002695084 001__ 2695084
002695084 003__ SzGeCERN
002695084 005__ 20200928113150.0
002695084 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-IPAC2019-MOPMP037
002695084 0248_ $$aoai:inspirehep.net:1743417$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002695084 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1743417$$d2019-10-21T13:04:15Z$$h2019-10-22T04:00:35Z$$mmarcxml
002695084 035__ $$9Inspire$$a1743417
002695084 041__ $$aeng
002695084 088__ $$aCERN-ACC-2019-089
002695084 100__ $$aZimmermann, Frank$$iINSPIRE-00138581$$jJACoW-00001653$$mfrank.zimmermann@cern.ch$$uCERN
002695084 245__ $$9JACoW$$aUpdated High-Energy LHC design
002695084 260__ $$c2019
002695084 300__ $$a4 p
002695084 520__ $$9JACoW$$aWe present updated design parameters for a future High-Energy LHC. A more realistic turnaround time has led to a revision of the target peak luminosity, as well as a choice of a larger IP beta function, and longer physics fills. Pushed parameters of the Nb$_ 3$Sn superconducting cable together with a modified layout of the 16 T dipole magnets resulted in revised field errors, updated dynamic-aperture simulations, and an associated re-evaluation of injector options. Collimators in the dispersion suppressors help achieve satisfactory cleaning performance. Longitudinal beam parameters ensure beam stability throughout the cycle. Intrabeam scattering rates and Touschek lifetime appear benign.
002695084 540__ $$3Publication$$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002695084 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002695084 6531_ $$2JACoW$$ainjection
002695084 6531_ $$2JACoW$$aemittance
002695084 6531_ $$2JACoW$$aproton
002695084 6531_ $$2JACoW$$aimpedance
002695084 6531_ $$2JACoW$$adamping
002695084 690C_ $$aCERN
002695084 693__ $$aCERN HE-LHC
002695084 700__ $$aAbelleira, Jose Luis$$jJACoW-00052101$$jORCID:[email protected]$$uJAI, UK
002695084 700__ $$aAbramov, [email protected]$$uJAI, UK$$uRoyal Holloway, U. of London
002695084 700__ $$aAmorim, [email protected]$$uCERN
002695084 700__ $$aAntipov, Sergey$$iINSPIRE-00427099$$jJACoW-00066308$$jORCID:0000-0002-0502-0356$$uCERN
002695084 700__ $$aApyan, [email protected]$$uYerevan Phys. Inst.
002695084 700__ $$aArsenyev, [email protected]$$uCERN
002695084 700__ $$aBarranco, [email protected]$$uEcole Polytechnique, Lausanne
002695084 700__ $$aBenedikt, Michael$$iINSPIRE-00521008$$jJACoW-00001655$$uCERN
002695084 700__ $$aBruce, Roderik$$iINSPIRE-00373385$$jJACoW-00011524$$uCERN
002695084 700__ $$aBurkart, [email protected]$$uDESY
002695084 700__ $$aCai, Yunhai$$iINSPIRE-00475400$$jJACoW-00002584$$kORCID:0000-0003-1774-6178$$uSLAC
002695084 700__ $$aCrouch, [email protected]$$uCERN
002695084 700__ $$aCruz Alaniz, [email protected]$$uJAI, UK
002695084 700__ $$aFartoukh, Stephane$$iINSPIRE-00443580$$jJACoW-00005763$$uCERN
002695084 700__ $$aGiovannozzi, Massimo$$iINSPIRE-00084987$$jJACoW-00001692$$jORCID:0000-0002-2093-9395$$uCERN
002695084 700__ $$aGoddard, Brennan$$iINSPIRE-00545979$$jJACoW-00001570$$jORCID:0000-0002-9902-2431$$uCERN
002695084 700__ $$aGuillermo, [email protected]$$uMerida, IPN
002695084 700__ $$aHofer, [email protected]$$uCERN
002695084 700__ $$aKeintzel, [email protected]$$uCERN
002695084 700__ $$aKersevan, [email protected]$$uCERN
002695084 700__ $$aMertens, [email protected]$$uCERN
002695084 700__ $$aMether, [email protected]$$uEcole Polytechnique, Lausanne
002695084 700__ $$aMolson, James$$iINSPIRE-00372438$$jJACoW-00043799$$uCERN
002695084 700__ $$aMuttoni, [email protected]$$uCERN
002695084 700__ $$aNosochkov, Yuri$$iINSPIRE-00031058$$jJACoW-00002599$$uSLAC
002695084 700__ $$aOhmi, Kazuhito$$iINSPIRE-00047850$$jJACoW-00000926$$uKEK, Tsukuba
002695084 700__ $$aOide, Katsunobu$$jJACoW-00002811$$uKEK, Tsukuba
002695084 700__ $$aOsborne, John$$iINSPIRE-00206836$$jJACoW-00035478$$uCERN
002695084 700__ $$aParma, [email protected]$$uCERN
002695084 700__ $$aPieloni, Tatiana$$jJACoW-00004675$$jORCID:[email protected]$$uEcole Polytechnique, Lausanne
002695084 700__ $$aPikhartova, [email protected]$$uJAI, UK$$uRoyal Holloway, U. of London
002695084 700__ $$aRaginel, [email protected]$$uCERN
002695084 700__ $$aRedaelli, Stefano$$iINSPIRE-00373392$$jJACoW-00001564$$uCERN
002695084 700__ $$aRisselada, [email protected]$$uCERN
002695084 700__ $$aRivkin, [email protected]$$uEcole Polytechnique, Lausanne
002695084 700__ $$aRuehl, [email protected]$$uCERN
002695084 700__ $$aSalvant, [email protected]$$uCERN
002695084 700__ $$aSchoerling, [email protected]$$uCERN
002695084 700__ $$aSeryi, [email protected]$$uJAI, UK
002695084 700__ $$aShaposhnikova, Elena$$iINSPIRE-00186954$$jJACoW-00001642$$uCERN
002695084 700__ $$aTambasco, [email protected]$$uEcole Polytechnique, Lausanne
002695084 700__ $$aTavian, [email protected]$$uCERN
002695084 700__ $$aTodesco, Ezio$$iINSPIRE-00131657$$jJACoW-00001717$$jORCID:0000-0001-5518-4191$$uCERN
002695084 700__ $$aTomás, Rogelio$$iINSPIRE-00286070$$jJACoW-00003672$$uCERN
002695084 700__ $$aTommasini, Davide$$iINSPIRE-00131804$$jJACoW-00001718$$jORCID:0000-0001-9771-4242$$uCERN
002695084 700__ $$aValchkova-Georgieva, [email protected]$$uCERN
002695084 700__ $$aVenturi, [email protected]$$uCERN
002695084 700__ $$aWollmann, Daniel$$iINSPIRE-00373401$$jJACoW-00020820$$uCERN
002695084 700__ $$aZhou, [email protected]$$uKEK, Tsukuba
002695084 700__ $$avan Riesen-Haupt, Lé[email protected]$$uJAI, UK
002695084 773__ $$cMOPMP037$$qIPAC2019$$wC19-05-19.1$$y2019
002695084 8564_ $$81524876$$s352246$$uhttp://cds.cern.ch/record/2695084/files/mopmp037.pdf$$yFulltext from publisher
002695084 960__ $$a13
002695084 962__ $$b2672790$$kMOPMP037$$nmelbourne20190519
002695084 980__ $$aARTICLE
002695084 980__ $$aConferencePaper
002695084 999C5 $$9refextract$$hM. Benedikt et al.$$maccepted for publication in EPJ ST$$o1$$rCERN-ACC-2018-0058$$tFuture Circular Collider: Conceptual design report vol. 3$$x[1] M. Benedikt et al., “Future Circular Collider: Conceptual design report vol. 3”, CERN-ACC-2018-0058, accepted for publication in EPJ ST, 2018.$$y2018
002695084 999C5 $$9refextract$$hF. Zimmermann et al.$$o2$$sJ.Phys.Conf.Ser.,1067,022009$$tHigh-Energy LHC Design$$x[2] F. Zimmermann et al., “High-Energy LHC Design”, J. Phys. Conf. Ser., vol. 1067, no. 2, p. 022009, 2018.$$y2018
002695084 999C5 $$9refextract$$9CURATOR$$hF. Zimmermann et al.$$maccepted for publication in EPJ ST$$o3$$rCERN-ACC-2018-0059$$tFuture Circular Collider: Conceptual design report vol. 4$$x[3] F. Zimmermann et al., “Future Circular Collider: Conceptual design report vol. 4”, CERN-ACC-2018-005, accepted for publication in EPJ ST, 2018.$$y2018
002695084 999C5 $$01743406$$9refextract$$9CURATOR$$hM. Hofer, M. Giovannozzi, J. Keintzel, R. Tomás, F. Zimmermann, L. van Riesen-Haupt$$m10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May, paper MOPMP023, this conference$$o4$$tDynamic Aperture at Injection for the HE-LHC$$x[4] M. Hofer, M. Giovannozzi, J. Keintzel, R. Tomás, F. Zimmermann, L. van Riesen-Haupt, “Dynamic Aperture at Injection for the HE-LHC”, 10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019, paper MOPMP023, this conference.$$y2019
002695084 999C5 $$01743409$$9refextract$$9CURATOR$$hJ. Keintzel et al.$$m10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May, paper MOPMP026, this conference$$o5$$tHE-LHC Optics Design Options$$x[5] J. Keintzel et al., “HE-LHC Optics Design Options”, 10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019, paper MOPMP026, this conference.$$y2019
002695084 999C5 $$01743419$$9refextract$$9CURATOR$$hL. van Riesen-Haupt et al.$$m10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May, paper MOPMP039, this conference$$o6$$tDevelopments in the Experimental Interaction Regions of the High Energy LHC$$x[6] L. van Riesen-Haupt et al., “Developments in the Experimental Interaction Regions of the High Energy LHC”, 10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019, paper MOPMP039, this conference.$$y2019
002695084 999C5 $$01743449$$9refextract$$9CURATOR$$hA. Abramov et al.$$m10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May, paper MOPRB059, this conference$$o7$$tCollimation of Heavy Ion Beams in the HE-LHC$$x[7] A. Abramov et al., “Collimation of Heavy Ion Beams in the HE-LHC”, 10th International Particle Accelerator Conf. (IPAC’19), Melbourne, Australia, May 2019, paper MOPRB059, this conference.$$y2019
002695084 999C5 $$9refextract$$hH. Damerau et al.$$o8$$rCERN-ACC-2014-0337$$tLHC Injectors Upgrade, Technical Design Report, Vol. I: Protons$$x[8] H. Damerau et al., “LHC Injectors Upgrade, Technical Design Report, Vol. I: Protons”, CERN-ACC-2014-0337, 2014.$$y2014
002695084 999C5 $$9refextract$$9CURATOR$$hM. Benedikt, D. Schulte, F. Zimmermann$$o9$$sPhys.Rev.ST Accel.Beams,18,101002$$tOptimizing Integrated Luminosity of Future Hadron Colliders$$x[9] M. Benedikt, D. Schulte, F. Zimmermann, “Optimizing Integrated Luminosity of Future Hadron Colliders”, Phys. Rev. ST Accel. Beams, vol. 8, p. 101002, 2015.$$y2015
002695084 999C5 $$9refextract$$hB. Todd, L. Ponce, A. Apollonio, D. Walsh$$o10$$rCERN-ACC-NOTE-2017-0063$$tLHC Availability 2017: Standard Proton Physics$$x[10] B. Todd, L. Ponce, A. Apollonio, D. Walsh, “LHC Availability 2017: Standard Proton Physics”, CERN-ACC-NOTE2017-0063, 2017.$$y2017
002695084 999C5 $$9refextract$$hB. Todd, L. Ponce, A. Apollonio, D. Walsh$$o11$$rCERN-ACC-NOTE-2018-0081$$tLHC Availability 2018: Proton Physics$$x[11] B. Todd, L. Ponce, A. Apollonio, D. Walsh, “LHC Availability 2018: Proton Physics”, CERN-ACC-NOTE-2018-0081, 2018.$$y2018
002695084 999C5 $$9refextract$$hA. Apollonio$$m9th LHC Operations Evian Workshop, Evian, 30 January - 1 February$$o12$$tLHC & Injectors Availability in Run 2$$x[12] A. Apollonio, “LHC & Injectors Availability in Run 2”, 9th LHC Operations Evian Workshop, Evian, 30 January – 1 February 2019, 2019.$$y2019
002695084 999C5 $$9refextract$$hF. Bordry et al.$$o13$$rarXiv:1810.13022$$rCERN-ACC-2018-0037$$tMachine Parameters and Projected Luminosity Performance of Proposed Future Colliders at CERN$$x[13] F. Bordry et al., “Machine Parameters and Projected Luminosity Performance of Proposed Future Colliders at CERN”, arXiv:1810.13022, CERN-ACC-2018-0037, 2018.$$y2018
002695084 999C5 $$9refextract$$9CURATOR$$h(G. Apollinari et al. (eds.))$$m-M$$o14$$rCERN-2017-007-M$$tHigh-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report$$x[14] G. Apollinari et al. (eds.), “High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report”, CERN-2017007-M, 2017.$$y2017
002695084 999C5 $$9refextract$$9CURATOR$$hR.W. Assmann et al.$$min Proc. EPAC’06, Edinburgh, UK, Jun., paper TUODFI01, pp. 986-988$$o15$$sConf.Proc.,C060626,986$$tThe Final Collimation System for the LHC$$x[15] R.W. Assmann et al., “The Final Collimation System for the LHC”, in Proc. EPAC’06, Edinburgh, UK, Jun. 2006, paper TUODFI01, pp. 986–988.$$y2006
002695084 999C5 $$9refextract$$9CURATOR$$hR. Bruce et al.$$o16$$sPhys.Rev.ST Accel.Beams,17,081004$$tSimulations and measurements of beam loss patterns at the CERN Large Hadron Collider$$x[16] R. Bruce et al., “Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider”, Phys. Rev. ST Accel. Beams, vol. 8, p. 081004, 2014.$$y2014
002695084 999C5 $$9refextract$$9CURATOR$$hD.I. Kaltchev, M.K. Craddock, R.V. Servranckx, and J.B. Jeanneret$$min Proc. PAC’97, Vancouver, Canada, May, paper 7P026, pp. 153-155$$o17$$sConf.Proc.,C970512,153$$tNumerical Optimization of Collimator Jaw Orientations and Locations in the LHC$$x[17] D.I. Kaltchev, M.K. Craddock, R.V. Servranckx, and J.B. Jeanneret, “Numerical Optimization of Collimator Jaw Orientations and Locations in the LHC”, in Proc. PAC’97, Vancouver, Canada, May 1997, paper 7P026, pp. 153–155.$$y1997
002695084 999C5 $$01314110$$9refextract$$9CURATOR$$hR. Bruce, A. Marsili, and S. Redaelli$$min Proc. IPAC’14, Dresden, Germany, Jun., pp. 170-173. doi:10.18429/ JACoW$$o18$$rIPAC2014-MOPRO042$$tCleaning Performance with 11T Dipoles and Local Dispersion Suppressor Collimation at the LHC$$x[18] R. Bruce, A. Marsili, and S. Redaelli, “Cleaning Performance with 11T Dipoles and Local Dispersion Suppressor Collimation at the LHC”, in Proc. IPAC’14, Dresden, Germany, Jun. 2014, pp. 170–173. doi:10.18429/ JACoW-IPAC2014-MOPRO042$$y2014
002695084 999C5 $$9refextract$$hR. Bruce et al.$$o19$$sPhys.Rev.ST Accel.Beams,18,061001$$tCalculations of safe collimator settings and $$x[19] R. Bruce et al., “Calculations of safe collimator settings and $$y2015
002695084 999C5 $$9refextract$$hR. Bruce et al.$$o20$$sNucl.Instrum.Meth.,A848,19-30$$tReaching record-low $$x[20] R. Bruce et al., “Reaching record-low $$y2017
002695084 999C5 $$9refextract$$hD. Tommasini and L. Bottura$$mprivate communications$$o21$$x[21] D. Tommasini and L. Bottura, private communications.
002695084 999C5 $$0310837$$9refextract$$9CURATOR$$hF. Schmidt$$mProc. Workshop on Nonlinear Problems in Future Particle Accelerators, Capri, Italy, pp. 270-281 and$$m-AP$$mCERN-SL-90-98$$o22$$tSIXTRACK: a single particle tracking code$$x[22] F. Schmidt, “SIXTRACK: a single particle tracking code”, Proc. Workshop on Nonlinear Problems in Future Particle Accelerators, Capri, Italy 1990, pp. 270–281 and CERN-SL90-98-AP , 1990.$$y1990
002695084 999C5 $$9refextract$$9CURATOR$$mSixTrack Code$$o23$$uhttp://sixtrack.web.cern.ch/SixTrack/$$x[23] SixTrack Code, SixTrack/ http://sixtrack.web.cern.ch/
002695084 999C5 $$9refextract$$hT.T. Böhlen et al.$$o24$$sNucl.Data Sheets,120,211-214$$tThe FLUKA Code: Developments and Challenges for High Energy and Medical Applications$$x[24] T.T. Böhlen et al., “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications”, Nuclear Data Sheets, vol. 120, pp. 211–214, 2014.$$y2014
002695084 999C5 $$9refextract$$hE. Shaposhnikova$$minformal HE-LHC Design Meeting, 25 July$$o25$$tLongitudinal beam parameters$$x[25] E. Shaposhnikova, “Longitudinal beam parameters”, informal HE-LHC Design Meeting, 25 July 2018, 2018.$$y2018
002695084 999C5 $$9refextract$$9CURATOR$$hD. Amorim et al.$$mICFA Beam Dyn. Newsl., vol. 72, p. 15100174$$o26$$sICFA Beam Dyn.Newslett.,72,151$$tSingle-beam transverse collective effects for HE-LHC$$x[26] D. Amorim et al., “Single-beam transverse collective effects for HE-LHC”, ICFA Beam Dyn. Newsl., vol. 72, p. 15100174, 2017.$$y2017
002695084 999C5 $$9refextract$$hF. Ruggiero$$o27$$sPart.Accel.,50,83-104$$tSingle Beam Collective Effects in the LHC$$x[27] F. Ruggiero, “Single Beam Collective Effects in the LHC”, Particle Accelerators, vol. 50, pp. 83–104, 1995.$$y1995
002695084 999C5 $$9refextract$$9CURATOR$$hL. Vos$$min Proc. 7th European Particle Accelerator Conf. (EPAC’00), Vienna, Austria, Jun., paper WEP4A12, pp. 1176-1178$$o28$$rCERN-LHC-PROJECT-REPORT-409$$tTune and Stability of High Intensity Bunch Trains in the CERN SPS and LHC$$x[28] L. Vos, “Tune and Stability of High Intensity Bunch Trains in the CERN SPS and LHC”, in Proc. 7th European Particle Accelerator Conf. (EPAC’00), Vienna, Austria, Jun. 2000, paper WEP4A12, pp. 1176–1178.$$y2000
002695084 999C5 $$9refextract$$9CURATOR$$hH. Pikhartova$$mHE-LHC Design Meeting no. 32, 31 July$$o29$$tHE-LHC Touschek Lifetime and Intrabeam Scattering$$uhttps://indico.cern.ch/event/747676/contributions/3092211$$x[29] H. Pikhartova, “HE-LHC Touschek Lifetime and Intrabeam Scattering”, HE-LHC Design Meeting no. 32, 31 July 2018, 2018. https://indico.cern.ch/event/747676/ contributions/3092211$$y2018
002695084 999C5 $$9refextract$$9CURATOR$$hS. Arsenyev$$mHELHC Design Review, CERN, 11 December$$o30$$tImpedance aspects of the beam screen$$uhttps://indico.cern.ch/event/674475/contributions/2805128$$x[30] S. Arsenyev, “Impedance aspects of the beam screen”, HELHC Design Review, CERN, 11 December 2017, CERN, 11-12 Dec. 201, 2017. https://indico.cern.ch/event/ 674475/contributions/2805128$$y2017
002695084 999C5 $$9refextract$$hD. Amorim et al.$$o31$$rCERN-ACC-NOTE-2018-0087$$tHL-LHC impedance and related effects$$x[31] D. Amorim et al., “HL-LHC impedance and related effects,” CERN-ACC-NOTE-2018-0087, 2018.$$y2018
002695084 999C5 $$9refextract$$9CURATOR$$hS.A. Antipov$$mHE-LHC Design Meeting no. 36, 18 December$$o32$$tUpdate on HE-LHC coherent beam stability from impedance$$uhttps://indico.cern.ch/event/781175/contributions/3251366$$x[32] S.A. Antipov, “Update on HE-LHC coherent beam stability from impedance”, HE-LHC Design Meeting no. 36, 18 December 2018, 2018. https://indico.cern.ch/event/ 781175/contributions/3251366$$y2018
002695084 999C5 $$9refextract$$9CURATOR$$hD. Amorim$$mHE-LHC Design Meeting no. 36, 18 December$$o33$$tUpdate on the HE-LHC impedance model$$uhttps://indico.cern.ch/event/781175/contributions/3251366$$x[33] D. Amorim, “Update on the HE-LHC impedance model”, HE-LHC Design Meeting no. 36, 18 December 2018, 2018. https://indico.cern.ch/event/781175/ contributions/3251366$$y2018