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ing resources both now and in the future. New het-
erogeneous computing paradigms on dedicated hard-
ware with increased parallelization, such as Field Pro-

grammable Gate Arrays (FPGAs), offer exciting solu-
tions with large potential gains. The growing applica-
tions of machine learning algorithms in particle physics

for simulation, reconstruction, and analysis are natu-
rally deployed on such platforms. We demonstrate that
the acceleration of machine learning inference as a web
service represents a heterogeneous computing solution

for particle physics experiments that requires minimal
modification to the current computing model. As ex-
amples, we retrain the ResNet-50 convolutional neural

network to demonstrate state-of-the-art performance
for top quark jet tagging at the LHC and apply a
ResNet-50 model with transfer learning for neutrino
event classification. Using Project Brainwave by Mi-
crosoft to accelerate the ResNet-50 image classifica-
tion model, we achieve average inference times of 60
(10) milliseconds with our experimental physics soft-

ware framework using Brainwave as a cloud (edge or
on-premises) service, representing an improvement by
a factor of approximately 30 (175) in model inference
latency over traditional CPU inference in current ex-
perimental hardware. A single FPGA service accessed
by many CPUs achieves a throughput of 600–700 infer-
ences per second using an image batch of one, compa-

rable to large batch-size GPU throughput and signifi-
cantly better than small batch-size GPU throughput.
Deployed as an edge or cloud service for the particle
physics computing model, coprocessor accelerators can
have a higher duty cycle and are potentially much more
cost-effective.

Keywords particle physics, heterogeneous computing,
FPGA, machine learning
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1 Introduction

With large datasets and high data acquisition rates,
high-performance and high-throughput computing re-
sources are an essential element of the experimental
particle physics program. These experiments are con-
stantly increasing in both sophistication of detector
technology and intensity of particle beams. As such,
particle physics datasets are growing in size just as the
algorithms that process the data are growing in com-
plexity. For example, the high luminosity phase of the
Large Hadron Collider (HL-LHC) will deliver 15 times

more data than the current LHC run. The HL-LHC
will collide bunches of protons at a rate of 40 MHz, and
the collision environment will have 5 times as many

particles per collision [1]. The Compact Muon Solenoid
(CMS) experiment will be upgraded for the HL-LHC
with up to 10 times more readout channels. Through a

series of online filters, CMS aims to store HL-LHC colli-
sion events at a rate of 5 kHz. Such a data rate leads to
datasets that are exabytes in scale [2]. Future neutrino
experiments such as Deep Underground Neutrino Ex-

periment (DUNE) [3] and cosmology experiments like
Square Kilometre Array (SKA) [4] are expected to pro-
duce datasets at the exabyte scale.

In the past, the physics and computing communities
relied largely on the progress of silicon technologies to
handle growing computing requirements. However, at
present, improvement in single processor performance
is stalling due to changes in the scaling of power con-
sumption [5]. The current particle physics computing
paradigms will not suffice to simulate, process, and an-
alyze the massive datasets that the next-generation ex-
perimental facilities will deliver. New technologies that
provide order-of-magnitude improvements are needed.

Concurrently, the ubiquity of sophisticated de-
tectors with complex outputs has led to the quick
adoption of machine learning (ML) algorithms as
tools to reconstruct physics processes. Neutrino ex-

periments currently use state-of-the-art convolutional
neural networks (CNNs) [6,7], such as GoogLeNet and
ResNet-50 [8], to perform the neutrino event recon-
struction and identification. At the LHC, ML methods
are used in all stages of the ATLAS, CMS, LHCb, and

ALICE experiments, from low-level calibration of in-
dividual reconstructed particles [9] to high-level opti-
mization of final-state event topologies [10]. ML was a
vital component of the Higgs boson discovery [11,12]
and is now being explored for the first level of process-
ing: low latency, sub-microsecond online filtering appli-
cations [13,14]. Across big science, such as cosmology
and large astrophysical surveys, similar trends exist as
the experiments grow and the data rates increase.

While the computing challenge in particle physics
is a vital concern for current and future experiments,
it is not unique. With the rise of so-called “big data,”
Internet of Things (IoT), and the increase in the quan-
tity of data across a wide range of scientific fields, the
sophisticated large-scale processing of big data has be-
come a global challenge. At the forefront of this trend
is the need for new computing resources to handle both
the training and inference of large ML models.

In this paper, we focus on the inference of deep
ML models as a solution for processing large datasets;

inference is computationally intensive and runs repeat-
edly on hundreds of billions of events. A growing trend
to improve computing power has been the develop-

ment of hardware that is dedicated to accelerating cer-
tain kinds of computations. Pairing a specialized co-
processor with a traditional CPU, referred to as het-

erogeneous computing, greatly improves performance.
These specialized coprocessors, including GPUs, Field
Programmable Gate Arrays (FPGAs), and Applica-
tion Specific Integrated Circuits (ASICs), utilize natu-

ral parallelization and provide higher data throughput.
ML algorithms, and in particular deep neural networks,
are at the forefront of this computing revolution due to

their high parallelizability and common computational
needs.

To capitalize on this new wave of heterogeneous
computing and specialized hardware, particle physicists

have two primary options:

1. Adapt domain-specific algorithms to run on special-
ized accelerator hardware.
This option takes advantage of specific human ex-
pert knowledge, but can be challenging to imple-
ment on new and potentially changing hardware
platforms with different computing paradigms (such
as CUDA or Verilog).

2. Design ML algorithms to replace domain-specific al-
gorithms.
This option has the advantage of running natively
on specialized hardware, but it can be a challenge to
map specific physics problems onto ML solutions.

In this paper, we explore how such heterogeneous

computing resources can be deployed within the current
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computing model for particle physics in a scalable and
non-disruptive way. While accelerating domain-specific
algorithms on specialized hardware is possible, in this
paper we study the second option, where an ML algo-
rithm is adapted to solve a challenge and accelerated
using a specialized hardware platform. We will present
physics results for a publicly available top quark tagging
dataset for the LHC [15] and discuss how this could be
applied for neutrino experiments such as NOvA [16].
This study focuses on the newly available Microsoft
Project Brainwave platform that deploys FPGA copro-
cessors as a service at datacenter scale [17]. Brainwave
provides a first scalable platform to study, though other
such options exist. Results from this study will serve as
a performance benchmark for any similar systems and
will provide valuable lessons for applying new technolo-
gies to particle physics computing.

The rest of this paper is organized as follows. In
Section 2, we describe the requirements of the particle
physics computing model that is used in collider ex-
periments at the LHC and neutrino experiments such

as DUNE. We detail the challenges facing this com-
puting model in the future. In Section 3, we explore
some example use cases to be deployed on the Mi-

crosoft Brainwave platform. We train and evaluate a
dedicated model identifying particles at the LHC and
discuss the potential application for neutrino physics.

In Section 4, we then describe the Microsoft Brainwave
platform and how we integrate it into our experimental
computing model to accelerate ML inference. In Sec-
tion 5, we present latency results from tests of FPGA

coprocessors as a service and compare the results to
benchmark values for CPUs and GPUs. We also pro-
vide first studies on the scalability of such an approach.

Finally, in Section 6, we conclude by summarizing the
study and discussing the next steps required for further
development of this program.

2 Computing in particle physics

2.1 Particle physics computing model

The computing model for many large scale physics ex-
periments is based on processing events. An event here
is defined as a measurement of some physical process
of interest; in the case of the LHC, it is a collision of
bunches of protons every 25 ns. The event consists of
complex detector signals that are filtered, combined,

and analyzed; typically, the raw signal inputs are con-
verted into objects with a more physical meaning. There
is both online processing, in which the event is selected
from a buffer and analyzed in real time, and offline pro-
cessing, in which the event has been written to disk and

is more thoroughly analyzed with less stringent latency
requirements. The online processing system, called the
trigger, reduces the rate of events to a manageable level
to be recorded for offline processing. The trigger is typ-
ically divided into multiple tiers. The first tier (Level-1,
L1) is performed with custom electronics with very low
latency (1–10 µs) where the latency is a fixed size for
every event. The second step (high level trigger, HLT) is
performed on more standard computing resources and
has a variable per-event latency of 10–100 ms. Finally,
offline analysis of the saved events passing the HLT can
take significantly longer, though ultimately the offline
processing time is limited by available computing re-
sources.

In this paper, we consider the possible gains from
heterogeneous computing resources as applied to both
the HLT and offline processing steps. When consider-
ing how best to use new optimized computing resources

for physics, we must understand the implications of the
event processing model described above. An example
of the current computing model is shown in Fig. 1.
Event data is processed, often sequentially, across mul-

tiple CPU threads.

Event SetupDatabase

Configuration Parameter 
Sets

Input Source
(data or simulation)

Output 1
Output 2

…
threads

MODULE 2

MODULE 1

MODULE 3

MODULE 4

ML INFER 1

MODULE 5

Event Processing Job

ML INFER 2

MODULE 6

Fig. 1: A diagram of the computing model used in the
CMS software.

It is important to note that the basic processing
unit is a single event and performing the same task for
multiple events (batching) becomes significantly more
complex to manage. Because each event contains poten-
tially millions of channels of information, it is optimal

to load the needed components of that event into mem-
ory and then execute all desired algorithms for that
event. The tasks themselves, denoted in Fig. 1 as mod-
ules, can be very complex, either with time-consuming
physics-based algorithms, or, as is becoming more pop-
ular, machine learning algorithms. There may be dozens
or even hundreds of modules executed for each event. It
can be seen that the most time-consuming and complex
tasks will be the latency bottleneck in event processing.
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2.2 Upcoming computing challenges

In the next decade, the HL-LHC upgrade will increase
the LHC collision rate by an order of magnitude. The
CMS detector will undergo a series of upgrades to be
able to cope with the increased collision rate and the as-
sociated increase in radiation levels, which would dam-
age parts of the current detector beyond the point of
recovery. The detector upgrades include a new pixel
tracker with almost 2 billion readout channels and
a high granularity endcap calorimeter with 6 million
channels [18]. Both of these constitute more than an
order-of-magnitude increase in channels compared to
the current systems. Another consequence of the HL-
LHC upgrade will be an increase in the rate of multiple
collisions per proton bunch crossing (pileup). While the
current LHC configuration results in about 30 collisions
per bunch crossing, this value will increase to about 200
collisions at the HL-LHC.

The consequence is that the upgraded CMS detec-
tor will have to record and process more events, each of
which contain more channels and more energy deposits

from pileup. The time to analyze these extremely com-
plex events is currently simulated to be approximately
300 seconds. The impact on the CPU resources needed
by CMS is depicted in Fig. 2 [2]. The relative increase in

computing resources required for the HL-LHC is more
than a factor of 10 greater than current needs. Simi-
larly, the DUNE experiment, the largest liquid argon

neutrino detector ever designed, will comprise roughly
1 million channels with megahertz sampling and mil-
lisecond integration times [3]. Both of these frontier ex-
periments will need new solutions for event processing

to be able to make sense of the large datasets that will
be delivered in the next decades.

3 Machine learning for physics

In this section, we highlight examples of machine learn-
ing models relevant for physics to test in accelerator
hardware. These are not meant as realistic examples,
but rather as a proof-of-concept to be expanded when
more mature physics models can be accelerated on co-
processors.

3.1 ResNet-50 and other models

At the moment, only a limited number of neural net-
work architectures are available for acceleration on the
Brainwave platform. The available models—ResNet-50,

VGG-16 [19], and DenseNet-121 [20]—are CNNs opti-
mized for image classification. These CNNs typically
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Fig. 2: Estimated CPU resource needs for CMS in the
next decade [2]. THS06 stands for tera (1012) HEP-
SPEC06, a standard measure of the performance of a
CPU code used in high-energy physics.

contain several convolutional layers that extract mean-
ingful features of the image. This part of the network is

the most computationally intensive and is often called
the “featurizer.” The final part of the network is much
smaller and typically includes a few fully connected

layers with the final output corresponding to a set of
probabilities for each category. This part of the net-
work is called the “classifier.” In our study, we focus
on the ResNet-50 model. The FPGA is used to accel-

erate the featurizer step of the ResNet-50 inference,
while the classifier step is performed on the CPU. In
total, ResNet-50 contains approximately 25 million pa-

rameters and requires approximately 4 G-ops (4× 109)
for a single inference. While the neural network archi-
tectures are fixed, the weights can be retrained within

one of these available network architectures. We use
this workflow to train a ResNet-50 neural network for
a physics-specific task in Sec. 3.2 and Sec. 3.3. Even
with a restricted architecture, the amount of ML tasks
that can be performed with these sophisticated image
recognition models is substantial. We will explore two:
classification of boosted top quarks and neutrino flavor
classification.

However, we also stress that this is a proof-of-
concept study to demonstrate the improvements for
physics computing from heterogeneous computing plat-
forms as a service. As the technology matures rapidly,
we will also see an improvement in the software toolsets
associated with this new hardware. We expect the ca-
pability to translate any model to specialized hardware
to become available in the near future. In fact, several
tools are working towards this capability [21,22,23].
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3.2 Top tagging at the LHC

At the LHC, quarks and gluons originating from the
proton collisions produce collimated sprays of parti-
cles in the detector called jets. Studying the substruc-
ture of these jets is an important tool for identifying
their origin. There are broad physics applications from
studying Higgs boson properties, to searching for new
physics beyond the standard model such as supersym-
metry and dark matter, and measuring the properties
of quantum chromodynamics (QCD). Because this task
involves highly-correlated and high-dimensionality in-
puts, it is an active area of R&D for ML algorithms
in particle physics. Various representations of the data
have been considered, including fixed 2D images, vari-
able length sets, and graphs.

In this case study, we consider the task of classify-
ing collimated decays of top quarks in a jet from more
common jets originating from lighter quarks or gluons.

There are many ML approaches to this challenge in the
literature [24] and a public dataset, developed from one
of these studies, has been created for comparison [25,

15]. The Pythia8 [26,27] generator is used to produce
fully hadronic tt events for signal (known as“top quark
jets”) and QCD dijet events for background (known as

“QCD jets”) produced in 14 TeV proton-proton colli-
sions. No multiple parton interactions or pileup inter-
actions are included. Delphes [28] with the ATLAS
detector configuration is used to simulate detector ef-

fects. The Delphes E-flow candidates are clustered us-
ing FastJet [29,30] into anti-kT [31] jets with size
parameter R = 0.8. Jets with transverse momentum

(pT) between 550 and 650 GeV and |η| < 2 are se-
lected where η is the pseudorapidity. Top quark jets
are required to satisfy generator-level matching crite-
ria: the jet must be matched to a parton-level top quark

and all of its decay products within ∆R = 0.8, where
∆R =

√
(∆η)2 + (∆φ)2 and φ is the azimuthal angle.

Up to 200 jet constituent four-momenta are stored.

The Brainwave platform allows the use of custom
weights for specific applications computed by training
predefined CNNs. In this training, we treat the jets as
2D grayscale images in the η-φ plane and send them
as input to the ResNet-50 algorithm. Jet images are
created by summing jet constitutent pT in a 2D grid
of 224 × 224 in η and φ units from −1.2 to 1.2 cen-
tered on the jet axis [32]. In order to apply the stan-
dard ResNet-50 architecture, the images are normal-

ized such that each image has a range between 0 and
225 and duplicated 3 times, once for each RGB chan-
nel. We illustrate the images for QCD and top quark
jets in Fig. 3 where the images are averaged over 5,000
jets. Top quark jets have a 3-prong nature which mani-

fests as a broader radiation pattern when averaged over
many jets.

For our specific task, after the primary ResNet-50

featurizer we add our own custom classifier, which
comprises one fully connected layer of width 1024
with ReLU [33] activation and another fully connected
layer of width 2 with softmax activation. The train-
ing dataset contains about 1.2 million events while the
validation and test datasets each have approximately
400,000 events. The training is performed by minimiz-
ing the categorical cross-entropy loss function using the
Adam algorithm [34] with an initial learning rate of
10−3 and a minibatch size of 64 over 10 epochs on
an NVIDIA Tesla V100 GPU. The best model is cho-
sen based on the smallest average loss evaluated on
the validation dataset. The training for this particular
ResNet-50 model is unique because there is a partic-
ular quantized version of ResNet-50 that needs to be
“fine-tuned,” or trained with a smaller learning rate.
The quantized model is initialized using the weights

from the trained floating point model and trained with
an initial learning rate of 10−4 and a minibatch size of
32 for 10 additional epochs. Finally, as the quantized

model evaluated with the Brainwave FPGA service dif-
fers numerically from the quantized model evaluated on
the local GPU, an additional fine-tuning is applied to
the classifier after evaluating the ResNet-50 features

on Brainwave. This fine-tuning of the classifier layers
is performed over 100 epochs using the validation data
with the Adam algorithm, an initial learning 10−4, and

a batch size of 128.

After training, we evaluate the performance of our
trained ResNet-50 top tagger. The receiver operator

characteristic (ROC) curve is a graph of the false pos-
itive rate (background QCD jet efficiency) as a func-
tion of the true positive rate (top quark jet efficiency.)
It is customary to report three metrics for the per-
formance of the network on the top tagging dataset:
model accuracy, area under the ROC curve (AUC),
and background rejection power at a fixed signal ef-
ficiency of 30%, 1/εB(εS = 30%). Fig. 4 shows the
ROC curve comparison for the transfer learning ver-
sion of ResNet-50 as well as the fully retrained fea-
turizer with custom weights. In Table 1, the accuracy,
AUC, and 1/εB(εS = 30%) values are listed for each
model considered. The performance of the retrained

ResNet-50 compared to other models developed for
this dataset is state-of-the-art; the best performance is
1/εB(εS = 30%) ≈ 1000.

One other consideration in this study is the size of
the model. The typical particle physics models used
for top tagging are often several orders of magnitude
smaller than ResNet-50 in terms of the numbers of pa-
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Fig. 3: A comparison of QCD (left) and top (right) jet images averaged over 5,000 jets.
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Floating point: acc = 90.1%, AUC = 98.0%, 1/ B = 671
Quant.: acc. = 84.1%, AUC = 97.5%, 1/ B = 415
Quant., f.t.: acc. = 98.2%, AUC = 93.0%, 1/ B = 971
Brainwave: acc. = 92.6%, AUC = 98.2%, 1/ B = 935
Brainwave, f.t.: acc. = 93.5%, AUC = 98.3%, 1/ B = 1000

Fig. 4: The ROC curves showing the performance of
the floating point and quantized versions (before fine-

tuning, after fine-tuning, and using the Brainwave ser-
vice) of the ResNet-50 top tagging model.

Model Accuracy AUC 1/εB(εS = 30%)
Floating point 0.9009 0.9797 670.8

Quant. 0.8413 0.9754 414.6
Quant., f.t. 0.9296 0.9825 970.7
Brainwave 0.9257 0.9821 934.8

Brainwave, f.t. 0.9348 0.9830 999.6

Table 1: The performance of the evaluated models on
the top tagging dataset.

rameters and operations. However, it should be noted
that the best-performing models to date (ResNeXt50
and a directed graph CNN) [32,24] are within a factor
of a few in size with respect to the ResNet-50 model.
We emphasize here that this study is a proof-of-concept
for the physics performance and that there are many
other very challenging, computationally intensive algo-

rithms where machine learning is being explored. We
anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of

a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.

We illustrate the type of classification task needed
for neutrino experiments by using simulated neutrino
events and cosmic data from the NOvA experiment.
NOvA pioneered the application of convolutional neu-
ral networks (CNN) in particle physics in 2016 by be-
coming the first experiment to use a CNN in a pub-

lished result [7,35]. In our study, we use transfer learn-
ing with ResNet-50 to distinguish between the differ-
ent detector signatures associated with various neutrino
interaction types and associated backgrounds. We ex-
tract features from neutrino interaction events using
the ResNet-50 featurizer (pre-trained using the Ima-

geNet dataset [36]) and retrain the final fully connected
classifier layers to perform neutrino event classification.
Specifically, 500,000 simulated neutrino events with cos-
mic data overlays were used for training, with the fol-
lowing five categories: charged current electron neu-
trino, charged current muon neutrino, charged current
tau neutrino, neutral current neutrino interactions, and
cosmic ray tracks. These events are highly amenable to
classification by CNN architectures such as ResNet-50.
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We then applied the transfer learning ResNet-50

model to a separate test set of 150,000 events. As a vi-
sual example, we show three simulated neutrino inter-
action type events in Fig. 5 that are selected with prob-
ability, larger than 0.9. On the left (middle, right) is an
example event originating from an electron (muon, tau)
neutrino charged current interaction. While the opti-
mal use of ML to improve neutrino event reconstruc-
tion and classification is an active area of research, the
most successful approach thus far employs CNN archi-
tectures, which work well with the homogeneous nature
of the neutrino detectors. While the transfer learning
approach does not yield state-of-the-art performance
for neutrino event classification, we expect that a full re-
training of ResNet-50 would be more successful, which
is the subject of future work.

Current neutrino experiments, including NOvA and
others, are potentially exciting applications of coproces-
sors as a service. A large fraction of their event recon-
struction time is already consumed by inference of large

CNNs [37]. Therefore, they stand to gain significantly
from accelerating network inference. The approach out-
lined in Section 4 could provide a non-disruptive solu-
tion to accelerate neutrino computing performance in

the present as well as in the future.

4 Heterogeneous computing as a service

4.1 FPGA coprocessors as a service

In this study, we explore how to integrate heterogeneous
computing solutions into the particle physics comput-
ing paradigm. The jet physics model developed in the
previous section is used as a specific motivating exam-
ple. In our work, we benchmark the recently released
Microsoft Brainwave platform which performs acceler-
ation with Intel Altera FPGAs [17]. FPGAs as a com-
puting solution offers a combination of low power us-
age, parallelization, and programmable hardware. An-
other important aspect of FPGA inference for the parti-

cle physics community, compared to GPU acceleration,
is that batching is not required for high performance;
FPGA performance is not diminished for serial process-
ing. The Brainwave system, in particular, has demon-
strated the use of FPGAs in a cloud system to acceler-
ate ML inference at large scale [17]. In Fig. 6, we show a
schematic of the Brainwave system from Ref. [17], which
illustrates its cloud-scale configurable FPGA setup for
acceleration. The Brainwave system includes intercon-
nectivity of the FPGA acceleration elements and a di-

rect connection to the network, which runs in parallel
to the CPU-based software plane. The performance of

other available acceleration hardware systems will be
explored in future work.

Deploying ML algorithms in particle physics have
two particularly interesting benefits to the computing
model:

– By considering ML algorithms, we can greatly bene-
fit from developments outside of the field of particle
physics. Industry and academic investment in ML
is growing rapidly, and there is a vast amount of
research on specialized hardware for ML that could
be utilized within the community.

– Often, ML algorithms are quite parallelizable, mak-
ing them amenable to acceleration on specialized
hardware. For some physics-based algorithms, this
is not possible, while for others it could require sub-
stantial investment to rewrite for new, often chang-
ing computing hardware.

We, therefore, focus on ML acceleration in our study. To

capitalize on the ML-focused hardware developments,
we rely on the continued research and development of
ML applications for particle physics tasks. This is an
active area of research with growing interest, as indi-

cated by recent work across many neutrino and col-
lider experiments [38,39] and initiatives such as the
HEP.TrkX project [40] and the Tracking ML Kaggle

Challenge [41]. Additionally, ML has the potential to
provide event simulation [42], another computationally
intensive part of the chain.

One challenge is to integrate FPGA coprocessors
into the computing model without disrupting the cur-
rent multithreaded paradigm, where several modules

process an event in parallel. A natural method for in-
tegrating heterogeneous resources is via a network ser-
vice. This client-server model is flexible enough to be
used locally by a single user or within a computing farm
where a single thread communicates with the server. In
the particular case investigated here, we use the gRPC

package [43], an open-source Remote Procedure Call

(RPC) system developed initially by Google, interfaces
with the Brainwave system. gRPC uses protocol buffers
(protobuf) [44] for data serialization and transmission.
This setup defines a communication method between
the FPGA coprocessor resources and an experiment’s
primary computing CPU-based datacenters. This is il-
lustrated in Fig. 7 where a module running on a CPU
farm performs fast inference of a particular ML algo-
rithm via gRPC. First, we test the performance of a sin-
gle task which makes a request to a single cloud ser-

vice which performs a remote1 access to the Brainwave
platform. However, scaling up the number of requests

1 we refer synonymously to a cloud service being accessed
remotely
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Fig. 5: [Caption for nova] Example visualizations of simulated neutrino events correctly classified by our ResNet-50
model with probability greater than 0.9: electron neutrino (left), muon neutrino (middle), and tau neutrino (right).
The top and bottom rows are the top and side views from the NOvA detector. (NOvA’s beam energy and baseline
prohibit long baseline tau neutrino appearance searches, but the event is shown for illustration purposes.)
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Fig. 6: A schematic of the Microsoft Brainwave acceleration platform [17].

is natural for the Brainwave system, which is capable
of load balancing of service requests.

One may also consider a case where the FPGA co-
processor resources are located at the same datacenter,
on-premises, as the CPUs, as a so-called edge resource2.
This is illustrated in Fig. 8. In this scenario, the same
gRPC interface protocols are used to communicate with
the FPGA hardware, and the software access for fast
inference is unchanged. To benchmark this scenario, we
run our application on a virtual machine (VM) in the

cloud datacenter. Results comparing both these scenar-

2 we refer synonymously to a edge service being accessed
on-premises, or on-prem

ios with other hardware from the literature are pre-
sented in Section 5.

4.2 Particle physics computing model with services

For our demonstration study, we use the CMS exper-
iment software framework, CMSSW [45]. This software
uses Intel Thread Building Blocks [46] for task-based

multithreading. A typical module, such as those de-
picted in Fig. 1, has a produce function that obtains
data from an event, operates on it, and then outputs
derived data. This pattern assumes that all of the op-
erations occur on the same machine.
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Fig. 7: An illustration of FPGA-accelerated ML cloud
resources integrated into the experimental physics com-
puting model as a service.
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Fig. 8: An illustration of FPGA-accelerated ML edge
resources integrated into the experimental physics com-
puting model as a service.

Our goal is to utilize the Brainwave hardware as a
service to perform inference of a large ML model such as

ResNet-50. Within CMSSW, a hook to the gRPC system is
established using a special feature called ExternalWork.
Optimal use of both CPU and heterogeneous computing

resources requires that requests be transmitted asyn-
chronously, freeing up a CPU thread to do other work
rather than forcing it to wait until a request is com-
plete. The ExternalWork pattern accomplishes this by
splitting the simpler pattern described above into two
steps. The first step, the acquire function, obtains data
from an event, launches an asynchronous call to a het-
erogeneous resource, and then returns. Once the call
is complete, a callback function is executed to place
the corresponding produce function for the module back
into the task queue. This is depicted in Fig. 9.

In this case, the event data provided to the service is
a TensorFlow tensor with the appropriate size (224 ×
224 × 3) for inference with ResNet-50. A list of the

classification results is returned back to the module,
which employs ExternalWork. For simplicity, we refer
to the full chain of inference as a service within our
experimental software stack as “Services for Optimized
Network Inference on Coprocessors” or SONIC [47].

External 
processing

CMSSW 
module acquire()

FPGA, 
GPU, etc.

produce()

Fig. 9: A diagram of the ExternalWork feature in
CMSSW, showing the communication between the soft-
ware and external processors such as FPGAs.

5 Computing performance and results

5.1 Brainwave performance

We benchmark the performance of the SONIC package
within CMSSW, measuring the total end-to-end latency of
an inference request using Brainwave. In a simple test,
we create an image from a jet (as described in Sec. 3)
from a simulated CMS dataset. We take reconstructed
particle candidates and combine them as pixels in a 2D

grayscale image tensor input to the ResNet-50 model
(as in Sec. 3.2).

We perform two latency tests: remote and on-
premises or on-prem. The remote test communicates
with the Brainwave system as a cloud service, as illus-

trated in Fig. 7. For this test, we execute our exper-
imental software, CMSSW, on the local Fermilab CPU
cluster (Intel Xeon 2.6 GHz) in Illinois, US, and com-
municate via gRPC with the service located at the Azure

East 2 Datacenter in Virginia, US. The on-prem tests
are executed at the same datacenter as the Brainwave
FPGA coprocessors. We run a VM in the Azure East 2

Datacenter, deploying CMSSW inside a Docker container,
and communicate with the FPGA coprocessors located
in the same facility.

We measure the total round-trip latency of the infer-
ence request as seen by CMSSW, starting from the trans-
mission of the image and ending with the receipt of the
classification results. The latencies are shown in Fig. 10
for a linear latency scale (top) and a logarithmic latency
scale (bottom). The on-prem performance is shown in
orange, with a mean inference time of 10 ms, and the
remote performance is shown in blue, with a mean in-
ference time of 60 ms. From internal Brainwave tim-
ing tests, the featurizer inference step performed on the

FPGA takes 1.8 ms and the classifier inference step per-
formed on the CPU is similar. The remaining time in
the 10 ms is primarily used for network transmission.

The remote performance can be as fast as 30 ms
with a median value of 50 ms, and there are long tails

out to hundreds of ms at the per-mille level. The mea-
sured latency is strongly dependent on network condi-
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Fig. 10: Total round trip inference latencies for

ResNet-50 on the Brainwave system both remote and
on-prem. The top plot is linear in time and the bottom
plot is logarithmic in time.

tions which can cause the structures seen in Fig. 10.
Due to the speed of light, there is a hard physical limit

in the transmission time of the signal to the Azure East
2 Datacenter and back to Fermilab, which we estimate
to be around 10 ms. The physical distance between the
experimental computing cluster and the remote data-

center will limit any cloud-based inference speeds.

After comparing the remote versus on-prem latency,
we performed a scaling test to estimate how many co-
processor services would be needed to support large-
scale deployment in a production environment. A given

number of simultaneous processes were run using the
batch system at Fermilab and the round-trip latency
was measured. All jobs connected to a single Brain-
wave service. This test corresponds to a “worst-case”
estimation of the scaling of a single service because each
process only executed the Brainwave test module that
performs inference on jet images. In an actual produc-
tion process, the test module would run alongside many
other modules (see Fig. 1), greatly reducing the prob-
ability of simultaneous requests to the cloud service.

The results of the test are shown in Fig. 11. The mean,
standard deviation, and long tail for the round trip la-

tency all tend to increase with more simultaneous jobs,
but only moderately. It should also be noted that some
calls timed out during the largest-scale test with 500 si-
multaneous processes, leading to a failure rate of 1.8%,
while the other tests had zero or negligible failures.
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Fig. 11: Top: Mean round trip inference latencies for
ResNet-50 on the Brainwave system for different num-

bers of simultaneous processes. The error bars represent
the standard deviation. Bottom: The full distributions
displayed in “violin” style. The vertical bars indicate

the extrema. The horizontal axis scale is arbitrary.

We also measure the throughput based on the total
time for each simultaneous process to complete serial
processing of 5000 jet images. These results are shown

in Fig. 12. Though the round trip latency for a single
request has a large variance, the total time to process
the full series of images is remarkably consistent. This
demonstrates the efficient load balancing performed by
the Brainwave server.

With the total time measured for all simultane-
ous processes to complete, we can compute the total
throughput of the Brainwave service. Recall from above
that while the cloud service inference round trip latency
is 60 ms, on average, the latency for the featurizer in-

ference on the FPGA itself is approximately 1.8 ms.
When we run multiple simultaneous CPU processes
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that all send requests to one service, we fully popu-
late the pipeline of data streaming into the service. This
keeps the FPGA occupied, increasing its duty cycle and
the total inference throughput of the service. This is il-
lustrated in Fig. 12, where we show the throughput of
the service in inferences per second as a function of the
number of simultaneous CPU processes accessing the
service. As the number of simultaneous processes in-
creases, the number of inferences per second increases,
because of the increased pressure on the pipeline of the
FPGA service. The mean latency, shown in Fig. 11,
does not degrade much as the number of simultaneous
jobs increases from 1 to 50, while the throughput in-
creases by a factor of nearly 40 (600 inferences per sec-
ond). The throughput of the service plateaus at around
650 inferences per second; it is limited by the inference
time on the FPGA that is, at best, 1.8 ms. From these
studies, we find that it is more efficient and also more
cost-effective to have multiple simultaneous CPU pro-
cesses connect to a single FPGA service.

The ratio of simultaneous processes to FPGA ser-

vices is dependent on the other tasks in the process;
typical physics processes run many modules. The tests
we have performed are the most pessimistic scenario

because each process only executes the Brainwave test
module. We estimate that a single FPGA could easily
support up to 100–1000 simultaneous production-style

processes without any loss in the metrics of interest for
acceleration performance.

5.2 CPU/GPU comparisons

Next, we compare the performance of the Brainwave
platform to CPU and GPU performance for the same
ResNet-50 model. Such comparisons can be greatly af-
fected by many details of the entire computing stack
and vary widely even within the literature. Nonethe-
less, to get a sense of the relative performance, we per-
form two types of tests. First, we do our own stan-
dalone python benchmark tests with the azure-ML im-
plementation of ResNet-50 as well as the TensorFlow

implementation of the ResNet-50 model. Here, we ver-
ify our results against the literature. While many more
detailed studies exist, these benchmarks validate our
numbers against other similar tests. Second, we import

the ResNet-50 model file provided by Brainwave into
CMSSW and perform inference on the local CPU with the
version of TensorFlow currently in the CMSSW release 3.

3 It takes significant effort to adapt TensorFlow to be com-
patible with the multithreading pattern used in CMSSW, and
hence the latest version of TensorFlow is usually not available
to be used in the experiment’s software.

100 101 102 103

Simultaneous processes
0

100

200

300

400

500

600

700

800

In
fe

re
nc

es
 / 

s

1 10 50 100 500
Simultaneous processes

102

103

104

To
ta

l t
im

e 
[s

]

Fig. 12: Top: Throughput of the FPGA service as the

number of inferences per second for different numbers
of simultaneous processes. The error bars represent the
standard deviation. Bottom: mean total time and distri-
bution (in seconds) to process 5000 jet images through

ResNet-50 on the Brainwave system for different num-
bers of simultaneous processes. The vertical bars indi-
cate the extrema. The horizontal axis scale is arbitrary.

The standalone python benchmark results for CPUs
are presented in Fig. 13. The CPU used in these tests is

an Intel i7 3.6 GHz. For the CPU, we compare the num-
ber of cores used for either the Brainwave implemen-
tation of ResNet-50 or the conventional TensorFlow

ResNet-50. The performance is shown versus the im-
age batch size; particle physics applications can vary in
their batch sizes typically from 1 to 100. As expected,
the performance is stable versus batch size. For both

models, we observe roughly the same inference time,
ranging from roughly 180 ms to 500 ms. Additionally,
we observe that the model inference time is close to
optimal when using 4 cores, with small improvements
beyond.

Figure 14 shows the inference times on GPUs. It is
important to note that the GPU used in these tests, an
NVidia GTX 1080 Ti, is connected directly to the CPU,

rather than using RPC over a network for communica-
tion. Therefore, these results cannot be compared di-
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Fig. 13: Standalone CPU inference time per image (top)

and images per second (bottom) as a function of batch
size for the TensorFlow official ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed

line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

rectly to either the remote or on-prem Brainwave per-
formance; however, they provide a useful characteriza-
tion of limiting performance. The purple GPU points

utilize the Brainwave implementation of ResNet-50

where, as with the Brainwave implementation on CPU,
a protobuf file is imported. This is what we would ex-
pect within CMSSW for custom models in the future and
represents the closest direct comparison of a GPU with
the Brainwave FPGA implementation. The other GPU

lines consist of the official ResNet-50 as provided within
TensorFlow. The official ResNet-50 can have better in-
ference times by factors of a few. An optimized version
of ResNet-50 is also available. It gives a 0–20% reduc-
tion in inference with respect to the official ResNet-50.
All of the GPU benchmarks also follow the expected
trend for large image batch sizes, with an improvement
in the aggregate performance. The per-image latency
for a batch of one image is found to be anywhere from

5 to 10 times worse than the ultimate performance on
a GPU.
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Fig. 14: Standalone GPU inference time per image (top)

and images per second (bottom) as a function of batch
size for the TensorFlow official ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-

prem inference time of the Brainwave system.

Within CMSSW, we find that importing the protobuf
model of ResNet-50 can take approximately 5 min-

utes. Once the model is imported, subsequent infer-
ences take, on average, 1.75 seconds per inference. This
benchmark point can most closely be compared with
the standalone single-thread CPU performance that is
shown in Fig. 13, approximately 500 ms. The main dif-
ferences between the standalone performance and the
CMSSW tests are two-fold: the TensorFlow version (1.06
vs. 1.10) and the processor speed (2.6 GHz vs. 3.6 GHz).
It is not uncommon for hardware across the global com-
puting grid of the CMS experiment to vary in per-

formance significantly, which is another consideration
when deploying both on-prem and remote services.
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To summarize, for total inference time for a batch of
one image, we present Brainwave, CPU, and GPU per-
formance in Table 2. The most straightforward compar-
ison with the current CMSSW performance of 1.75 sec-
onds is the 10 (60) ms on-prem (remote) that it would
take to perform inference with Brainwave. This repre-
sents a factor of 175 (30) speedup for Brainwave on-
prem (remote) over current CMSSW CPU performance.
We can extrapolate from Table 2 that, for more mod-
ern versions of TensorFlow and CPUs, the CMSSW CPU
inference time could improve to approximately 500 ms.

GPU comparisons can be more nuanced4, depend-
ing on the model implementation and batch sizes. How-
ever, for a batch of one image, we can say that the
Brainwave inference latencies, both on-prem and re-
mote including network latencies, are of a similar order
to local, physically connected GPU inference times. The
GPU and Brainwave have similar maximum through-
put, about 660 images per second, though the former
only achieves this with large batch size and the lat-
ter achieves this when accessed with many CPUs si-

multaneously. It should be emphasized that Brainwave
achieves this performance using single-image requests
and including network infrastructure for deployment as

a service, while the GPU requires a large batch size
for the same performance and is directly connected to
the CPU via PCIe (Peripheral Component Interconnect

express).

6 Summary and outlook

The current computing model for particle physics will
not suffice to keep up with the expected future increases

in dataset size, detector complexity, and event mul-
tiplicity. Single-threaded CPU performance has stag-
nated in recent years; therefore, it is no longer viable
to rely on improvements in the clock speed of general-

purpose computing. Industry trends towards hetero-
geneous computing—mixed hardware computing plat-
forms with CPUs communicating with GPUs, FPGAs,
and ASICs as coprocessors—provide a potential solu-
tion that can perform calculations more than an or-
der of magnitude faster than CPUs. The new coproces-
sor hardware is geared towards machine learning algo-
rithms, which are parallelizable, high-performing even
with reduced precision, and energy efficient. Therefore,
to best utilize the new computing hardware, it is im-
portant to adopt machine learning algorithms in par-
ticle physics computing. Fortunately, machine learning

4 For that matter, CPU comparisons can also be nuanced
when considering devices with many cores and large RAM.
However, they do not fit in with the CMSSW computing model.

is very common in particle physics, from simulation to
reconstruction and analysis, and its usage continues to
grow.

In this paper, we explore the potential of FPGAs
to accelerate machine learning inference for particle
physics computing. We focus on the acceleration of
the ResNet-50 convolutional neural network model and
adapt it to physics applications. As an example, we
interpret jets, collimated sprays of particles produced
in LHC collisions, as 2D images that are classified by
ResNet-50. We keep the same architecture but train
new weights to distinguish top quark jets from light
quark and gluon jets. Using a publicly available dataset,
we compare our model against other state-of-the-art
models in the literature and find similarly excellent per-
formance. We also discuss the potential for Brainwave
to be used in other particle physics applications. For
example, neutrino event reconstruction deploys large
convolution neural networks in their experiments and
large network inferences are a bottleneck in their cur-

rent computing workflow. Coprocessor-accelerated ma-
chine learning inference could be deployed for such neu-
trino experiments today.

We accelerate ResNet-50 using the newly available
Microsoft Brainwave platform that deploys FPGA co-

processors as a service. We find that using machine
learning acceleration as a service is a simple yet very
high-performing approach that can be integrated into
modern particle physics experimental software with lit-

tle disruption. Using open source RPC protocols, we
can communicate with Brainwave from our datacenters
with our experimental software to accelerate machine

learning inference. We refer to this workflow as SONIC

(Services for Optimized Network Inference on Copro-
cessors).

Even including the network transit time from the
Fermilab datacenter in Illinois to the Microsoft data-
center in Virginia, the inference latency is still 30 times
faster than our current, default CPU performance. We
test Brainwave both as a cloud service and an edge
(on-premises) service with ResNet-50 inferences aver-

aging 60 and 10 ms, respectively. For the edge scenario
including network service infrastructure, this is compa-
rable to the performance of a GPU connected directly
to the CPU for a batch of one image, which is impor-
tant for the particle physics event processing model.
We also study the scalability of the SONIC workflow by
having many batch CPU jobs make requests to a single
FPGA service. We find, even in very extreme scenar-
ios where the job’s only task is to access the Brainwave
service, 50–100 simultaneous CPU jobs can be executed
with little drop in latency while greatly improving the

throughput of the FPGA to the point where a GPU can



14 Javier Duarte et al.

Table 2: A summary comparison of total inference time for Brainwave, CPU, and GPU performance

Type Hardware 〈Inference time〉 Max throughput Setup
CPU Xeon 2.6 GHz, 1 core 1.75 seconds 0.6 img/s CMSSW, TF v1.06

CPU i7 3.6 GHz, 1 core 500 ms 2 img/s python, TF v1.10

CPU i7 3.6 GHz, 8 core 200 ms 5 img/s python, TF v1.10

GPU (batch=1) NVidia GTX 1080 100 ms 10 img/s python, TF v1.10

GPU (batch=32) NVidia GTX 1080 9 ms 111 img/s python, TF v1.10

GPU (batch=1) NVidia GTX 1080 7 ms 143 img/s TF internal, TF v1.10

GPU (batch=32) NVidia GTX 1080 1.5 ms 667 img/s TF internal, TF v1.10

Brainwave Altera Artix 10 ms 660 img/s CMSSW, on-prem
Brainwave Altera Artix 60 ms 660 img/s CMSSW, remote

only be competitive with large batch sizes. This result
suggests a setup with many CPUs connecting to one
service will be more than sufficient for our computing
needs and be more cost-effective.

This proof-of-concept work has potentially revolu-
tionary implications for many large scale scientific ex-
periments. Further academic studies and industry de-

velopments will help to bring this technology to matu-
rity; we highlight a few in particular.

– Continue efforts to design machine learning algo-
rithms to replace particle physics algorithms. New

commercial coprocessors are being designed with
machine learning applications in mind, and parti-
cle physics should capitalize on this.

– Develop tools for generically translating models and
explore a broad offering of potential hardware. While
we have explored a specific ResNet-50 network ar-
chitecture, machine learning algorithms for different

types of physics applications will require very differ-
ent network architectures. We will need to explore
all the available tools to automate network trans-

lation for specialized hardware. Various available
hardware options coming onto the market should
be explored and benchmarked.

– Continue to build infrastructure and study scalabil-
ity/cost. We have developed a minimal experimental
software framework for communicating with Brain-
wave. This will have to grow in sophistication for
authentication, communication, flexibility, and scal-
ability to operate within the worldwide grid com-
puting paradigm.

Future heterogeneous computing architectures are a
powerful and exciting solution to particle physics com-
puting challenges. This study is the first demonstration
of how to integrate them into our physics algorithms
and our computing model to enable new discoveries in
fundamental physics.
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