 describes the foreseen overall system architecture. Section 6 reports on the physics
performance of the current system (tracklet 2.0). Further developments are foreseen in the future.
These are discussed in Section 7 along with conclusions.

2 Tracklet algorithm

The goal of the real-time hardware-based track finding is to reconstruct the charged particle trajec-
tories as an estimator of their momenta for particles with pT > 2 GeV, and to identify the track z0
position with about 1mm precision. The z0 resolution is similar to the expected average separation
of proton–proton collisions in the bunch collisions of the upgraded LHC, and thus allows precise
determination of the collision vertices. The proposed tracklet method forms track seeds, “tracklets”,
from pairs of stubs in adjacent layers or disks. The tracklets provide roads to search for compatible
stubs that are attached to form track candidates. A linearized χ2-fit determines the final track
parameters.

The tracklet algorithm has been optimized to provide full coverage of the tracker with a small
amount of redundancy in data duplication.

2.1 Algorithm overview

The tracklet algorithm proceeds in multiple steps, illustrated in Figure 3. The algorithm begins
with a seeding step, where tracklets are formed from pairs of stubs in adjacent layers or disks. An
initial estimate of the tracklet parameters is calculated from the two stubs and using the detector
origin as a constraint in the r–φ plane. Seeds are rejected if they are inconsistent with a track with
pT > 2 GeV and |z0 | < 15 cm. The seeding is performed in multiple pairs of layers (or disks) to
ensure good efficiency for full azimuthal coverage and for redundancy in the system. Nominally,
seeding between layers 1+2, 3+4, 5+6, between disks 1+2, 3+4, and between layers 1 or 2 and disk
1, are considered. Different seeding layers can be used in the event of malfunction of a particular
layer or disk.

The tracklets are projected to other layers and disks to search for matching stubs. These
projections use predetermined search windows, derived frommeasured residuals between projected
tracklets and stubs in simulated data. The tracklets are projected both inside-out and outside-in,
i.e., towards and away from the collision point, as needed for a given seeding combination. If a
matching stub is found, the stub is included in the track candidate and the difference between the
projected tracklet position and the stub position, “residual”, is stored. If there are multiple stubs
matched in a given layer or disk the stub with the smallest φ residual is retained for the track fit.

– 5 –



Figure 3. Illustration of the various steps of the tracklet algorithm. In the first step (left) pairs of stubs (red
stars) are combined to form seeds, or tracklets, for the track finding. Combined with the interaction point
(0,0) a helical trajectory for the particle is formed, assuming a uniform magnetic field. This trajectory is
projected (middle) to the other layers. Stubs in the other layers that are close to the projection (green stars)
are selected as matches (right) to the tracklet to form a track. Final trajectory parameters are calculated using
a linearized χ2 fit.

A linearized χ2 fit is performed for all stubs matched to the trajectory. The track fit implemen-
tation uses pre-calculated derivatives and the tracklet-stub residuals from the projection step. The
linearized χ2 fit corrects the initial tracklet parameters to give the final track parameters: inverse
radius of curvature (ρ−1), azimuthal angle (φ0), polar angle (tan θ), z intercept (z0), and optionally
the transverse impact parameter (d0). Duplicate tracks, such as those found by the redundant seeding
layers, are removed by comparing tracks in pairs, counting the number of independent and shared
stubs. Tracks that do not have at least three unique stubs are considered duplicates. In tracklet 2.0,
the track χ2 is also considered when removing duplicates.

When implementing the algorithm on an FPGA, we work with fixed-precision math and low-
order Taylor expansions of trigonometric functions. The number of bits kept are adjusted to ensure
adequate precision. The loss of precision from using fixed-point calculations is negligible.

2.2 Parallelization

The algorithm is parallelized in the following manner. First, the detector is split along azimuth
into sections, called “sectors”. The number of sectors is a tunable parameter and is chosen based
on an optimization of the cost of FPGAs, the required per-sector input bandwidth, constraints due
to the cabling interface of the on-detector electronics, the choice of time-multiplexing factor and
the overall algorithm latency, as discussed in the following paragraphs. The nominal choice for
the number of sectors is nine, while other values were also considered. Each sector is assigned a
dedicated hardware unit called the sector processor, and tracklet formation and track reconstruction
is done in parallel in all of the sector processors. A small amount of data is duplicated near the
boundaries of sectors to allow track formation to take place entirely within one sector processor and
to avoid gaps in detector coverage. The data duplication scheme will be described in Section 5.1.
The upper limit on the number of sectors is chosen such that a track with largest acceptable curvature
(pT = 2 GeV) is contained in at most two sectors. This corresponds to 28 sectors, and was the
configuration under consideration during the hardware demonstrator.
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The system of sector processors is replicated n times using a round-robin time multiplexing
approach. Each system is entirely independent, and therefore, since new data are generated every
25 ns, each independent time multiplexed unit has to process a new event every n × 25 ns. As
with the number of sectors, the choice of time multiplexing factor n is driven by a balance of cost,
efficiency, and needed processing power. For the current system, n = 18 is considered to balance
these three factors; that is, each sector processor receives new data every 450 ns. For the 28 sector
configuration, n = 6 was chosen, leading to each sector receiving data every 150 ns.

By construction, the system operates with a fixed latency. Each processing step proceeds for a
fixed amount of time. If we have too many objects, some will not be processed, leading to truncation
of processing and an algorithmic inefficiency.

The algorithm is further parallelized within sectors. In the serial algorithm, there are sev-
eral places where loops over stubs or double loops over pairs of stubs are required. In a naive
implementation, the time to process these parts of the algorithm scales as N or N2, where N is
the number of stubs, if considering all possible combinations. The number of combinations, or
combinatorics, is a challenge to the algorithm. The combinatorics in forming tracklets andmatching
tracklet projections to stubs is efficiently reduced by dividing sectors into smaller units in z and φ
to allow additional parallel processing. These smaller units are referred to as “virtual modules”
(VMs). Only a small fraction of virtual module pairs can form a valid tracklet – the majority would
be inconsistent with a track originating at the point of collision and with high enough transverse
momentum. Data are distributed into those VMs satisfying these requirements in an early stage
of the algorithm. This subdivision efficiently reduces the number of combinations that need to be
considered by the algorithm from the start. Additionally, each VM is processed in parallel. At the
next stage of the algorithm, the amount of parallelism is reduced when the accepted VM pairs’ (the
tracklets) initial track parameters are calculated.

Two different configurations of VMs are considered. In the first, used in tracklet 1.0 for the
demonstrator, a sector is divided into 8z × 3φ (8z × 4φ) virtual modules for the odd (even) layers,
resulting in 24 (32) VMs per layer. In forming the tracklet seeds, only 96 of the 768 (= 24 × 32)
possible combinations can form tracklets that have the appropriate z0 and maximum curvature
(minimum momentum); the others do not need to be considered. It is by this method of data
binning that the virtual modules eliminate the need to expend cycles considering combinations that
are known a priori not to lead to a viable tracklet candidate.

In the second configuration (long virtual modules) used in tracklet 2.0, a finer φ segmentation
is used. The sectors are here subdivided into 24φ (32φ) virtual modules for the odd (even) layers.
These VMs cover the full length of the sector but, internally to the VM, the data are collected into
eight z bins. With this configuration, 120 of the same 768 combinations lead to viable tracklet
seeds. The advantage of this configuration is that it leads to more even resource usage (better load
balancing) and the binning in z allows a significant reduction in the combinatorics that has to be
tried when forming tracklets and matching projections to stub, as will be demonstrated in Section 4.
In the firmware implementation of the algorithm, the difference between the two versions of the
algorithm is restricted to a few places in the design.

For the original tracklet 1.0 configuration, 28 sectors were used. A minimal overlap for stubs in
the even layers and disks were used, such that we can form the tracklets within a sector and maintain
full seeding coverage. However, for matching stubs to projections in tracklet 1.0 we used a nearest
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neighbor sector communication for the projections that extended outside the sector. In addition to
the projections that were sent to the nearest neighbor, matches that were found also needed to be sent
back. This means that we had two steps in the algorithm where communication with neighboring
sectors were needed. For tracklet 2.0 implementation, the sector definition was revised to instead
use 9 φ-sectors. These sectors are defined such that they include all stubs required to reconstruct
tracks that pass through the sector at rcrit = 55 cm. This avoids the need for the nearest neighbor
communication and, as a consequence, saves approximately 1 µs of latency.

3 Firmware implementation

The tracklet algorithm is implemented in the Verilog hardware description language (HDL) [7]
as nine processing steps and two transmission steps [8]. These processing steps are illustrated in
Figure 4. The red boxes are processing modules and the data are stored in memories (blue boxes)
between the different processing steps. The black lines indicate which processing modules read and
write data from which memory. The implementation of the algorithm in the FPGA takes place in
the following processing steps.

• Stub organization: (1) Sort the input stubs by their corresponding layer (LayerRouter), and
(2) into smaller units in z and φ, referred to as “virtual modules” (VMRouter).

• Tracklet formation: (3) Select candidate stub pairs for the formation of tracklets (Track-
letEngine), and (4) calculate the tracklet parameters and projections to other layers (Track-
letCalculator module).

• Projections: (5) Transmission of projections pointing to neighboring sectors (Projection-
Tranceiver). (6) Route the projections based on smaller units (virtual modules) in z and φ
(ProjectionRouter).

• Stub matching: (7) Match projected tracklets to stubs (MatchEngine), and (8) calculate
the difference in position between the stubs and projected tracklet (MatchCalculator). (9)
Transmission of matches between sectors (MatchTransceiver).

• Track fit: (10) Perform track fit; update the initial tracklet parameter estimate (TrackFit).

• Duplicate Removal: (11) Remove tracks found multiple times (PurgeDuplicate).

Each of the steps outlined above corresponds to HDLmodules (named in bold). These modules
are hand-optimized. They can be customized with Verilog parameter statements on instantiation
to account for differences between use cases. For example, in the second step of stub organization,
six sorter modules are needed to process the stubs in each layer. The bit assignment in the data
differs between the inner and outer three layers of the barrel. On instantiation, a parameter is used to
select the appropriate version. The project illustrated in Figure 4 corresponds to 1⁄4 of the barrel for
one sector. A complete project would contain approximately eight times as many instantiations of
the same set of modules. The wiring between modules is specified in a master project configuration
file. This configuration file is processed with python scripts to generate the top-level Verilog,
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Figure 4. A high-level routing diagram for the tracklet project. As described in the text, the project consists
of nine processing steps and two transmission steps indicated in red, and memories, shown in blue, in which
the data are stored between the processing steps. The black lines show which processing block reads (and
writes) from which memory. The input stubs arrive from the left in the picture and the first two processing
modules sort the stubs into the correct virtual modules based on the physical location of the stubs. The
next two stages involve the tracklet finding and projection calculation. Next the projections are routed to
the correct virtual modules and then the projections are matched to stubs and the matches are then used to
perform the track fit. The removal of duplicates is performed after the track fit (not shown).

which is then synthesized using Xilinx Vivado 2016.1. These python scripts also generate the
module connection diagram shown in Figure 4 and drive a bit-level C++ emulation of the system.

All processing modules follow a similar format where the input is read from memories filled
by the previous step and the output is written to another set of memories. All processing modules
across all sector processors use a single common clock (currently, 240MHz). As soon as a new
event arrives, the next step in the chain will start processing the previous event. This implies that at
any given time, several events are in the processing pipeline depending on the number of processing
steps. Though the project as implemented in the demonstrator used the same clock for all processing
steps, the fact that we use memories as buffers between the different steps allows the use of different
clock speeds for different processing modules.

An event identifier propagates with the data and is used by the processing steps to access the
appropriate data. We use the event identifier in the top bits of the memory address. This assumes a
fixed maximum number of entries per event in the memory buffer. The fixed latency design implies
that the maximum number of entries that can be processed is known and as such the limitation due
to the fixed number can be understood and tuned. Most of the data from a processing step is only
used in the next step and thus we can make very shallow buffers that will hold only two events at the

– 9 –



same time (writing one and reading the other). These small buffers are implemented as distributed
RAM in order to minimize the block RAM (BRAM) resource usage in the FPGA. On the other
hand, some data need to be stored for up to eight events since they will only be used later in the
chain. These data are stored in BRAMs, but we try to minimize the usage of this resource as we
have observed correlation of routing difficulties with the number of BRAMs used.

Since the calculations needed for routing the data are simple and using lookup tables (LUTs)
is quick, most of the processing modules take only a few clock cycles to complete. We do not send
the data to the next step immediately, but buffer it in memories until the allocated time is finished
for the processing step. At this time, the module corresponding to the next step in the processing
will start reading the data for the previous event and new data will be written for the current event.
We use the true dual-port memories available in the Xilinx FPGAs for our buffers such that we can
write the data from one event while simultaneously reading from the previous one. These dual-port
memories also allow different modules to exist in separate clock domains.

In addition to the nine processing modules, we also implement two steps of neighbor commu-
nication using optical high-speed serial links. The bending of charged particles in the magnetic
field can cause trajectories to curl into neighboring sectors. In this instance, the projected position
of the track is sent across fiber links to the neighbor sector processor to look for matching stubs.
Simultaneously as each sector processor is sending data to its left and right neighbors, it is also
receiving from them as well for the same purpose. This system configuration was chosen to reduce
the amount of data duplication globally at the cost of some increase in latency. As discussed in
Section 2, in the tracklet 2.0 implementation nearest neighbor communication is not needed.

3.1 Module examples

To illustrate the method in more detail, we present the functionality of two processing modules.
Figure 5 shows schematically how the virtual module router works. The module receives a start
signal every 150 ns for every new event. This VMRouter module reads stubs from three input
layer memories. The stub format is illustrated in the figure and uses 36 bits per stub to encode its
geometric position. All stubs are written to the “AllStubs” memory in the full 36-bit format. In
addition, based on their coordinates (φ and z), the stubs are routed to a specific output memory (VM
stub memory) corresponding to a specific small area of the detector. Here, only coarse position
information is retained and a six bit index into the AllStubs memory is saved such that we can later
retrieve the precise stub position. The process loops over the input stubs and writes them out to
different memories based on their position information.

A more complex example is the TrackletEngine processing module illustrated in Figure 6. This
module forms pairs of stubs as seed candidates. As such, this module reads input stubs from two
VM stub memories filled by the VMRouter module described previously, but since we are interested
in forming pairs of stubs, this module implements a double nested loop over all pairs. For each pair
the coarse position information is used in two LUTs to check that the seed candidate is consistent
with a trajectory with the pT and z0 requirements described above. If the stub pair passes this
check, the indices of the stubs in the AllStub memories are saved in the output memory of candidate
stub pairs. These indices are used in the next step, the TrackletCalculator, to retrieve the stubs and
calculate the precise trajectory.
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Figure 5. Schematic illustrating the connections of the Virtual Module (VM) Router processing modules.
The module reads input stubs from the input memories and routes them to the correct virtual modules based
on the stubs’ coordinates (z and φ).

Figure 6. Schematic illustrating the connections of the TrackletEngine processing module. The module
reads stubs from two virtual module memories. Two lookup tables are used to check consistency with the
momentum and z vertex. If the pair of stubs pass the selection, a stub-pair tracklet candidate is written out.

Figure 7 shows the distributions of the number of stub pairs that each tracklet engine has to
process. Since each step operates with a fixed latency, we have a maximum number of stub pairs
that can be processed per event. With 450 ns per event and a clock speed of 240MHz, a maximum
of 108 input stub pairs can be considered. As can be seen in the figure, there are cases where there
are more than 108 input stubs; the 109th stub-pair and later will not be processed and could lead
to an inefficiency of the tracking algorithm. However, due to the built-in redundancy of seeding in
multiple layers, the ultimate effect of this truncation on the final efficiency is observed to be small,
as discussed in Section 6.
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Figure 7. Simulation of the distribution of the number of stub pairs that TrackletEngines seeding in the two
innermost barrel layers (L1+L2) have to process for tt̄ events with an average pileup of 200. The grey curve
shows the number of stub pairs that the module has to consider, while the black curve the number of stub
pairs that pass. The blue line corresponds to 108 processing steps per bunch crossing and the red line to 72
processing steps. With a cut-off at 108 processing steps, we drop less than 0.1% of the stub pairs.

4 Demonstrator system

To explore the feasibility of the tracklet system, a demonstrator system was completed in 2016.
The goal of the test was to implement an end-to-end working system, using simulated data, to
validate the design methodology and system modeling. The hardware used for the demonstrator
system were MicroTCA boards with a Xilinx Virtex-7 (XC7VX690T-2) FPGA [9] and a Xilinx
Zynq-7000 SoC for configuration and outside communication. These so-called CTP7 boards [10]
were developed for the current CMS trigger [11, 12]. Implementing a full sector in one FPGA
on a processing board is out of reach for the older Virtex-7 class FPGAs, so for the demonstrator
system we focused on the implementation of a half-sector. The simulated data were derived from a
Geant-based simulation of the CMS detector [13]. Data sets used include single particle (electron,
muon, and pion) events, as well as fully simulated top quark-antiquark (tt̄) events. To accurately
simulate HL-LHC conditions, up to 200 extra pp collisions were included in addition to the event
under study.

The demonstrator system consisted of three φ sectors and one time-multiplexing slice. A total
of four MicroTCA processing blades were used, one for the central φ sector, two for its nearest
neighbor sectors, and one blade that acts as a data source (providing input stubs) and a data sink
(accepting the final output tracks). The system configuration is shown in Figure 8. The demonstrator
was fed with simulated data derived from the simulation of the CMS detector mentioned above.
An AMC13 [14] card provided the central clock distribution. The inter-board communication used
8b/10b encoding with 10Gb/s link speed. The demonstrator system is shown in Figure 9. The
demonstrator system assumed 28 sector processors and a time multiplexing factor of six, leading to
new data arriving every 150 ns.
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Figure 8. Schematic of the demonstrator system. Three MicroTCA blades implement three sectors and a
fourth blade serves as the source and sink of data. The central sector processor is the actual system under
test.

Figure 9. The demonstrator test system. The system is based on the CTP7 MicroTCA blade, used in the
current CMS trigger. The system consists of four CTP7s. Each CTP7 has 63 input and 48 output 10Gb/s
optical links.

For the demonstration, two complete implementations of the firmware project – one for half
the barrel (+z) and one for a quarter of the barrel plus the forward (+z) endcap – were used to
demonstrate the feasibility of this approach for the full η range of the detector. These two projects
cover two regions of the detector:

1. The barrel-only region. These tracks only traverse the cylindrical part of the detectors.

2. The hybrid region. Tracks that traverse both a part of the barrel region as well as the disk
region of the detector.

By dividing the projects into these two regions, we exercised all regions of the detector while still
working within the constraints of the Virtex-7 FPGAs.

A sketch of the tracker regions covered by each of the implementations is shown in Figure 10.
As discussed in Section 3, data formats and calculations are slightly different in the two regions
of the detector. The differences are absorbed using parameter statements in the Verilog code and
determined at module instantiation time.
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Figure 10. Sketch of the +z portion of the detector in the r-z plane. A box in blue shows the detector
region covered by the half barrel implementation. A box in green shows the detector region covered by the
other project that spans a quarter of the barrel, the transition region between the barrel and endcaps, and the
endcaps.

4.1 Validation and testing

Events are processed through the demonstrator as illustrated in Figure 8. First, input stubs obtained
from simulations are written to a piece of hardware that emulates the data delivery in the final
system. On a GO signal, stubs were sent to the three sector processor boards. A new event was
sent to each sector board every 150 ns. The events are processed and projections and matches are
sent to and received from neighboring boards. The final output tracks are received by the track sink
board. Systematic studies were performed to compare the integer-based emulation of the tracklet
algorithm with a HDL simulation of the FPGA using Xilinx Vivado, as well as with the output
tracks from the demonstrator system. Full agreement was observed in processing single-track events
between the emulation, FPGA simulation, and board output. Better than 99.9% agreement was
observed with many-track events with high pileup (Figure 11). The demonstrator has a 28-fold
azimuthal symmetry (i.e., 28 sectors), so we tested the full +z range by using different input data,
corresponding to the different sectors, without any modifications of the demonstrator itself.

4.2 System latency

Each processing step of the tracklet algorithm takes a fixed number of clock cycles to process its
input data. The processing modules’ latency from receiving upstream data to producing the first
result varies between 1–50 cycles depending on the module. Each module then continues to handle
the data of the same event and write to the memories for 150 ns (time multiplexing factor of six)
before switching to the next event. For some of the steps where data transmission between the
neighboring sectors is necessary, latency due to inter-board links is also included. The measured
transmission latency is 316.7 ns (76 clock cycles), which includes serialization and de-serialization
via the Xilinx GTH transceivers, data propagation in 15m long optical fibers, channel bonding,
and time needed to prepare and pass data from processing modules to the transceivers. The total
latency of the algorithm is therefore the sum of the processing module latencies and processing
time, as well as inter-board data transmission latency, of all the processing steps. The latency of
the hardware demonstrator also includes the data transmission latency for receiving stubs from and
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Figure 11. Comparison of the final track pT between C++ emulation and HDL simulation, for simulated tt̄
events with 200 pileup events. Better than 99% agreement is observed.

sending final tracks back to the data source/sink blade. A summary of the estimated latency is
shown in Table 1. With a 240MHz clock and a time-multiplex factor of six, the total estimated
latency is 3345.8 ns. The total latency of the demonstrator has also been measured with a clock
counter on the data source/sink blade. We start the counter when sending out stubs, and record
the counter outputs when receiving valid tracks. The actual measurement is done with 240MHz
processing clock. The measured latency is 3333 ns, which agrees within three clock cycles (0.4%)
with the model.

For the tracklet 2.0 release, we are implementing the algorithm in C/C++ using the Xilinx
Vivado HLS tools [15]. We believe HLS will produce a code base that will be easier to maintain
and provides a lower barrier for entry of new people to contribute to the development of the
project. Tracklet 2.0 provides several improvements over the algorithm as implemented for the
demonstrator. The algorithmic improvements from using the “long virtual modules” will reduce
the effects of truncation and the new sector definitions remove the need for nearest neighbor
communication, which provides a significant improvement in the latency. The estimated latency
with this new configuration is shown in Table 2, and we fit easily within the latency target of 4 µs.

The half-sector project includes seeding in multiple layer and disk combinations (L1+L2,
L3+L4, D1+D2, and D3+D4). This project consists of the following processing modules: 12
LayerRouters, 22 VMRouters, 126 TrackletEngines, 8 TrackletCalculators, 22 ProjectionRouters,
156 MatchEngines, 22 MatchCalculators, 4 TrackFits and one PurgeDuplicate. The resources used
in the demonstrator project are shown in Table 3. In Table 4, resource usage is summarized from
the Verilog synthesis for the full sector project. The most heavily used resource is BRAMs. We
run the project at 240MHz, limited by external constraints. First, we operated the links at 10Gb/s
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Table 1. Demonstrator latency model using the tracklet 1.0 configuration. For each step, the processing time
and latency is given. For steps involving data transfers, the link latency is given. The model and measured
latency agree within 0.4% (three clock cycles).

Step Proc. Step Step Link Step
time latency latency delay total
(ns) (CLK) (ns) (ns) (ns)

Input link 0.0 1 4.2 316.7 320.8
Layer Router 150.0 1 4.2 - 154.2
VM Router 150.0 4 16.7 - 166.7
Tracklet Engine 150.0 5 20.8 - 170.8
Tracklet Calculation 150.0 43 179.2 - 329.2
Projection Transceiver 150.0 13 54.2 316.7 520.8
Projection Router 150.0 5 20.8 - 170.8
Match Engine 150.0 6 25.0 - 175.0
Match Calculator 150.0 16 66.7 - 216.7
Match Transceiver 150.0 12 50.0 316.7 516.7
Track Fit 150.0 26 108.3 - 258.3
Duplicate Removal 0.0 6 25.0 - 25.0
Output Link 0.0 1 4.2 316.7 320.8
Total 1500.0 139 579.2 1266.7 3345.8

Table 2. The estimated latency without sector-to-sector communication and with a time-multiplex factor of
18. The same clock speed (240MHz) as in the demonstrator is assumed. We assign conservatively 150 ns
for the link latency, as studies suggest it could be reduced by 200 ns compared to the demonstrator version
with improved link speed and protocol.

Step Proc. Step Step Link Step
time latency latency delay total
(ns) (CLK) (ns) (ns) (ns)

Input link 0.0 1 4.2 150.0 154.2
VM Router 450.0 4 16.7 - 466.7
Tracklet Engine 450.0 5 20.8 - 470.8
Tracklet Calculation 450.0 43 179.2 - 529.2
Projection Router 450.0 5 20.8 - 470.8
Match Engine 450.0 6 25.0 - 475.0
Match Calculator 450.0 16 66.7 - 516.7
Track Fit 450.0 26 108.3 - 558.3
Duplicate Removal 0.0 6 25.0 - 25.0
Output Link 0.0 1 4.2 150.0 154.2
Total 3150.0 113 470.8 300.0 3920.8
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Table 3. Summary of post-synthesis resource utilization on the Virtex-7 FPGA for the half sector project.
Resource type Estimated utilization (%)
Lookup tables (LUT) 46
LUT memory (LUTRAM) 29
Flip-flops (FF) 39
Block RAMs (BRAM) 61
Digital signal processing (DSP) blocks 21
Input and outputs (I/O) 8
Gigabit transceivers (GT) 80
Global clock buffers (BUFG) 38
Mixed-mode clock manager (MMCM) modules 15

with a 8b/10b encoding. This means that we transfer data packages of 32 bits at 250MHz. We also
want the clock frequency to be a multiple of the 40MHz bunch collision rate in CMS. This means
that if we operate at 240MHz and produce 32 bit data packages at this clock speed the links can
transport the data. Of course it would be desirable to go to a higher clock speed to allow more
processing in a fixed time. However, the current implementation provides simplicity and increases
in the clock speed can be considered in future improvements.

Table 4. FPGA resource utilization as reported by Vivado for the Tracklet 2.0 full sector project, compared
to to the resources available in the Xilinx Ultrascale+ VU7P device.

Resource Unit VU7P Tracklet 2.0 Fraction used (%)
18kbit BRAMs count 2,810 1,108 39
DRAM Mb 24 4.55 18
288kbit UltraRAMs count 625 200 32
DSP count 4,560 1,696 37

5 Hardware platform and system architecture

A high-level overview of the tracker data flow is shown in Figure 12. The data from the tracker are
sent off the detector to the Data, Trigger, and Control (DTC) cards. About 90% of the bandwidth
is dedicated to a reduced-precision data stream that is sent to the L1 tracking system, or the “track
trigger” (labeled TT in the figure and described in this paper). Data from the track trigger are
sent downstream to a part of the L1 trigger system (L1T) called the correlator system, where the
information from the tracking detector is combined with information from other subdetectors to
identify electrons, muons, and other physics quantities2. Based on these data, a L1 accept (L1A)
is issued or not. If the L1A is issued, a signal is sent to the DTC, which then initiates the readout
of the full-precision data from the detector for that bunch crossing. These data are then sent to
secondary software trigger processors (the high-level trigger, HLT) for potential storage to disk. If

2These quantities are used to decide if the event should be dropped or stored for further analysis. In total, CMS can
store about 0.0025% of the collisions for offline study.
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Figure 12. High-level overview of the data flow for the tracker data, showing how the track trigger is
integrated into the detector readout and the trigger flow.

the L1A is not issued, the data are discarded by letting the on-detector data buffers expire. As can
be seen in the diagram, the track trigger receives its data upstream from the DTC cards and sends
the results of its processing downstream to the L1 trigger.

As was mentioned in Section 2.2, the processing of the L1 tracking occurs in sectors that span
the entire polar angle and a slice in φ. Each sector is assigned a dedicated hardware unit, the sector
processor. The system design centers around these sector processors. Each sector processor is
foreseen to be a single ATCA blade with a Xilinx Virtex Ultrascale+-class FPGA. The heart of
the tracklet approach is this FPGA. It must have adequate DSP resources (about 2000 DSP48E2
equivalent units), I/O (about 50 high-speed serial transceivers running at 28Gb/s), 2800 18 kb
BRAMs, approximately 2.5Mb of distributed LUT RAM, and adequate LUT resources. These
requirements are met by the Xilinx Virtex UltraScale+ family. The input data (stubs) will be
received from the upstream DTCs via 24–36 high-speed optical serial links running at 28Gb/s.
Output data (reconstructed tracks) will be sent downstream over a single 25Gb/s link. The details
of the foreseen cabling for the system is discussed in the section below.

The complete set of sector processors is duplicated a small number of times (time multiplexing
of 18 is currently under consideration) and data are distributed to these identical copies in a round-
robin scheme. For a systemwith 9 sectors and a factor of 18 time-multiplexing, the complete system
will consist of 162 blades.

The trigger is implemented in custom hardware and sits in a well-shielded cavern away from
the detector; as such radiation and single-event upsets are not a concern.

5.1 Cabling

The baseline strategy for the project assumes a tilted barrel geometry [4] as expected in the final
system, as well as 9 φ-regions for track finding. Information from the tracker is sent to the DTC
boards and from there onward to the sector processing boards; a time-multiplex factor of 18 is
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assumed. The DTC layout assumed here is as follows: a total of 108 DTCs for a half-detector
(+ and −z); 54 for the PS modules, connected to the inner three layers of the half-barrel and the
inner seven rings of the endcap, and 54 for the 2S modules, connected to the outer three layers of
the half-barrel and the outer five rings of the endcap. The DTCs are arranged such that they cover
“nonants” in φ (nonants is referring to the currently proposed division of the readout of the outer
tracker in a nine-fold symmetry) over a half length of the tracker, and so each track finder φ nonant
and half-length connects to 12 DTCs (that is, 108 DTCs per half length in z split into nine in φ).
Within each φ nonant and half-length, the modules connected to each DTC are distributed in both
the barrel and disk regions in order to better balance the stub load in each DTC, and to minimize
or avoid multiple hits along a track being routed to a single DTC. A summary of the DTC layout
within a φ nonant and half-length is shown in Table 5. We also assume a maximum of 72 modules
connected per DTC, and that each DTC handles a maximum output of 672Gb/s. This system
also requires that the sector processor boards are arranged within two ATCA shelves for each nth

time-multiplexed slice.
As mentioned above, the DTCs will process the data from each of the modules in the tracker.

Each DTC will connect to one front-end cable, and each cable will handle 144 fibers; 72 front-end
fibers running at 10Gb/s (inner detector layers) or 5Gb/s (outer detector layers) coming in, and
72 front-end fibers running at 2.5Gb/s going out. The DTC sends data to the track trigger using
28Gb/s cables, with a maximum capacity of 672Gb/s for each DTC (i.e.,24 × 28Gb/s links). The
global coordinate information is sent to the track finder and uses 36 bits per stub, and with 64/66 bit
encoding we assume a total of 45 bits per stub.

The layout of the DTCs’ connections to the detector modules divides the detector into φ-
nonants, and into two halves along z. Twelve DTCs are connected to each φ-nonant and z half, for a
total of 12 × 18 = 216 DTCs assuming a 9-sector processor configuration; this corresponds to one
sector processor per nonant. However, due to the curvature of tracks within the detector, a small
amount of data duplication is needed near the boundaries of sectors to ensure that track formation
can take place entirely within one sector processor. The tracker is divided into 9 sectors at a critical
radius rc. Tracklets generated within a sector which, during the projection step, generate tracks
that cross rc within a particular sector are kept within that sector, while those tracklets which cross
rc in an adjacent sector are discarded (they will be rediscovered by the adjacent sector). At radii
above and below rc, curves corresponding to the lowest acceptable pT are drawn from each edge
of a sector, and all stubs that lie within these curves have the potential to form tracks within the
sector, and so must be sent to the corresponding sector processor. The curves in adjacent sectors
will overlap at radii above and below rc, and it is in these small regions where data duplication
is necessary. The parameter rc is tunable and can be chosen based on an optimization of the
algorithmic precision, algorithmic efficiency, load balancing in the DTCs, and constraints on the
number of links available to the DTCs. If the nine sector processors were aligned with the DTC
φ-nonants, the overlap regions on either side of a detector would require each DTC to communicate
with three sector processors. To reduce the number of required output links from the DTCs, the 9
sectors are offset from the φ nonants such that each of the DTC nonants only needs to communicate
with at most two sector processors.

The cabling requirements are studied assuming 9 sectors, 18 time-multiplexed slices, and
28Gb/s links from the DTCs to the sector processors. These cabling studies have been performed
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Table 5. DTC layout in each nonant and half length in z. This layout yields a total of 216 DTCs. Each line
corresponds to one DTC; there are 12 DTCs for each side of the detector (+z and −z).
Module type Connected detector regions

PS Layer 1 Flat Region Disk 1, Rings 1-7 Disk 3, Rings 1-3 Disk 5, Rings 1-3
Layer 1 Tilted Region Disk 2, Rings 5-7 Disk 4, Rings 1-3
Layer 2 Disk 2, Rings 1-4
Layer 3 Flat Region Disk 2, Rings 8-10
Layer 3 Tilted Region Disk 4, Rings 4-7
Disk 1, Rings 8-10 Disk 3, Rings 4-7 Disk 5, Rings 4-7

2S Layer 4
Layer 5
Layer 6
Layer 6 Disk 3, Rings 8-12
Disk 1, Rings 11-15 Disk 4, Rings 8-12
Disk 2, Rings 11-15 Disk 5, Rings 8-12

using simulated tt̄ events, with an average of 200 overlaid pileup interactions, to determine whether,
assuming the cabling configuration described above, 28Gb/s cables have sufficient bandwidth to
deliver the stubs from the DTCs to the sector processors. For a single 28Gb/s link, one can transfer
information for a maximum of 210 stubs, and the proposed cabling configuration was found to be
sufficient to transfer the stub information from the DTCs to the appropriate sector processors with
zero stub loss.

The described cabling scheme requires 36 output links from the DTCs for a time-multiplex
factor of 18. This corresponds to 48 input links to each sector processor (24 DTCs/nonant × 2
nonants) resulting in a total of 7776 total links between the DTCs and sector processors. We
conclude from these studies that the I/O requirements of the algorithm are met by the system, and
that 28Gb/s links have enough bandwidth for transferring the stub information.

6 Physics performance

In this section the expected performance of the tracklet algorithm is discussed. The studies use
simulated data derived from a Geant4-based simulation of the CMS detector [13]. To evaluate the
performance, a C++-based implementation of the algorithm is used. It models the limitations in the
hardware implementation resulting from fixed-point arithmetic, finite buffer lengths, and similar
constraints. This “emulation” algorithm, or emulator, truncates all calculations and bit widths as is
done in the hardware, and implements all internal buffers andmemories as they exist in the firmware.
The firmware implementation, which runs on the hardware, is made to match the emulator bit-by-bit
in our qualification process. The precision of the calculations used in the emulator are tuned to
ensure sufficient accuracy to meet the required physics performance goals in the trigger.

The demonstrator setup for tracklet 1.0 shows excellent agreement between the actual firmware
results and the integer-based C++ emulation of the system. For single object events, the output
tracks from the firmware have 100% bitwise compatibility with the integer-based emulation. For
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Figure 13. Final tracking efficiency for single muons with pT > 10 GeV in events without pileup, shown as
a function of muon η for different layer and disk combinations in forming the seed tracklets. The overlapping
curves demonstrate the redundancy in seeding as a function of pseudorapidity.

busier events, for example tt̄ with an average pileup of 200, the emulation and firmware tracks agree
to better than 99%, as was shown in Figure 11. These tests validate the use of the integer-based
emulation code for extrapolating to future performance improvements. This section shows the
performance of the tracklet 2.0 configuration.

6.1 Performance of different steps of the tracklet algorithm

The efficiency for identifying charged particle trajectories, using different seeding combinations, is
shown in Figure 13 for a simulated sample of events, each containing a single muon without any
additional pileup interactions, using the integer-based C++ emulation of the algorithm. With the
multiple seeding combinations, the same particle trajectory is often found multiple times, which
ensures redundancy and a complete detector coverage. As illustrated in Figure 14, already the
resolution of the tracking seeds (tracklets) is good – within a factor of two or less of the parameter
resolutions of the fitted track, motivating the feasibility of the road search algorithm. That is, given
the resolution of the seeds, we can use narrow windows in projecting the tracklet seeds to other
layers and disks to search for matching stubs. This is a key element in limiting the number of
combinations that must be tried by the algorithm.

The track parameters found by the tracklet calculator are used to project the tracklet to other
layers and disks. This projection is performed in the tracklet calculator to a nominal position of
the layer or disk. In the match calculator, once a candidate stub is found to which the projection is
matched, an exact projection is calculated using the projection derivatives ∂φproj/∂r and ∂zproj/∂r .
A projection-stub match is accepted if the r–φ and z (or r in disks) residuals pass a selection
criterium that depends on (i) in which layer or disk the match is found and (ii) which combination
of layers or disks were used to form the tracklet. The residuals are tuned to be nearly 100% efficient
for trajectories from prompt particles originating from the primary interaction vertex.

Next, the performance of the duplicate removal is studied. Figure 15 shows for single-muon
events the number of tracks found per event prior to any duplicate removal and after the duplicate
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Figure 14. Residuals for relative pT (top left), φ0 (top right), η (bottom left), and z0 (bottom right) for the
tracking seeds, tracklets, as solid black curves as compared to residuals for the full, final track fit in dashed
blue curves. The track parameters are calculated using fixed-point calculations and shown for single muons
(µ±) with 2 < pT < 10 GeV and |η | < 2.4 in events without pileup.

removal between tracks within a φ sector. For events containing a single muon, one track per event
is expected, which is what is observed for most events after the duplicate removal step.

6.2 Final tracking performance

The estimated performance of the tracklet algorithm is studied with the integer-based emulation of
the algorithm. The L1 tracking efficiency as a function of pT and η for single muons or electrons
(generated with a uniform pT distribution) in events without pileup is shown in Figure 16. Electrons
have a lower efficiency compared to muons due to their higher interaction rate with the detector
material at the momenta in question.
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Similarly in Figure 17, the L1 tracking efficiency as a function of pT and η is shown for charged
particles from tt̄ production, in events with an average pileup of 0, 140, or 200. The efficiency is
computed as implemented in the demonstrator, i.e., it includes the effects of truncating data. These
effects are minimal, for two main reasons, (i) because of the large parallelization of the system, most
of the modules are sparsely populated, (ii) the different seeding combinations provide additional
redundancy that can recover tracks that may otherwise be lost.

The L1 track parameter resolutions for φ, η, z0, and the relative resolution in pT are shown in
Figure 18 for charged particles from tt̄ production, in events with an average pileup of 200. The
resolutions are shown as a function of |η | for two different ranges in pT (2 < pT < 8 GeV and
pT > 8 GeV). The z0 resolution is about 1mm in the central barrel region, similar to the average
separation of pileup vertices. The z0 resolution slightly worsens with increasing |η | due to (i) the
module tilts, and (ii), for |η | > 2.2, the fact that a charged particle in this region does not cross a
barrel layer with PS modules but only disk modules, which due to their orientation do not provide a
precise z measurement. The momentum resolution is about 1% for central η and increases to about
4% for the outermost η region. The momentum resolution is increased for higher values of |η | due
to the increased extrapolation distance to the beam axis, where the track parameters are calculated.
The precise z0 resolution allows the selection of tracks originating from a common vertex for use
in L1 trigger algorithms and the accurate pT resolution results in sharp muon trigger thresholds.

The track rates are shown in Figure 19, where the truth track rate (defined as the "denominator"
tracks from the efficiency plots, namely reconstructable truth particles that produce stubs in at least
four layers or disks of the outer tracker) is shown along with the total rate of reconstructed L1 tracks
above 2 GeV along with the track rate when requiring a set of quality criteria using the stub bend
information and the track fit χ2. The latter reduces the contribution from misreconstructed ("fake")
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Figure 16. Efficiency as a function of η (top row) and pT (bottom row) for muons and electrons with
2 < pT < 8 GeV (left column) or 2 < pT < 100 GeV (right column) in single-particle events without pileup.
The propensity for electrons to radiate in the detector leads to a slower turn-on and lower plateau in the
efficiency.

tracks, which has a fractionally small contribution to the overall track rate that is in turn completely
dominated by low-pT tracks where the fake rate is very small, but is important to minimize for some
use-cases of the L1 tracks, e.g. track-based missing transverse energy determination or hadronic
tau lepton reconstruction based on track information.

In summary, the track performance shown in this section achieves high track finding efficiency
across the full pT and η range covered. Additionally, track parameter resolutions are sufficiently
precise for the downstream L1 trigger, where the tracks will either be correlated with information
from other CMS detector systems, or used standalone to form tracker-only L1 trigger signatures.

7 Conclusions

For the High-Luminosity LHC upgrade, the CMS experiment will require a new tracking system
that enables the identification of charged particle trajectories in real-time to maintain high efficien-
cies for identifying physics objects at manageable rates. The tracklet approach is one proposed
implementation of the real-time track finding. The method is based on a road-search algorithm
and uses commercially available FPGA technology for maximum flexibility. An end-to-end sys-
tem demonstrator consisting of a slice of the detector in azimuth has been implemented using a
Virtex-7 FPGA-based MicroTCA blade. The final system, which is to be deployed in 2025, will use
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Figure 17. Efficiency as a function of η (top row) and pT (bottom row) for charged particles in tt̄ events, with
an average pileup of 0, 140, or 200. Possible effects from truncation or the usage of fixed-point calculations
are included.

future-generation FPGAs. To scale the demonstrator to the final system, only a small extrapolation
is required. Currently, the demonstrator only covers the +z side of the detector; in the full system,
both sides will be covered. The detector is largely symmetric in ±z, so the addition of the −z side
only results in increased occupancy, which is handled by more instances of already-existing HDL
modules. Since more data are coming into the sector processor, the total I/O requirements will
increase by roughly a factor of three, taking into account both the increase of the total data rate
and the cabling scheme of the new detector. These I/O requirements are within the capabilities
of the specifications of the Xilinx Virtex UltraScale+ family of FPGAs. None of these changes
represent more than an evolution of the demonstrator. The demonstrator has been used to validate
the algorithm and board-to-board communication, to measure timing and latency, and to establish
the algorithm performance. Studies from the demonstrator, processing events from the input stubs
to the final output tracks, show that the tracklet algorithm meets timing and efficiency requirements
for the final system.

The tracklet 1.0 demonstrator showed the feasibility of the tracklet approach for L1 tracking.
Following this demonstration a number of algorithmic improvements were developed and described
in this paper for tracklet 2.0. The L1 tracking algorithm was shown to achieve high efficiencies, e.g.
an efficiency of 90% or higher for charged particles in tt̄ events, as well as precise track parameter
resolutions, such as a 1mm (5mm) z0 resolution at central (forward) |η |, and a relative pT resolution
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Figure 18. Relative pT resolution (σ(pT)/pT) (top left) and resolution in φ0 (top right), η (bottom left),
and z0 (bottom right) for charged particles in tt̄ events with an average pileup of 200. The filled circles / sold
lines correspond to the 68% confidence intervals, while the open circles / dashes lines correspond to the 90%
confidence intervals. The resolutions are shown separately for tracks with 2 < pT < 8 GeV and pT > 8 GeV.
Possible effects from truncation or the usage of fixed-point calculations are included.
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ranging between 1–4%. This performance is more than sufficient for how the tracks will be used in
the downstream L1 trigger.

Beyond tracklet 2.0, improvements are considered that will enhance the efficiency for displaced
tracking as well as reduce the resource needs and latency by combining different processing steps.
In particular, we can combine the ProjectionRouter, MatchEngine, and MatchCalculator modules
into one combined module and the TrackletEngine and the TrackletCalculator into another module.
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