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Dark matter could potentially manifest itself in the form of asymmetric dark stars. In this paper we
entertain the possibility of probing such asymmetric bosonic dark matter stars by the use of atomic clocks.
If the dark sector connects to the standard model sector via a Higgs or photon portal, the interiors of boson
stars that are in a Bose-Einstein condensate state can change the values of physical constants that control the
timing of atomic clock devices. Dilute asymmetric dark matter boson stars passing through the Earth can
induce frequency shifts that can be observed in separated Earth-based atomic clocks. This gives the
opportunity to probe a class of dark matter candidates that for the moment cannot be detected with any
different conventional method.
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I. INTRODUCTION

Currently, cosmological and astrophysical observations
leave little doubt about the presence of dark matter (DM) in
our Universe [1,2]. Although its existence is very well
motivated, the nature of DM still remains a complete
mystery. The masses of possible DM candidates span
several orders of magnitude, ranging from ultralight par-
ticles of ∼10−22 eV [3–5] to massive black holes of tens of
solar masses [6–8]. Furthermore, it is possible that DM
consists of several different components. Currently the so-
called collisionless cold dark matter (CCDM) paradigm is
consistent with observations of the large-scale structure,
suggesting that DM self-interactions are absent or very
small. On the other hand, observations of the small-scale
structure seem to be at odds with CCDM. The core-cusp
problem of dwarf galaxies, the diversity problem, and the

“too big to fail” problem raise doubt about the validity of
the CCDM paradigm (see Ref. [9] and references therein).
Although these issues can be attributed to different factors,
self-interacting DM (SIDM) can alleviate these problems,
reconciling theory with small-scale structure observations.
Several studies of SIDM have been undertaken [10–13],
providing constraints and an optimal range of cross
sections, 0.1–10 cm2=g, for DM self-interactions that
can solve the CCDM problems. Stringent constraints are
imposed, for example, for the case where the self-inter-
actions are mediated by a particle ϕwhich is coupled to the
Standard Model (SM) via a Higgs portal [14–19]. In such a
case, ϕ must decay before the start of the big bang
nucleosynthesis (BBN) in order to avoid energy injection
to the plasma during BBN. These constraints can be evaded
if ϕ is also coupled to sterile or active neutrinos [20]. Also,
SIDM might be needed in order to provide seeds for the
existing supermassive black holes we observe in the
Universe [21]. Finally, SIDM is motivated if one embeds
the DM sector in grand unified theories (GUTs) [22]. The
punchline is that SIDM might be welcome, as it can
alleviate problems in the CCDM paradigm and/or explain
unresolved astrophysical issues.
One particular class of SIDM theories is that of asym-

metric DM (ADM). ADM is an alternative paradigm to
thermally produced dark matter such as weakly interacting
massive particles (WIMPs). In the usual WIMP paradigm,
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DM annihilates to SM particles. It turns out that for an
annihilation cross section on the order of the weak
interactions, DM annihilations reduce the DM relic density
to the value observed today. This is the so-called WIMP
miracle. However, this is not the only theoretically moti-
vated production mechanism. Another interesting one is
that of ADM. In this case, an asymmetry between the
number of DM particles and antiparticles is created in
the early Universe. Strong DM annihilations deplete the
population of the particles in lack, leaving only DM
particles of the species in excess. This is also a very
well-motivated paradigm. For example, one can imagine a
common asymmetry mechanism for baryogenesis and DM
genesis. If for any baryon unit asymmetry a DM unit is also
created, then a DM particle of a mass ∼5 GeV provides the
correct relic abundance of DM in the Universe. For a review
on ADM, see Ref. [23].
An ADM component that exhibits self-interactions

among DM particles can cause the collapse of a DM
cloud, either by a gravothermal collapse mechanism such
as in Ref. [21] or by effectively evacuating the energy of the
system via “dark”-bremsstrahlung radiation [24], leading to
black hole or asymmetric dark star formation. The latter are
stable compact objects, where their hydrodynamic stability
is caused by DM self-interactions, Fermi pressure, or the
uncertainty principle depending on the underlying model
and the nature of the DM particle (i.e., if it is a fermion or a
boson). The possibility of forming compact stable objects
consisting of fermionic ADM with self-interactions was
studied in Ref. [25]. The Tolman-Oppenheimer-Volkoff
equation (see Ref. [25] and references therein) was solved,
and the mass-radius relation was found for these objects. It
was assumed that the self-interactions were Yukawa-type
and could either be attractive, mediated by a scalar field ϕ,
or repulsive, mediated by a vector boson field ϕμ. The case
of bosonic SIDM forming compact starlike objects was
studied in Ref. [26], where the density profile, the mass-
radius relations, and the maximum mass that these objects
can withstand were derived. We should stress that asym-
metric dark stars are distinctly different from dark stars that
might have formed in the past if DM is of symmetric nature
[27–29]. In the latter case, the hydrodynamic stability of the
star is achieved by radiation pressure from the DM
annihilation. These stars, if they ever existed, should have
annihilated by now. On the contrary, due to the particle-
antiparticle asymmetry, no annihilation takes place inside
the asymmetric dark star. The species in excess have
already annihilated away the minority component early
on. Therefore, once formed, asymmetric dark stars can be
stable. We should also add that dark stars can exist in the
form of hybrid compact stars made of baryonic and DM
[30–33], as well as in the context of mirror DM [34–37].
In the case of “bosonic” stars, if matter is sufficiently

cold, it stays in the ground state, which is a Bose-Einstein
condensate (BEC) state. Several boson particles can form
bosonic stars—e.g., axions, or the scalars which drive the

expansion of the Universe in quintessence models [38–60].
Recently, the authors of Refs. [61–63] were able to place
constraints on scalar DM models based on the variation of
fundamental and physical constants. One should keep in
mind that, in general, dark stars can contribute to the overall
DM abundance of the Universe. Gravitational lensing
experiments such as MACHO [64] and EROS [65] con-
strain the abundance of compact objects in the mass range
10−7 M⊙ ≲M ≲ 10 M⊙ (M⊙ being the solar mass) to be
less than 20% of the total DM density of the Universe.
Starlike objects composed of ADM can be probed both

by the aforementioned gravitational lensing studies and
also by gravitational wave signals produced in the coa-
lescence of such dark objects with black holes, other
compact stars such as neutron stars, or among themselves
[66–73]. Additional light signals can also be produced in
particular scenarios where there is a portal that couples the
dark sector to the SM one [74]. However, if the dark star is
sufficiently diffuse, as is the case for boson stars composed
of ADM, gravitational waves produced in mergers of such
objects are weak, and alternative detection methods should
be developed. One such method is via the use of high-
precision atomic clocks. The idea is simple. Atomic clocks
measure time by using specific atomic transitions. For
microwave atomic clocks, the ticking of the clock is
sensitively dependent on the fine structure constant as well
as physical constants such as the masses of the electron and
the quarks, whereas for optical atomic clocks, the ticking of
the clock is only dependent on the fine structure constant
[75,76]. The passing of an atomic clock through a dilute
ADM boson star could, under some conditions, change
these parameters and cause the atomic clock to tick at a
different rate than an atomic clock not covered by the boson
star. Therefore, small desynchronizations of atomic clocks
located at different places on the Earth could indicate the
passing of such an ADM boson star. Clearly, once two
clocks located at different places are covered by the star,
they again measure time with the same rate. The desynch-
ronization takes place only in the case where one clock is
inside and another one outside the ADM boson star.
Previously, optical atomic clocks were able to reach a

precision of 10−18 for the fractional frequency shift δω=ω
[77,78], while more recently, a record precision of 10−19

[79] has been reached. Microwave atomic clocks tend to be
less sensitive, on the order of 10−16 [80], but it has been
suggested that this precision can be improved to
10−17ðTðKÞ=300Þ2 for certain alkali atoms [81]. These
tools provide a new means to probe the existence of
cosmological topological defects [76] or dilute ADM boson
stars. In fact, using data from the satellite-borne clocks of
the Global Positioning System, the authors of Ref. [82]
managed to set new constraints on models where DM is in
the form of topological defects. Previous analyses [83,84]
have also shown how atomic clocks are affected if the DM
is axionic in nature.
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In this paper, we present potential constraints that can be
set on ADM boson stars (if these objects contribute to the
DM relic abundance) using atomic clocks. In particular, we
investigate models where the bosons couple to the SM via a
Higgs portal or through a photon portal, providing a means
to affect change in physical constants which determine the
ticking of atomic clocks, such as the electron mass and the
fine structure constant. In this study, we focus on the effect
of ADM boson stars on microwave atomic clocks when
assuming the Higgs portal, since for this case optical atomic
clocks are not sensitive probes, as they are only affected by
shifts in the fine structure constant. Whereas, when we
assume the photon portal, we focus on the effect of ADM
boson stars on optical atomic clocks, since these tend to be
more precise than microwave atomic clocks. Recently, the
authors of Ref. [85] analyzed potential production mech-
anisms and the evolution of light ADM, as well as the
phenomenological consequences of the ADM coupling to
the SM through a Higgs portal. We point out that there have
been a number of proposed scalar field DM models—the
relaxion [61,62], for example—and other phenomenologi-
cal models [86,87] that couple directly to fermions or the
electromagnetic field, and hence can cause variations in the
masses of fermions and the fine structure constant. These
scalar field DM models can be constrained from various
experiments, and they can be probed by both optical and
microwave atomic clocks. The paper is organized as
follows: In Sec. II, we derive the density profile and
mass-radius relation of ADM boson stars, and we estimate
the rate of events—i.e., the frequency with which these
objects pass through the Earth. In Sec. III, we present the
Higgs and photon portals that are responsible for shifting
the timing of atomic clocks, and we present updated
constraints on the couplings involved in both portals. In
Sec. IV, we identify the parameter space of ADM boson
stars that can potentially be probed by future atomic clocks,
and finally we conclude in Sec. V.

II. BOSON STARS

As mentioned in the Introduction, starlike objects can
be formed from bosonic DM which, at low temperatures,
is in a BEC state. We analyze a ϕ4 theory for com-
plex scalar fields, where the self-interaction potential is
given by

Vðϕϕ�Þ ¼ � λ

4
ðϕϕ�Þ2; ð2:1Þ

where λ is the self-coupling constant between bosons. Here,
the positive (negative) sign denotes repulsive (attractive)
self-interactions. One can find gravitationally bound sys-
tems composed of ADM subject to the self-interaction
given by Eq. (2.1) and analyze the collision rate of such
systems with Earth-based atomic clocks.

A. Density profile

In the case of repulsive self-interactions, one can solve
the Einstein-Klein-Gordon (EKG) equation in order to
derive the density and mass-radius profile of these objects
(see, e.g., Refs. [26,41]). In the case of attractive self-
interactions, the relativistic effects are suppressed, and it
suffices to solve the Gross-Pitaevskii-Poisson (GPP) equa-
tions [56,57,88]. In this paper, we focus on attractive self-
interactions because they give objects that are more easily
probed by atomic clocks. Namely, objects with smaller
compactness (ratio of mass over radius), such as those
composed of ADMwith attractive self-interactions, have an
increased probability of passing by the Earth, thus creating
a desynchronization in atomic clocks that are apart from
each other. On the contrary, repulsive self-interactions
tend to create systems with higher compactness, and
therefore, lower chances of passing by the Earth. Instead
of exactly solving the GPP equations, an alternative
variational method can be used [55,56]. One can choose
some variational ansatz for the wave function that charac-
terizes matter in the boson star and minimizes the energy of
the system. Taking attractive self-interactions correspond-
ing to the negative sign in Eq. (2.1) and assuming a
nonrelativistic expansion of the complex scalar field,

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p e−imtψ ; ð2:2Þ

where m is the mass of the boson, the energy functional of
the system is

E ¼
Z

d3r

�j∇ψ j2
2m

þ 1

2
Vgjψ j2 −

λ

16m2
jψ j4

�
; ð2:3Þ

where Vg is the self-gravitational potential which satisfies
the Poisson equation,

∇2Vg ¼ 4π
m2

M2
P
jψ j2: ð2:4Þ

Here, MP is the Planck mass, and the wave function ψ is
normalized to the particle number N:Z

d3rjψ j2 ¼ N: ð2:5Þ

We choose an ansatz of the form [89]

ψd

�
r
σd

�
¼

ffiffiffiffiffiffiffiffiffiffi
N

7πσ3d

s �
1þ r

σd

�
exp

�
−

r
σd

�
; ð2:6Þ

where σd is the dilute minimum-energy solution to be
found by minimizing the energy of the system. In Ref. [55],
this ansatz was found to be an excellent approximation of
numerical solutions for boson stars in the dilute region. The
minimization of the energy, with N fixed, results in the
dilute minimum-energy solution,
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σd ¼
5376

5373

M2
P

m3N

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
N

Nmax

�
2

s �
≃ 107 km

�
μeV
m

�
3
�
1057

N

��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
N

Nmax

�
2

s �
; ð2:7Þ

where Nmax is the maximum particle number beyond which no bound-state solutions exist. Therefore, for ADM boson stars
subject to attractive self-interactions, the possible particle numbers are bounded from above by

N ≤ Nmax ¼ 10
MP

m
ffiffiffi
λ

p ≃ 1057
�
μeV
m

� ffiffiffiffiffiffiffiffiffiffiffi
10−45

λ

s
: ð2:8Þ

The choice of ansatz given by Eq. (2.6) with the value of σd that minimizes the energy, Eq. (2.7), provides a good
approximation for the wave function, ψd, of a gravitationally bound dilute ADM boson star. Note that in this regime, the
self-gravitational energy plays an important role in the stability of the system [59]. The central density of the ADM boson
star is given by

ρð0Þ ¼ mjψdð0Þj2 ¼ 2m2jϕð0Þj2 ≃ 105 GeVcm−3
�

m
μeV

��
N
1057

��
107 km

σd

�
3

: ð2:9Þ

We take the radius of the ADM boson star to be the
radius inside which 99% percent of the mass is contained,
R99, found via

0.99N ¼
Z

R99

0

����ψd

�
r
σd

�����
2

d3r; ð2:10Þ

for a given particle number (or total mass). For the ansatz
chosen, R99 is approximately equal to

R99ðNÞ ≈ 5σd: ð2:11Þ

If all DM is in the form of such boson stars, it behaves as
CCDM. If, however, only a fraction of DM bosons is in the
form of boson stars, the self-interactions of the bosons have
to obey well-established limits from the bullet cluster and
the ellipticity of galaxies (see Refs. [26,90] and the
references therein). For ADM, we assume 2 → 2 scattering
between like charges subject to the interaction potential
given by Eq. (2.1). In this case, the matrix element is
M ¼ iλ, and the resulting cross section is

σðϕϕ → ϕϕÞ ¼ λ2

64πm2
: ð2:12Þ

Using the cross section constraint obtained in Ref. [91], we
get an upper limit on the self-coupling jλj:

σ

m
≲ 2

cm2

g
; jλj≲ 10−21

�
m
μeV

�
3=2

: ð2:13Þ

In this study, we choose all of the local DM density to be
composed of ADM boson stars. In this case, the above
constraint does not necessarily hold. However, we find that
for all possible parameter spaces obtained, the ADM self-
coupling constants are well below the maximum value

given by Eq. (2.13), and so we choose to keep the constraint
when we search for the possible parameter space in Sec. IV.

B. Collision rate

We are interested in objects that can pass through the
Earth at some minimum rate. As mentioned earlier, larger
rates are achieved by objects that are relatively large and not
massive. If these objects compose a component of DM,
smaller masses correspond to larger number densities.
Similarly, larger size increases the probability of passing
through the Earth. The scattering cross section for colli-
sions between either Earth or a detector on Earth and a
boson star is (assuming nonrelativistic speeds)

σ ≈ πðRtarget þ R99Þ2; ð2:14Þ

where Rtarget is the radius of the target and R99 is given by
Eq. (2.11). For all possible parameter spaces analyzed in
Sec. IV, the ADM boson stars have a size comparable to or
much larger than the Earth. Hence, the radius of the target
in Eq. (2.14) is taken to be the radius of the Earth, RE. The
mean free path for collisions is

L ¼ 1

nσ
; ð2:15Þ

where n is the local number density of ADM boson stars,
which, assuming all DM is in the form of boson stars, is
given by

n ¼ ρDM
mN

≃ 10−17R−3
E

�
μeV
m

��
1057

N

�
; ð2:16Þ

where ρDM ≃ 0.3 GeV=cm3 is the Earth’s local DM den-
sity. The frequency of collisions is then
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f ¼ vE
L

≃ 10−3 yr−1
�
μeV
m

��
1057

N

��
R99

5 × 107 km

�
2

;

ð2:17Þ

where vE ¼ 2.3 × 102 km s−1 is the relative velocity
between the Earth and the ADM boson star. Therefore,
the collision frequency will depend on not only the number
density of ADMboson stars, but also the bosonmassm, and
fromEqs. (2.7) and (2.8), the boson self-coupling constant λ.

III. PROBING ASYMMETRIC DARK STARS
WITH ATOMIC CLOCKS

A. Higgs portal and its effect on measured parameters

We are interested in ADM boson stars that can poten-
tially be detected by atomic clocks. In this case, a portal that
connects the dark sector and the SM one is needed. In
particular, we assume that the DM sector communicates
with the SM sector via a Higgs portal (see Refs. [92–94])—
i.e., there is a term in the Lagrangian of the form

L ¼ …þ βjϕj2jHj2; ð3:1Þ

where β is a positive constant. We note that one can also
include a term of the form ϕjHj2 for real scalar fields;
however, in the case of a complex scalar field, this term is
not invariant under the U(1) transformation ϕ → eiαϕ. Such
a portal can open decay channels of the field ϕ to SM
particles as long as ϕ is heavier than they are.
The interaction between the ADM and the Higgs results

in a shift of the Higgs vacuum expectation value (VEV)
given by

v ¼ vew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2βv2ϕ
m2

h

s
≈ vew

�
1 −

βv2ϕ
m2

h

�
; ð3:2Þ

where vew is the VEV of the Higgs for β ¼ 0, vϕ is the
nonzero expectation value of ϕ, mh is the Higgs mass, and

the last equality holds for βv2ϕ ≪ m2
h. In many cases

throughout this paper, this assumption will hold, and from
this point we will take v ≈ vew unless explicitly stated
otherwise. Notice that in order for the Higgs to obtain a
nonzero VEV, it must be true that βv2ϕ < m2

h. Given that the
ADM density in the early Universe was large, for a given
value of β it could be possible that the Higgs VEV vanishes.
Because of this, we assume that the ADM forms at a time
such that the Higgs VEV always exists once it forms
sometime before BBN.
Notice that the interaction between the ADM and the

Higgs adds to the mass term of the ϕ field, so that after the
Higgs acquires a VEV, the effective mass of ϕ is given by

m2 ≈m2
ϕ;bare þ βv2ew: ð3:3Þ

It should be noted that for any parameter space correspond-
ing to an observable frequency shift of an atomic clock, the
bare mass of ϕ squared must be fine-tuned such that the
appropriate mass m is obtained. The self-coupling constant
λ must also be fine-tuned due to loop corrections of the
jϕj2jHj2 coupling.
If it is assumed that the complex scalar field ϕ is bound

in a dilute boson star, it is related to the dilute wave function
and central density of the boson star as given by Eq. (2.9).
Therefore, the presence of the star induces an effective
change in the mass of the electron through the Higgs portal
of the following form:

me ¼
yev
2

≈mbare
e

�
1 −

βv2ϕ
m2

h

�
; ð3:4Þ

where mbare
e is by definition the electron mass in the

absence of any medium and ye is the Yukawa coefficient
for the electron. Note that, depending on the sign of β, the
effective mass can be larger or smaller than the bare mass of
the electronmbare

e . In this study, we take vϕ to be the central
value of ϕ inside the boson star, given by

vϕ ≡ jϕð0Þj ¼
ffiffiffiffiffiffiffiffiffi
ρð0Þ
2m2

r
≃ 1 MeV

��
N
1057

��
μeV
m

��
107 km

σd

�
3
	

1=2

: ð3:5Þ

B. Photon portal and its effect on measured parameters

One can also couple the SM to the dark sector through a
photon portal [86]. In this case, the Lagrangian has a term
of the form

L ¼ …þ g
4
jϕj2F2; ð3:6Þ

where the coupling constant g can be positive or negative.
This interaction causes a shift in the fine structure constant
given by

α ¼ α0

�
1

1 − gv2ϕ

�
≈ α0ð1þ gv2ϕÞ; ð3:7Þ

where vϕ is given by Eq. (3.5) and the last equality holds
when gv2ϕ ≪ 1. Again, we take this assumption to hold
throughout this paper, unless explicitly stated otherwise.

C. Frequency shift of atomic clocks

For atomic clocks in general, the change in the counting
of the clock follows [76]
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δω

ω
¼ δV

V
; ð3:8Þ

where

V ¼ αKα

�
mq

ΛQCD

�
Kq
�
me

mp

�
Ke=p

; ð3:9Þ

and α, mq, me, and mp are the fine structure constant, the
quark mass, the electron mass, and the proton mass,
respectively. ΛQCD is the scale of QCD, and the Ki’s are
appropriate constants for the corresponding quantities i
depending on the particular atom used in the atomic clock.
For a typical microwave atomic clock [76], Kα ≃ 2,

Kq ≃ −0.09, and Ke=p ¼ 1. Given the portal of Eq. (3.1), α
remains unchanged. The change in the mass of the quarks
makes very little contribution to δω due to the small factor
0.09, and since most of the mass of the proton does not
come from the mass of the quarks, this is also a tiny
contribution. Therefore, in our setup the overwhelming
contribution to δω comes from the change of electron mass.
Assuming the Higgs portal, as an ADM boson star passes
through the Earth, the mass of the electron is shifted due to
the nonzero value of vϕ via Eq. (3.4). In this case, the shift
in frequency is given by

�
δω

ω

�
Higgs

≃
δme

me
≃
βv2ϕ
m2

h

≃ 10−20
�

β

10−10

��
vϕ

MeV

�
2

:

ð3:10Þ

Notice that for the benchmark parameters, this frequency
shift is several orders of magnitude smaller than the
detectable frequency shift of the most precise microwave
atomic clocks currently.
Assuming the photon portal instead, the effect of a

passing ADM boson star is a shift in frequency given by

�
δω

ω

�
Photon

≃
δα

α
≃ 10−19

�
g

10−13 GeV−2

��
vϕ

MeV

�
2

:

ð3:11Þ

Notice that both microwave and optical atomic clocks will
approximately exhibit this frequency shift. In this case, and
given the much better precision of optical atomic clocks,
we focus on the shift of optical atomic clocks for this portal.
It is apparent that larger boson star densities correspond

to larger values of vϕ, which consequently create larger
shifts in the mass of the electron and therefore larger δω
shifts in the clock timing. The reader should recall,
however, that usually larger densities are achieved in
heavier stars which have smaller collision rates with the
Earth. Therefore, the class of boson stars that can be probed
are those that have a large enough δω so that the change in
timing is detectable while at the same time the collision rate

remains relatively high. We explore different values for the
DM self-coupling constant as well as for the coefficients β
and g. As discussed earlier, we assume that all DM is
composed of ADM boson stars, and hence the DM self-
coupling constant is not necessarily constrained by
Eq. (2.13). However, in scanning the parameter space,
we find that the possible self-coupling constants do, in fact,
satisfy this constraint, and so we choose to search the
parameter space with this constraint satisfied. The Higgs
coupling constant β and the photon coupling constant g are
also subjected to different types of constraints, as demon-
strated in the next subsection.

D. Bounds on Higgs and photon couplings

An upper bound on the Higgs coupling constant β in
Eq. (3.1) can be found from the observed constraint on the
branching fraction of invisible Higgs decays. From
Ref. [20], the rate for the invisible Higgs decay is given by

Γðh → ϕϕÞ ≈ β2v2ew
8πmh

�
1 −

4m2

m2
h

�
1=2

: ð3:12Þ

Recent measurements from the CMS Collaboration [95]
give an upper constraint on the branching fraction of
invisible Higgs decays of 19% at a 95% C.L. For Γðh →
SMÞ ¼ 4.1 MeV and taking m ≪ mh, an upper constraint
on β is found to be

β ≲ 10−2: ð3:13Þ
It has been shown that constraints can be placed on the

change in the Fermi constant throughout the evolution of
the Universe [96]. Assuming both the Fermi constant and
fermion masses change as a result of the ADM density, the
ratio of the Fermi constant at the start of BBN,GBBN

F , to the
Fermi constant today, G0

F, has an upper limit given by

GBBN
F

G0
F

¼ 1 − βρavgDM;0=ð2m2m2
hÞ

1 − βρavgDM;BBN=ð2m2m2
hÞ

< 1.01; ð3:14Þ

where ρavgDM;0 ¼ 1.3 keVcm−3 is the average DM density of
the Universe today and ρavgDM;BBN is the average DM density
of the Universe at a temperature of 1 MeV. Taking the
redshift corresponding to this temperature to be zBBN ¼
4 × 109, the average DM density of the Universe was ∼1029
times greater than the value today, and hence the shift in the
Fermi constant could have been significant. The constraint
on the change in the Fermi constant constrains the Higgs
coupling constant to be [85]

β ≲ 2 × 10−10
�

m
μeV

�
2
�
1.3 keV cm−3

ρavgDM;0

�
: ð3:15Þ

Notice that for this benchmark mass m, the constraint
from invisible Higgs decays [Eq. (3.13)] is more stringent.
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However, for masses m≲ 10−2 eV, the constraint from
BBN [Eq. (3.15)] starts to become comparable. In the next
section, we will show that because of these constraints, the
possible frequency shifts of microwave atomic clocks from
boson stars subject to the Higgs portal are several orders of
magnitude smaller than the currently detectable frequency
shift. However, the BBN bound will change if we assume
that the ADM forms after BBN [97]. It has been theorized
that certain classes of CDM can form between BBN and the
time of matter-radiation equality [98]. Alternatively, one
can assume that the ADM formed after BBN as a decay
product of another particle that has no direct coupling to the
Higgs. In these cases, the possible parameter space may
open up, and we leave such analyses for future work.
The most strenuous constraints for the photon coupling

constant in the possible parameter spaces of the next
section are from BBN and energy loss of supernovae.
As with the Fermi constant, the change in the fine struc-
ture constant from the time of BBN until now is also
constrained [86]:

g≲ 8 × 10−14 GeV−2
�

m
μeV

�
2

; ð3:16Þ

while energy loss constraints of supernovae give

g≲ 10−7 GeV−2: ð3:17Þ

We show, in the next section, that in taking into account
both constraints on the photon coupling constant, we
obtain an available parameter space that gives a detectable
frequency shift assuming the collision frequencies with
Earth are small (f ∼ 10−2 yr).

IV. RESULTS

In this section, we would like to identify the ADM boson
star parameter space that can be probed by Earth-based
atomic clocks. The constraint on β from inverse Higgs
decays [Eq. (3.13)] and from BBN [Eq. (3.15)], the
constraint on the condensate particle number for boson
stars with attractive self-interactions [Eq. (2.8)], and the
constraint on the boson self-coupling constant [Eq. (2.13)]
provide boundaries for an available parameter space to scan
when assuming the Higgs portal. Again, we stress that this
last constraint is not necessary, since we assume that all DM
is in the form of ADM boson stars. However, in searching
the available parameter space without satisfying this con-
straint, we find that all possible solutions do, in fact, keep
this constraint satisfied. When we assume the photon
portal, we scan the available parameter space assuming
the constraints on the photon coupling [Eqs. (3.16) and
(3.17)], as well as the last two constraints mentioned above
[Eqs. (2.8) and (2.13)].
We scan the available parameter space to find solutions

for which the rate of collisions between boson stars and the

Earth given by Eq. (2.17) is f ≥ fmin, and the size of the
boson star is R99 < 1010 km. This last constraint arises due
to the fact that solutions with R99 ≥ 1010 km will take a
year or more to completely pass through a detector on
Earth. We also take the constraint that the frequency shift
from Eqs. (3.10) and (3.11) is δω=ω ≥ ðδω=ωÞmin. Finally,
the solutions found satisfy the condition that the ADM
boson stars found locally do not significantly overlap—i.e.,

ρð0Þ ≥ ρDM; ð4:1Þ

where ρð0Þ is the central density of the ADM boson star
given by Eq. (2.9).
The rate of collisions depends on λ, m, and N (the

number of particles composing the star), while the induced
fractional frequency shift δω=ω depends on λ, m, N, and β
or g. We take the constraints on λ, N, β, and g as described
previously. We scan the parameter space by varying the
relevant parameters within the ranges 10−22 eV ≤ m ≤
106 eV, 10−100λmax < λ < λmax, 0.01Nmax < N < Nmax,
and 10−50βmax < β < βmax (assuming the Higgs portal)
or 10−50gmax < g < gmax (assuming the photon portal).
From this scan, we identify the parameter space that can
provide a frequency of collision f ≥ fmin with an induced
δω=ω ≥ ðδω=ωÞmin, provided that all DM is in the form of
these ADM boson stars, and that the radius and central
density of the boson stars satisfy the constraints as
described above.

A. Higgs portal

We show the following parameter space for a boson star
subject to the Higgs portal obtained when the BBN
constraint on the Higgs coupling constant [Eq. (3.15)] is
negligible. We emphasize that this constraint will change if
the ADM forms long after BBN, and it may be possible that
the invisible Higgs decay is the most strenuous constraint.
We leave such analyses for future work, and show the
results that one could obtain when the BBN constraints are
negligible. In Fig. 1, we show the mass and radius of the
boson star as a function of the DM mass where δω=ω ≥
10−18 with a rate of events larger than one per year, after
having chosen three different values of λ and having fixed
β ¼ 0.01. In Fig. 2, we show how the aforementioned
parameter space is distributed in terms of δω=ω and the rate
of events, while in Fig. 3 we show with different colors
which part of the parameter space requires atomic clock
sensitivity 10−16, 10−17, or 10−18 in order to detect the
passing of such a dilute boson star from the Earth. In Fig. 4,
we show how the available parameter space changes when
the Higgs coupling constant β is decreased by 2 orders of
magnitude. One can see that the available parameter space
decreases and that no events give a fractional frequency
shift greater than 10−16.
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Notice that for the parameter space shown in Figs. 1, 2, 3,
and 4, the values of β ¼ 10−2 and β ¼ 10−4 are constrained
from BBN. We see then, from Eq. (3.10), that if we take a
value of β as constrained from BBN, the frequency shift
induced is several orders of magnitude less than the most
precise microwave atomic clocks even for rare events.
Conversely, we can attempt to increase the frequency shift
by increasing vϕ. From Eq. (3.5), one can see that this can be
done either by increasing the number of particles, or by
decreasing the particle mass or size of the boson star. Notice
from Eqs. (2.7), (2.8), and (2.17) that there is a delicate
balance that one must achieve between the free parameters of
the bosonmassm and the self-coupling constant λ in order to
satisfy all constraints and obtain a detectable frequency shift
for microwave atomic clocks. Because of all the necessary
constraints, we find that for boson stars subject to the Higgs
portal, the frequency shift induced is several orders of
magnitude smaller than the currently detectable frequency
shift for microwave atomic clocks. However, as noted above,
if the BBN constraint can be shifted due the formation of the
ADM after BBN, the parameter space could open consid-
erably. Also, one can open the parameter space by assuming
a smaller minimum collision frequency with the Earth. For
example, one can satisfy all constraints, assuming the ADM
forms before BBN, if the minimum collision frequency is
lowered to f ∼ 10−5 yr−1.

FIG. 2. Collision frequency f and frequency shift δω=ω vs
particle mass m for the parameter space in Fig. 1.

FIG. 3. Total massM (top left), radius R (bottom left), collision
frequency f (top right), and frequency shift δω=ω (bottom right)
of the ADM boson star vs particle mass m for which β ¼ 10−2,
λ ¼ 10−45, and the frequency of collision between the boson
star and detector is f ≥ 1 yr−1. Blue dots correspond to
δω=ω ≥ 10−16, red dots to 10−16 > δω=ω ≥ 10−17, and black
dots to 10−17 > δω=ω ≥ 10−18. Notice that this value of β is
excluded from BBN constraints if the ADM is assumed to have
formed before BBN.

FIG. 1. Total mass M and radius R of the boson star subject to
the Higgs portal vs particle mass m for which β ¼ 10−2,
δω=ω ≥ 10−18, the frequency of collisions between the ADM
boson star and the detector is f ≥ 1 yr−1, and the self-coupling of
the ADM is λ ¼ 10−46 (left panel), λ ¼ 10−44 (middle panel), and
λ ¼ 10−42 (right panel). Notice that this value of β is excluded
from BBN constraints if the ADM is assumed to have formed
before BBN.
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Several comments are in order here. First, it is obvious
that further improvements to microwave atomic clock
sensitivities will lead to an extension of the parameter
space probed within this class of models, as is apparent
from Fig. 3. For all of the parameter space shown, we have
assumed that these dilute boson stars make up 100% of
the DM relic abundance in our galaxy. More parameter
space can be probed by atomic clocks if one relaxes this
condition. If boson stars compose a smaller fraction of DM,
part of the parameter space can still be probed as long as the
rate of events remains sufficient. This can happen, for
example, in cases where the dilute boson star is large, yet it
makes up a small fraction of DM because the probability of
passing through the Earth can still remain high. In addition,
the clocks of the GPS network have been collecting data for
more than 10 years, and therefore the same technique used
in Ref. [82] can be used to probe boson stars that could
have a rate of events of ∼0.1=year if the accuracy of the
GPS clocks improves in the near future.
We can also define the difference in the induced frac-

tional frequency shift between two atomic clocks as

δω

ω

����
rel

¼ δω

ω

����
1

−
δω

ω

����
2

; ð4:2Þ

where the induced fractional frequency shift at clocks 1 and
2 can be determined as a function of time:

δω

ω
ðtÞ ¼ β

m2
h

jψdðvEjtjσd
Þj2

2m
; ð4:3Þ

where ψd is given by Eq. (2.6) and σd is given by Eq. (2.7).
Figure 5 shows ðδω=ωjrelÞ between two microwave

atomic clocks for different distances between the clocks.
Figure 6 shows ðδω=ωjrelÞ between two synchronized
optical and microwave atomic clocks [99–101] (left panel)
and the absolute value of ðδω=ωjrelÞ between two synchron-
ized microwave atomic clocks (right panel) given two sets
of parameter space. Since optical atomic clocks are not
sensitive to the passing of these particular boson stars, the
difference in the induced fractional frequency shift is either
always positive or always negative depending on how one
defines the difference between the fractional frequency
shifts. Notice that for both of these plots, the Higgs

FIG. 4. Total massM (top left), radius R (bottom left), collision
frequency f (top right), and frequency shift δω=ω (bottom right)
of the ADM boson star vs particle mass m for which β ¼ 10−4,
λ ¼ 10−45, and the frequency of collision between the boson star
and detector is f ≥ 1 yr−1. Red dots correspond to 10−16 >
δω=ω ≥ 10−17 and black dots to 10−17 > δω=ω ≥ 10−18. Notice
that this value of β is excluded from BBN constraints if the ADM
is assumed to have formed before BBN.

FIG. 5. The relative induced fractional frequency shift δω=ωjrel
vs time as two synchronized microwave atomic clocks pass
through a boson star. The boson star is taken to have parameters
λ ¼ 10−45, m ¼ 2 × 10−7 eV, n ¼ nmax, and β ¼ 10−2, which
result in M ∼ 1016 kg, R99 ∼ 109 km, and f ∼ 2 yr−1. The mini-
mum time here is taken to be when the edge of the boson star
starts to pass through the first clock, while the maximum time is
taken to be the time at which the boson star fully passes through
the second clock. The dashed line corresponds to a distance of
108 km between the detectors, while the thick line corresponds to
a distance of 107 km. The filled-in region corresponds to
jδω=ωjrelj ≤ 10−18. Notice that this value of β is excluded from
BBN constraints if the ADM is assumed to have formed
before BBN.
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coupling constant is β ¼ 10−2, which is excluded from
BBN constraints for this mass range. If it is assumed that
the ADM forms before BBN, then the frequency shifts
would decrease by the appropriate orders of magnitude.
One can see from the left panel of Fig. 6 that, if it is

assumed that one can neglect the BBN constraint for the
Higgs coupling constant, for a given set of ADM param-
eters, a fractional frequency shift that is greater than
δω=ω ∼ 10−18 is induced between a given pair of synchron-
ized microwave and optical atomic clocks (independently
of the distance between the clocks). In this case, there is
some chance of observing passing ADM boson stars with
future microwave atomic clock sensitivities, assuming one
can neglect the BBN bounds on the Higgs coupling
constant. However, one can see from the right panel of
Fig. 6 that the prospect of observing passing ADM boson
stars with two synchronized microwave atomic clocks is
more impractical. Because the sizes of the systems that

correspond to the available parameter space of Figs. 1, 2,
and 3 tend to be Oð108–1010Þ km, and the induced frac-
tional frequency shift is Oð10−18 − 10−14Þ, the distance
between the two synchronized microwave atomic clocks
must be large in order to obtain a difference in the signal
that is greater than 10−18. Of course, smaller systems will
result in synchronized microwave atomic clocks that can
be put closer together while still getting an observable
signal; however, these systems will collide with the Earth
less often.
Note that measurements made with the atomic clocks are

subject to the uncertainty principle (i.e., δωδt ≥ 1, where
δω is the frequency shift and δt is the transient time of
the boson star). For a typical microwave frequency of
1010 Hz, the transient time of the boson star must satisfy
δt ≥ 10−10ðδω=ωÞ−1 s. Notice from Fig. 5 that the frac-
tional frequency shift is δω=ω ≃ 10−16 for a transient time
of the boson star δt ≃ 3 × 106 s. In this case, the uncertainty
principle is just satisfied.

B. Photon portal

In Fig. 7, we show the mass and radius of the boson star
subject to the photon portal as a function of the DM mass,
where δω=ω ≥ 10−20 with a frequency of collision events

FIG. 6. The absolute magnitude of the induced fractional
frequency shift δω=ω vs time as two synchronized atomic clocks
pass through a boson star. The left panel shows the signal for two
synchronized microwave and optical atomic clocks, while the
right panel shows the signal for two synchronized microwave
atomic clocks. The top panel shows the signal for λ ¼ 10−43,
m ¼ 10−6 eV, and n ¼ nmax, which results in a boson star with
M ∼ 1015 kg, R99 ∼ 108 km, and f ∼ 2 yr−1, while the bottom
panel shows the signal for λ ¼ 10−45, m ¼ 10−6 eV, and
n ¼ 0.1nmax, which results in a boson star with M ∼ 1015 kg,
R99 ∼ 109 km, and f ∼ 10 yr−1. For all plots, it is assumed that
β ¼ 10−2. The gridlines in the left panels show the position of the
microwave atomic clock inside the boson star, while the labels in
the right panels show the distance between the two microwave
atomic clocks. Notice that this value of β is excluded from BBN
constraints if the ADM is assumed to have formed before BBN.

FIG. 7. Total mass M and radius R of the boson star subject to
the photon portal vs particle massm for which g ¼ 10−10 GeV−2,
δω=ω ≥ 10−20, the frequency of collisions between the ADM
boson star and the detector is f ≥ 10−2 yr−1, and the self-
coupling of the ADM is λ ¼ 10−40 (left panel) and λ ¼ 10−39

(right panel).

CHRIS KOUVARIS et al. PHYS. REV. D 102, 063014 (2020)

063014-10



f ≥ 10−2 yr, after having chosen two different values of λ
and having fixed g ¼ 10−10 GeV−2 in order to satisfy both
the BBN and supernova constraints. In Fig. 8, we show how
the aforementioned parameter space is distributed in terms
of δω=ω and rate of events. We also show how the available
parameter space changes when the photon coupling con-
stant g is increased by 3 orders of magnitude in Fig. 9.
Figure 10 shows ðδω=ωjrelÞ between two optical atomic
clocks for different distances between the clocks. Notice
that the parameter spaces for which all constraints are
satisfied correspond to rare events.
Finally, as described above, the uncertainty principle

should hold throughout the transient time of the boson star.
For a typical optical frequency of 1014 Hz, the transient
time of the boson star must satisfy δt ≥ 10−14ðδω=ωÞ−1s.
From Fig. 10, one can see that the uncertainty relation holds
for a fractional frequency shift δω=ω≳ 5 × 10−17. In this
case, though, the collision frequency between the boson
star and the Earth is very rare, f ≃ 10−5 yr−1.

FIG. 9. Total mass M, radius R, collision frequency f, and
frequency shift δω=ω for a boson star subject to the photon portal
vs particle mass m for which g ¼ 10−7 GeV−2, δω=ω ≥ 10−20,
the frequency of collisions between the ADM boson star and
the detector is f ≥ 10−2 yr−1, and the self-coupling of the ADM
is λ ¼ 10−39.

FIG. 10. The relative induced fractional frequency shift
δω=ωjrel vs time as two synchronized optical atomic clocks pass
through a boson star subject to the photon portal. The boson star
is taken to have parameters λ ¼ 10−41, m ¼ 10−4 eV, n ¼ nmax,
and g ¼ 10−10 GeV−2, which result in M ∼ ×1014 kg, R99 ∼
105 km, and f ∼ 10−5 yr−1. The minimum time here is taken to
be when the edge of the boson star starts to pass through the first
clock, while the maximum time is taken to be the time at which
the boson star fully passes through the second clock. The dashed
line corresponds to a distance of 106 km between the detectors,
while the thick line corresponds to a distance of 105 km. The
filled-in region corresponds to jδω=ωjrelj ≤ 10−20.

FIG. 8. Collision frequency f and frequency shift δω=ω vs
particle mass m for the parameter space in Fig. 7.
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V. CONCLUSIONS

In this paper, we entertain the possibility that dark matter
is entirely composed of light asymmetric dark matter
with attractive self-interactions that has collapsed in dilute
formations. If the dark sector communicates with the
visible sector via a Higgs or photon portal, the passing
of such a dilute object through the Earth can induce a small
change in physical constants like the mass of the electron or
the fine structure constant. Due to the fact that dark matter
in boson stars is in a BEC state, the nonzero expectation
value of the boson field creates an extra contribution to the
mass of the electron or the fine structure constant. Since the
timing frequency of atomic clocks depends on these
parameters, a clock that finds itself embedded in the boson
star as the latter crosses the Earth measures time at a
different rate compared to a clock that remains, at that time,
outside the star. We search the parameter space for a class
of dilute boson stars subject to a photon or Higgs portal
where conventional techniques such as gravitational waves
from mergers, gravitational lensing, and direct dark matter
detection fail. We demonstrate that, taking into account all
constraints on the Higgs and photon coupling constants, the
induced frequency shift of both microwave and optical
atomic clocks is several orders of magnitude smaller than
the currently detectable frequency shift for these instru-
ments, or the events are rare.
In particular, we assume that the complex scalar field

composing the asymmetric dark matter boson stars has a
quadratic coupling to the Higgs or to the photon. We discuss
the constraints that the dark matter self-coupling, Higgs
coupling constant, and photon coupling constant must
satisfy. We then scan the available parameter space subject
to these constraints. Additionally, we set the constraints that
the frequency of collisions between a boson star and the
Earth and the induced fractional frequency shift due to the
shift in the electron mass or fine structure constant are greater
than some minimum values, that the boson stars do not
overlap, and that the radii of the boson stars are small enough
to pass the Earth within one year. For both the Higgs and
photon portals, we find that the induced frequency shifts are
several orders of magnitude smaller than the currently
detectable frequency shifts for microwave and optical atomic
clocks. However, it may be possible that the ADM forms
after BBN, in which case the constraint on the Higgs
coupling constant will change and may open up some
available parameter space. We also see more available
parameter space by taking a smaller minimum frequency
of collisions between the ADM boson stars and the Earth.
For the photon portal, we begin to obtain some available
parameter space satisfying all constraints when assuming
one collision every one hundred years. We stress that even if
the accuracies of atomic clocks improve considerably in the
near future, such probes of astrophysical objects are still
subject to the uncertainty principle, which can diminish the
available parameter space.
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APPENDIX: POSSIBLE ADDITIONAL
CONSTRAINTS

Constraints can be placed on the Higgs coupling con-
stant, β, in Eq. (3.1) from fifth-force experiments if a
nonzero expectation value of ϕ exists at the location of the
experiment. One way ϕ can obtain an expectation value is if
ϕ gets its mass from the Higgs, and the Higgs coupling
constant β is negative [102]. In this case, the expectation
value is different from that defined in Eq. (3.5), and we
leave the search for the possible parameter space corre-
sponding to these systems for future studies. Another way
fifth-force experiments can constrain β is if the field ϕ is
assumed to form a condensate around or inside the Earth,
Sun, etc. [62,103,104]. In this case, fifth-force experiments
on the Earth will always be affected by the ϕ expectation
value given by Eq. (3.5). In this study, we show the
constraints on β that arise given that the ϕ field has a
nonzero expectation value that affects the fifth-force experi-
ments. However, we do not take these constraints into
account for our calculations, as we assume that the ADM
boson stars are not bound to the Earth as a halo and refer to
Ref. [62] for such discussions.
From Refs. [92,105,106], the presence of ϕ, with a mass

m, induces an interaction between two massive bodies with
a potential

VðrÞ ¼ −
m1m2

r

�
α

MP

�
2

e−mr; ðA1Þ

where mi is the mass of the ith body and α is a coupling
constant given by

α ¼ ghNN

ffiffiffi
2

p
MP

mN
ϵ: ðA2Þ

Here, mN is the nucleon mass; ϵ is the mixing parameter
which is proportional to the Higgs coupling constant β in
Eq. (3.1),
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ϵ ≈
βvϕvew
m2

h

; ðA3Þ

where we again neglect terms of Oðβ2Þ; and ghNN is the
coupling of the Higgs to nucleons given by

ghNN ¼
X

q¼u;d;s;c;b;t

hNjq̄qjNighqq ¼
X

q¼u;d;s;c;b;t

fNTqmN

vew
:

ðA4Þ

Here, fNTq are the nucleon parameters [105,107–109],
and it has been used that

hNjq̄qjNi ¼ fNTqmN=mq; ghqq ¼ mq=vew: ðA5Þ

For protons and neutrons, the couplings are ghpp ≈
0.3776mp=vew and ghnn ≈ 0.3755mn=vew, respectively.
Taking an average of these two couplings, Eq. (A2) becomes

α ∼ 105
�
βvϕ
eV

�
: ðA6Þ

The value of α2 is constrained by the aforementioned fifth-
force experiments [92,110–112], and fromEq. (A6), one can
draw constraints on βvϕ as depicted in Fig. 11.
If the U(1) symmetry of the Lagrangian is unbroken,

then ϕ is protected from decays into two photons. However,
if the U(1) charge of ϕ is not conserved, one can check that
the decay process ϕ → γγ has a lifetime that is several
orders of magnitude larger than the age of the Universe.
From Ref. [102], the decay rate of a virtual Higgs to two
photons is given by

ΓH�→γγ ¼
GFα

2
QEDm

3

128
ffiffiffi
2

p
π3

F2; ðA7Þ

where F ≃ 11=3 includes all loop contributions from
charged fermions and the W bosons. The Fermi constant
GF will shift due to the shift in the Higgs VEV,

GF ¼ 1ffiffiffi
2

p
v2

¼ ḠF

1 − βv2ϕ=m
2
h

; ðA8Þ

where ḠF ≡ 1=ð ffiffiffi
2

p
vewÞ is the Fermi constant for β ¼ 0.

Due to the interactions between ϕ and the Higgs, there is
some mixing, ϵ, given by Eq. (A3), that will suppress the
decay rate of ϕ → γγ:

Γϕ→γγ ¼ ϵ2ΓH�→γγ: ðA9Þ

Taking βv2ϕ ≪ m2
h, the lifetime for ϕ is then

τϕ ∼ 1043 yr

�
10−2

β

�
2
�
10−6 eV

m

�
3
�
104 eV
vϕ

�
2

: ðA10Þ

If we assume that all of the DM in the Galaxy is in the form
of boson stars, the nonzero expectation value of ϕ can be
taken to be given by Eq. (3.5) inside the boson star and to
be equal to zero outside the boson star. In this case, it can be
shown that for β ≲ 10−2 and a given vϕ that can create a
recordable clock shift, this lifetime is much larger than the
age of the Universe.

FIG. 11. Constraints on the product of the Higgs coupling β,
with vϕ given by Eq. (3.5) from gravitational inverse-square law
tests [92,110–112]. The reference labels in the left panel
correspond to those described in Ref. [110], while the reference
labels in the right panel correspond to those described in
Ref. [112].
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