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Dark Matter could potentially manifest itself in the form of asymmetric dark stars. In this paper

we entertain the possibility of probing such asymmetric bosonic dark matter stars by the use of

atomic clocks. If the dark sector connects to the standard model sector via a Higgs or photon

portal, the interior of boson stars that are in a Bose-Einstein condensate state can change the values

of physical constants that control the timing of atomic clock devices. Dilute asymmetric dark matter

boson stars passing through the Earth can induce frequency shifts that can be observed in separated

Earth based atomic clocks. This gives the opportunity to probe a class of dark matter candidates

that for the moment cannot be detected with any different conventional method.

I. INTRODUCTION

Currently, cosmological and astrophysical observations

leave little doubt about the presence of dark matter (DM)

in our Universe [1, 2]. Although its existence is very well

motivated, the nature of DM still remains a complete

mystery. The masses of possible DM candidates span sev-

eral orders of magnitude ranging from ultralight particles

of ∼ 10−22 eV [3–5], to massive black holes of tens of solar

masses [6–8]. Furthermore, it is possible that DM con-

sists of several different components. Currently the so-

called Collisionless Cold Dark Matter (CCDM) paradigm

is consistent with observations of the large scale struc-

ture, suggesting that DM self-interactions are absent or

very small. On the other hand, observations of the small

scale structure seem to be at odds with CCDM. The core-

cusp problem of dwarf galaxies, the diversity problem,

and the “too big to fail” raise doubt about the validity

of the CCDM paradigm (see [9] and references therein).
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Although these issues can be attributed to different fac-

tors, self-interacting DM (SIDM) can alleviate these prob-

lems, reconciling theory with small scale structure ob-

servations. Several studies of SIDM have been under-

taken [10–13] providing constraints and an optimal range

of cross sections, 0.1−10 cm2/g, for DM self-interactions

that can solve the CCDM problems. Stringent constraints

are imposed, for example, for the case where the self-

interactions are mediated by a particle φ which is coupled

to the Standard Model (SM) via a Higgs portal [14–19].

In such a case, φ must decay before the start of the Big

Bang Nucleosynthesis (BBN) in order to avoid energy in-

jection to the plasma during BBN. These constraints can

be evaded if φ is also coupled to sterile or active neutri-

nos [20]. Also, SIDM might be needed in order to provide

seeds for the existing supermassive black holes we observe

in the Universe [21]. Finally, SIDM is motivated if one

embeds the DM sector in Grand Unified Theories (GUTs)

[22]. The punchline is that SIDM might be welcome as

it can alleviate problems in the CCDM paradigm and/or

explain unresolved astrophysical issues.

One particular class of SIDM theories is that of asym-

metric DM (ADM). ADM is an alternative paradigm to

thermally produced dark matter such as Weakly Inter-
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acting Massive Particles (WIMPs). In the usual WIMP

paradigm, DM annihilates to SM particles. It turns out

that for an annihilation cross section on the order of the

weak interactions, DM annihilations reduce the DM relic

density to the value observed today. This is the so-called

WIMP miracle. However, this is not the only theoret-

ically motivated production mechanism. Another inter-

esting one is that of ADM. In this case, an asymmetry

between the number of DM particles and antiparticles is

created in the early Universe. Strong DM annihilations

deplete the population of the particles in lack, leaving

only DM particles of the species in excess. This is also

a very well motivated paradigm. For example one can

imagine a common asymmetry mechanism for baryogen-

esis and DM genesis. If for any baryon unit asymmetry,

a DM unit is also created, then a DM particle of a mass

∼5 GeV provides the correct relic abundance of DM in

the Universe. For a review on ADM see [23].

An ADM component that exhibits self-interactions

among DM particles can cause the collapse of a DM

cloud either by a gravothermal collapse mechanism such

as in [21] or by effectively evacuating the energy of the

system via “dark”-Bremsstrahlung radiation [24], lead-

ing to black hole or asymmetric dark star formation.

The latter are stable compact objects where their hy-

drodynamic stability is caused by DM self-interactions,

Fermi pressure or the uncertainty principle depending on

the underlying model and the nature of the DM particle

(i.e. if it is a fermion or a boson). The possibility of

forming compact stable objects consisting of fermionic

ADM with self-interactions was studied in [25]. The

Tolman-Oppenheimer-Volkoff equation (see [25] and ref-

erences therein) was solved and the mass-radius relation

was found for these objects. It was assumed that the

self-interactions were Yukawa-type and could either be

attractive mediated by a scalar field φ or repulsive me-

diated by a vector boson field φµ. The case of bosonic

SIDM forming compact star-like objects was studied in

[26], where the density profile, the mass-radius relations,

and the maximum mass that these objects can withstand

were derived. We should stress that asymmetric dark

stars are distinctly different from dark stars that might

have formed in the past if DM is of symmetric nature [27–

29]. In the latter case, the hydrodynamic stability of the

star is achieved by radiation pressure from the DM an-

nihilation. These stars, if they ever existed, should have

annihilated by now. On the contrary, due to the particle-

antiparticle asymmetry, no annihilation takes place inside

the asymmetric dark star. The species in excess have

already annihilated away the minority component early

on. Therefore, once formed asymmetric dark stars can be

stable. We should also add that dark stars can exist in

the form of hybrid compact stars made of baryonic and

DM [30–33] as well as in the context of mirror DM [34–

37].

In the case of “bosonic” stars, if matter is sufficiently

cold it stays in the ground state which is a Bose-Einstein

condensate (BEC) state. Several boson particles can form

bosonic stars, e.g., axions, or the scalars which drive the

expansion of the Universe in quintessence models [38–60].

Recently, the authors of [61–63] were able to place con-

straints on scalar DM models based on the variation of

fundamental and physical constants. One should keep

in mind that, in general, dark stars can contribute to

the overall DM abundance of the Universe. Gravitational

lensing experiments such as MACHO [64] and EROS [65]

constrain the abundance of compact objects in the mass

range 10−7M� .M . 10M�, (M� being the solar mass)

to be less than 20% of the total DM density of the Uni-

verse.

Star-like objects composed of ADM can be probed both

by the aforementioned gravitational lensing studies but

also by gravitational wave signals produced in the co-

alescence of such dark objects with black holes, other

compact stars such as neutron stars, or among them-

selves [66–73]. Additional light signals can be also pro-

duced in particular scenarios where there is a portal that

couples the dark sector to the SM one [74]. However,

if the dark star is sufficiently diffuse, as is the case for

boson stars composed of ADM, gravitational waves pro-

duced in mergers of such objects are weak and alterna-

tive detection methods should be developed. One such

method is via the use of high precision atomic clocks.

The idea is simple. Atomic clocks measure time by using

specific atomic transitions. For microwave atomic clocks,

the ticking of the clock is sensitively dependent on the

fine structure constant as well as physical constants such

as the masses of the electron and the quarks. Whereas

for optical atomic clocks, the ticking of the clock is only

dependent on the fine structure constant [75, 76]. The

passing of an atomic clock through a dilute ADM boson

star could, under some conditions, change these param-

eters and cause the atomic clock to tick at a different

rate than an atomic clock not covered by the boson star.

Therefore, small de-synchronizations of atomic clocks lo-

cated at different places on the Earth could indicate the
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passing of such a ADM boson star. Clearly, once two

clocks located at different places are covered by the star,

they again measure time with the same rate. The de-

synchronization takes place only in the case where one

clock is inside and another one outside the ADM boson

star.

Previously, optical atomic clocks were able to reach a

precision of 10−18 for the fractional frequency shift δω/ω

[77, 78], while more recently, a record precision of 10−19

[79] has been reached. Microwave atomic clocks tend to

be less sensitive, on the order of 10−16 [80], but it has

been suggested that this precision can be improved to

10−17 (T (K)/300)
2

for certain alkali atoms [81]. These

tools provide a new means to probe the existence of cos-

mological topological defects [76] or dilute ADM boson

stars. In fact using data from the satellite born clocks of

the Global Positioning System, the authors of [82] man-

aged to set new constraints on models where DM is in

the form of topological defects. Previous analyses [83, 84]

have also shown how atomic clocks are affected if the DM

is axionic in nature.

In this paper we present potential constraints that can

be set on ADM boson stars (if these objects contribute to

the DM relic abundance) using atomic clocks. In particu-

lar, we investigate models where the bosons couple to the

SM via a Higgs portal or through a photon portal provid-

ing a means to affect change in physical constants which

determine the ticking of atomic clocks, such as the elec-

tron mass and the fine structure constant. In this study,

we focus on the effect of ADM boson stars on microwave

atomic clocks when assuming the Higgs portal since, for

this case optical atomic clocks are not sensitive probes

as they are only affected by shifts in the fine structure

constant. Whereas, when we assume the photon portal,

we focus on the effect of ADM boson stars on optical

atomic clocks, since these tend to be more precise than

microwave atomic clocks. Recently, the authors of [85]

analyzed potential production mechanisms and evolution

of light ADM, as well as the phenomenological conse-

quences of the ADM coupling to the SM through a Higgs

portal. We point out that there have been a number of

proposed scalar field DM models, relaxion [61, 62] for ex-

ample, and other phenomenological models [86, 87] that

couple directly to fermions or the electromagnetic field,

and hence can cause variations in the masses of fermions

and the fine structure constant. These scalar field DM

models can be constrained from various experiments and

they can be probed by both optical and microwave atomic

clocks. The paper is organized as follows: In Sec. II

we derive the density profile and mass-radius relation of

ADM boson stars and we estimate the rate of events i.e.,

the frequency with which these objects pass through the

Earth. In Sec. III, we present the Higgs and photon por-

tals that are responsible for shifting the timing of atomic

clocks and we present updated constraints on the cou-

plings involved in both portals. In Sec. IV we identify

the parameter space of ADM boson stars that can poten-

tially be probed by future atomic clocks and finally we

conclude in Sec. V.

II. BOSON STARS

As mentioned in the introduction star-like objects can

be formed from bosonic DM which, at low temperatures,

is in a BEC state. We analyze a φ4 theory for complex

scalar fields, where the self-interaction potential is given

by,

V (φφ∗) = ±λ
4

(φφ∗)2, (II.1)

where λ is the self-coupling constant between bosons.

Here, the positive (negative) sign denotes repulsive (at-

tractive) self-interactions. One can find gravitationally

bound systems composed of ADM subject to the self-

interaction given by Eq. (II.1) and analyze the collision

rate of such systems with Earth based atomic clocks.

A. Density Profile

In the case of repulsive self-interactions, one can solve

the Einstein-Klein-Gordon (EKG) equation in order to

derive the density and mass-radius profile of these ob-

jects (see e.g. [26, 41]). In the case of attractive self-

interactions, the relativistic effects are suppressed and

it suffices to solve the Gross-Pitaevskii-Poisson (GPP)

equations [56, 57, 88]. In this paper, we focus on at-

tractive self-interactions because they give objects that

are more easily probed by atomic clocks. Namely, ob-

jects with smaller compactness (ratio of mass over ra-

dius), such as those composed of ADM with attractive

self-interactions, have an increased probability of pass-

ing by the Earth, thus creating a de-synchronization in

atomic clocks that are apart from each other. On the con-

trary, repulsive self-interactions tend to create systems

with higher compactness and, therefore, lower chances

of passing by the Earth. Instead of exactly solving the
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GPP equations, an alternative variational method can be

used [55, 56]. One can choose some variational ansatz

for the wavefunction that characterizes matter in the bo-

son star and minimizes the energy of the system. Taking

attractive self-interactions corresponding to the negative

sign in Eq. (II.1) and assuming a non-relativistic expan-

sion of the complex scalar field,

φ =
1√
2m

e−imtψ (II.2)

where m is the mass of the boson, the energy functional

of the system is,

E =

∫
d3r

(
|∇ψ|2

2m
+

1

2
Vg|ψ|2 −

λ

16m2
|ψ|4

)
, (II.3)

where Vg is the self-gravitational potential which satisfies

the Poisson equation,

∇2Vg = 4π
m2

M2
P

|ψ|2. (II.4)

Here, MP is the Planck mass, and the wavefunction ψ is

normalized to the particle number N ,

∫
d3r|ψ|2 = N. (II.5)

We choose an ansatz of the form [89],

ψd

(
r

σd

)
=

√
N

7π σ3
d

(
1 +

r

σd

)
exp

(
− r

σd

)
, (II.6)

where σd is the dilute minimum energy solution to be

found by minimizing the energy of the system. In [55],

this ansatz was found to be an excellent approximation of

numerical solutions for boson stars in the dilute region.

The minimization of the energy, with N fixed, results in

the dilute minimum energy solution,

σd =
5376

5373

M2
P

m3N

1 +

√
1−

(
N

Nmax

)2
 ' 107 km

(
µeV

m

)3(
1057

N

)1 +

√
1−

(
N

Nmax

)2
 , (II.7)

where Nmax is the maximum particle number beyond

which no bound state solutions exist. Therefore, for

ADM boson stars subject to attractive self-interactions,

the possible particle numbers are bounded from above by,

N ≤ Nmax = 10
MP

m
√
λ
' 1057

(
µeV

m

)√
10−45

λ
. (II.8)

The choice of ansatz given by Eq. (II.6) with the value

of σd that minimizes the energy, Eq. (II.7), provides a

good approximation for the wavefunction, ψd, of a grav-

itationally bound dilute ADM boson star. Note that in

this regime, the self-gravitational energy plays an impor-

tant role in the stability of the system [59]. The central

density of the ADM boson star is given by,

ρ(0) = m|ψd(0)|2 = 2m2|φ(0)|2 ' 105 GeV cm−3
(

m

µeV

)(
N

1057

)(
107 km

σd

)3

. (II.9)

We take the radius of the ADM boson star to be the

radius inside which 99% percent of the mass is contained,

R99, found via

0.99N =

∫ R99

0

∣∣∣∣ψd( r

σd

)∣∣∣∣2 d3r, (II.10)

for a given particle number (or total mass). For the ansatz

chosen, R99 is approximately equal to,

R99(N) ≈ 5σd. (II.11)

If all DM is in the form of such boson stars, it behaves

as CCDM. If, however, only a fraction of DM bosons is

in the form of boson stars, the self-interactions of the

bosons have to obey well established limits from the bullet

cluster and the ellipticity of galaxies (see [26, 90] and
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the references therein). For ADM, we assume 2 → 2

scattering between like charges subject to the interaction

potential given by Eq. (II.1). In this case, the matrix

element is M = iλ and the resulting cross-section is,

σ(φφ→ φφ) =
λ2

64πm2
. (II.12)

Using the cross-section constraint obtained in [91], we get

an upper limit on the self-coupling |λ|,

σ

m
. 2

cm2

g
, |λ| . 10−21

(
m

µeV

)3/2

. (II.13)

In this study, we choose all of the local DM density to be

composed of ADM boson stars. In this case, the above

constraint does not necessarily hold. However, we find

that for all possible parameter spaces obtained, the ADM

self-coupling constants are well below the maximum value

given by Eq. (II.13), and so we choose to keep the con-

straint when we search for the possible parameter space

in Sec. IV.

B. Collision Rate

We are interested in objects that can pass through

the Earth at some minimum rate. As mentioned earlier,

larger rates are achieved by objects that are relatively

large and not massive. If these objects compose a compo-

nent of DM, smaller masses correspond to larger number

densities. Similarly, larger size increases the probabil-

ity of passing through the Earth. The scattering cross-

section for collisions between either Earth or a detector

on Earth and a boson star is (assuming non-relativistic

speeds),

σ ≈ π(Rtarget +R99)2, (II.14)

where Rtarget is the radius of the target and R99 is given

by Eq. (II.11). For all possible parameter spaces analyzed

in Sec. IV, the ADM boson stars have a size comparable

to or much larger than the Earth. Hence, the radius of

the target in Eq. (II.14) is taken to be the radius of the

Earth RE . The mean free path for collisions is,

L =
1

nσ
, (II.15)

where n is the local number density of ADM boson stars

which, assuming all DM is in the form of boson stars, is

given by,

n =
ρDM

mN
' 10−17R−3E

(
µeV

m

)(
1057

N

)
, (II.16)

where ρDM ' 0.3 GeV/cm3 is the Earth’s local DM den-

sity. The frequency of collisions is then,

f =
vE
L
' 10−3 yr−1

(
µeV

m

)(
1057

N

)(
R99

5× 107 km

)2

, (II.17)

where vE = 2.3 × 102 km s−1 is the relative velocity be-

tween the Earth and the ADM boson star. Therefore, the

collision frequency will not only depend on the number

density of ADM boson stars, but also the boson mass m,

and from Eqs. (II.7) and (II.8), the boson self-coupling

constant λ.

III. PROBING ASYMMETRIC DARK STARS

WITH ATOMIC CLOCKS

A. Higgs Portal and its Effect on Measured

Parameters

We are interested in ADM boson stars that can poten-

tially be detected by atomic clocks. In this case, a portal

that connects the dark sector and the SM one is needed.

In particular, we assume that the DM sector communi-

cates with the SM sector via a Higgs portal (see [92–94]),

i.e., there is a term in the Lagrangian of the form

L = ...+ β|φ|2|H|2, (III.1)

where β is a positive constant. We note that one can also

include a term of the form φ|H|2 for real scalar fields,

however in the case of a complex scalar field, this term is

not invariant under the U(1) transformation φ → eiαφ.

Such a portal can open decay channels of the field φ to

SM particles as long as φ is heavier than they are.

The interaction between the ADM and the Higgs re-

sults in a shift of the Higgs vacuum expectation value
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(VEV) given by,

v = vew

√
1−

2βv2φ
m2
h

≈ vew

(
1−

βv2φ
m2
h

)
(III.2)

where vew is the VEV of the Higgs for β = 0, vφ is the

nonzero expectation value of φ, mh is the Higgs mass,

and the last equality holds for βv2φ � m2
h. In many

cases throughout this paper, this assumption will hold,

and from this point we will take v ≈ vew unless explic-

itly stated otherwise. Notice that in order that the Higgs

obtains a nonzero VEV, it must be true that βv2φ < m2
h.

Given that the ADM density in the early universe was

large, for a given value of β it could be possible that the

Higgs VEV vanishes. Because of this, we assume that the

ADM forms at a time such that the Higgs VEV always

exists once it forms sometime before BBN.

Notice that the interaction between the ADM and the

Higgs adds to the mass term of the φ field, so that after

the Higgs acquires a VEV, the effective mass of φ is given

by,

m2 ≈ m2
φ,bare + βv2ew. (III.3)

It should be noted that for any parameter space corre-

sponding to an observable frequency shift of an atomic

clock, the bare mass of φ squared must be fine tuned

such that the appropriate mass m is obtained. The self-

coupling constant λ must also be fine-tuned due to loop

corrections of the |φ|2|H|2 coupling.

If it is assumed that the complex scalar field φ is bound

in a dilute boson star, it is related to the dilute wavefunc-

tion and central density of the boson star as given by Eq.

(II.9). Therefore, the presence of the star induces an ef-

fective change in the mass of the electron through the

Higgs portal of the following form

me =
yev

2
≈ mbare

e

(
1−

βv2φ
m2
h

)
, (III.4)

where mbare
e is by definition the electron mass in the ab-

sence of any medium and ye is the Yukawa coefficient for

the electron. Note that, depending on the sign of β, the

effective mass can be larger or smaller than the bare mass

of the electron mbare
e . In this study, we take vφ to be the

central value of φ inside the boson star given by,

vφ ≡ |φ(0)| =
√
ρ(0)

2m2
' 1 MeV

{(
N

1057

)(
µeV

m

)(
107 km

σd

)3
}1/2

. (III.5)

B. Photon Portal and its Effect on Measured

Parameters

One can also couple the SM to the dark sector through

a photon portal [86]. In this case, the Lagrangian has a

term of the form,

L = ...+
g

4
|φ|2F 2 (III.6)

where the coupling constant g can be positive or nega-

tive. This interaction causes a shift in the fine structure

constant given by,

α = α0

(
1

1− g v2φ

)
≈ α0

(
1 + g v2φ

)
(III.7)

where vφ is given by Eq. (III.5) and the last equality holds

when gv2φ � 1. Again, we take this assumption to hold

throughout this paper, unless explicitly stated otherwise.

C. Frequency Shift of Atomic clocks

For atomic clocks in general, the change in the counting

of the clock follows [76]

δω

ω
=
δV

V
, (III.8)

where

V = αKα
(

mq

ΛQCD

)Kq (me

mp

)Ke/p
, (III.9)

and α, mq, me and mp are the the fine structure con-

stant, the quark mass, the electron mass, and the proton

mass, respectively. ΛQCD is the scale of QCD and the Ki

are appropriate constants for the corresponding quanti-

ties i depending on the particular atom used in the atomic

clock.
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For a typical microwave atomic clock [76], Kα ' 2,

Kq ' −0.09 and Ke/p = 1. Given the portal of

Eq. (III.1), α remains unchanged. The change in the mass

of the quarks makes very little contribution to δω due to

the small factor 0.09 and since most of the mass of the

proton does not come from the mass of the quarks, this

is also a tiny contribution. Therefore, in our setup the

overwhelming contribution to δω comes from the change

of electron mass. Assuming the Higgs portal, as an ADM

boson star passes through the Earth, the mass of the

electron is shifted due to the nonzero value of vφ via

Eq. (III.4). In this case, the shift in frequency is given

by,(
δω

ω

)
Higgs

' δme

me
'
βv2φ
m2
h

' 10−20
(

β

10−10

)( vφ
MeV

)2
(III.10)

Notice that for the benchmark parameters, this frequency

shift is several orders of magnitude smaller than the de-

tectable frequency shift of the most precise microwave

atomic clocks currently.

Assuming, instead, the photon portal the effect of a

passing ADM boson star is a shift in frequency given by,(
δω

ω

)
Photon

' δα

α
' 10−19

(
g

10−13 GeV−2

)( vφ
MeV

)2
(III.11)

Notice that both microwave and optical atomic clocks will

approximately exhibit this frequency shift. In this case,

and given the much better precision of optical atomic

clocks, we focus on the shift of optical atomic clocks for

this portal.

It is apparent that larger boson star densities corre-

spond to larger values of vφ, which consequently create

larger shifts in the mass of the electron and therefore

larger δω shifts in the clock timing. The reader should

recall however that usually larger densities are achieved

in heavier stars which have smaller collision rates with

the Earth. Therefore, the class of boson stars that can

be probed are those that have large enough δω so that

the change in timing is detectable while at the same time

the collision rate remains relatively high. We explore dif-

ferent values for the DM self-coupling constant as well

as for the coefficients β and g. As discussed earlier, we

assume that all DM is composed of ADM boson stars,

and hence the DM self-coupling constant is not necessar-

ily constrained by Eq. (II.13). However, in scanning the

parameter space, we find that the possible self-coupling

constants do, in fact, satisfy this constraint, and so we

choose to search the parameter space with this constraint

satisfied. The Higgs coupling constant β and the photon

coupling constant g are also subjected to different types

of constraints as demonstrated in the next subsection.

D. Bounds on Higgs and Photon Couplings

An upper bound on the Higgs coupling constant β in

Eq. (III.1) can be found from the observed constraint on

the branching fraction of invisible Higgs decays. From

[20], the rate for the invisible Higgs decay is given by,

Γ(h→ φφ) ≈ β2v2ew
8πmh

(
1− 4m2

m2
h

)1/2

. (III.12)

Recent measurements from the CMS collaboration [95]

give an upper constraint on the branching fraction of in-

visible Higgs decays of 19% at 95% CL. For Γ(h→ SM) =

4.1 MeV and taking m � mh, an upper constraint on β

is found to be,

β . 10−2. (III.13)

It has been shown that constraints can be placed on the

change in the Fermi constant throughout the evolution of

the universe [96]. Assuming both the Fermi constant and

fermion masses change as a result of the ADM density,

the ratio of the Fermi constant at the start of BBN, GBBN
F

to the Fermi constant today, G0
F , has an upper limit given

by,

GBBN
F

G0
F

=
1− βρavgDM,0/(2m

2m2
h)

1− βρavgDM,BBN/(2m
2m2

h)
< 1.01 (III.14)

where ρavgDM,0 = 1.3 keV cm−3 is the average DM density

of the universe today and ρavgDM,BBN is the average DM

density of the universe at a temperature of 1 MeV. Tak-

ing the redshift corresponding to this temperature to be

zBBN = 4 ∗ 109, the average DM density of the universe

was ∼ 1029 times greater than the value today, and hence,

the shift in the Fermi constant could have been signifi-

cant. The constraint on the change in the Fermi constant

constrains the Higgs coupling constant to be [85],

β . 2× 10−10
(

m

µeV

)2
(

1.3 keVcm−3

ρavgDM,0

)
. (III.15)

Notice that for this benchmark mass m, the constraint

from invisible Higgs decays (Eq. (III.13)) is more strin-

gent. However for masses m . 10−2 eV, the constraint

from BBN (Eq. (III.15)) starts to become comparable. In



8

the next section, we will show that because of these con-

straints, the possible frequency shifts of microwave atomic

clocks from boson stars subject to the Higgs portal are

several orders of magnitude smaller than the currently

detectable frequency shift. However, the BBN bound

will change if we assume that the ADM forms after BBN

[97]. It has been theorized that certain classes of CDM

can form between BBN and the time of matter radia-

tion equality [98]. Alternatively, one can assume that the

ADM formed after BBN as a decay product of another

particle that has no direct coupling to the Higgs. In these

cases, the possible parameter space may open up, and we

leave such analyses for future work.

The most strenuous constraints for the photon coupling

constant in the possible parameter spaces of the next sec-

tion are from BBN and energy loss of supernovae. As with

the Fermi constant, the change in the fine structure con-

stant from the time of BBN until now is also constrained

[86],

g . 8× 10−14 GeV−2
(

m

µeV

)2

, (III.16)

while energy loss constraints of supernovae give

g . 10−7 GeV−2. (III.17)

We show, in the next section, that in taking account both

constraints on the photon coupling constant, we obtain

an available parameter space that gives a detectable fre-

quency shift assuming the collision frequencies with Earth

are small (f ∼ 10−2 yr).

IV. RESULTS

In this section we would like to identify the ADM boson

star parameter space that can be probed by Earth based

atomic clocks. The constraint on β from inverse Higgs de-

cays (Eq. (III.13)) and from BBN (Eq. (III.15)), the con-

straint on the condensate particle number for boson stars

with attractive self-interactions (Eq. (II.8)), and the con-

straint on the boson self-coupling constant (Eq. (II.13)),

provide boundaries for an available parameter space to

scan when assuming the Higgs portal. Again, we stress

that this last constraint is not necessary since we assume

that all DM is in the form of ADM boson stars. However,

in searching the available parameter space without satis-

fying this constraint, we find that all possible solutions

do, in fact, keep this constraint satisfied. When we as-

sume the photon portal, we scan the available parameter

space assuming the constraints on the photon coupling

(Eqs. (III.16) and (III.17)), as well as the last two con-

straints mentioned above (Eqs. (II.8) and (II.13)).

We scan the available parameter space to find solutions

for which the rate of collisions between boson stars and

the Earth given by Eq. (II.17) is f ≥ fmin, and the size

of the boson star is R99 < 1010 km. This last constraint

arises due to the fact that solutions with R99 ≥ 1010 km

will take a year or more to completely pass through a

detector on Earth. We also take the constraint that

the frequency shift from Eqs. (III.10) and (III.11) is

δω/ω ≥ (δω/ω)min. Finally, the solutions found satisfy

the condition that the ADM boson stars found locally do

not significantly overlap i.e.,

ρ(0) ≥ ρDM, (IV.1)

where ρ(0) is the central density of the ADM boson star

given by Eq. (II.9).

The rate of collisions depends on λ, m, and N (the

number of particles composing the star), while the in-

duced fractional frequency shift δω/ω depends on λ, m,

N , and β or g. We take the constraints on λ, N , β,

and g as described previously. We scan the parame-

ter space by varying the relevant parameters within the

ranges 10−22 eV ≤ m ≤ 106 eV, 10−100λmax < λ < λmax,

0.01Nmax < N < Nmax, and 10−50βmax < β < βmax

(assuming the Higgs portal) or 10−50gmax < g < gmax

(assuming the photon portal). From this scan, we iden-

tify the parameter space that can provide a frequency of

collision f ≥ fmin with an induced δω/ω ≥ (δω/ω)min

provided that all DM is in the form of these ADM bo-

son stars, and that the radius and central density of the

boson stars satisfy the constraints as described above.

A. Higgs portal

We show the following parameter space for a boson star

subject to the Higgs portal obtained when the BBN con-

straint on the Higgs coupling constant (Eq. (III.15)) is

negligible. We emphasize that this constraint will change

if the ADM forms long after BBN and it may be possi-

ble that the invisible Higgs decay is the most strenuous

constraint. We leave such analyses for future work, and

show the results that one could obtain when the BBN

constraints are negligible. In Fig. 1 we show the mass

and radius of the boson star as a function of the DM

mass where δω/ω ≥ 10−18 with a rate of events larger
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FIG. 1: Total mass M and radius R of the boson star

subject to the Higgs portal vs. particle mass m for

which β = 10−2, δω/ω ≥ 10−18, the frequency of

collisions between the ADM boson star and the detector

is f ≥ 1 yr−1, and the self-coupling of the ADM is

λ = 10−46 (left panel), λ = 10−44 (middle panel), and

λ = 10−42 (right panel). Notice that this value of β is

excluded from BBN constraints if the ADM is assumed

to have formed before BBN.

than one per year, after having chosen three different val-

ues of λ and having fixed β = 0.01. In Fig. 2 we show

how the aforementioned parameter space is distributed in

terms of δω/ω and rate of events, while in Fig. 3 we show

with different colors which part of the parameter space re-

quires atomic clock sensitivity 10−16, 10−17 or 10−18 in

order to detect the passing of such a dilute boson star

from the Earth. In Fig. 4, we show how the available

parameter space changes when the Higgs coupling con-

stant β is decreased by two orders of magnitude. One

can see that the available parameter space decreases and

that no events give a fractional frequency shift greater

than 10−16.

Notice that for the parameter space shown in Figs. 1,

2, 3, and 4, the values of β = 10−2 and β = 10−4 are

constrained from BBN. We see then, from Eq. (III.10)

that if we take a value of β as constrained from BBN,

the frequency shift induced is several orders of magni-

tude less than the most precise microwave atomic clocks

even for rare events. Conversely, we can attempt to in-

FIG. 2: Collision frequency f and frequency shift δω/ω

vs. particle mass m for the parameter space in Fig. 1.

crease the frequency shift by increasing vφ. From Eq.

(III.5), one can see that this can be done by either in-

creasing the number of particles, or by decreasing the

particle mass or size of the boson star. Notice from Eqs.

(II.7), (II.8), and (II.17), there is a delicate balance that

one must achieve between the free parameters of the bo-

son mass m and the self-coupling constant λ in order to

satisfy all constraints and obtain a detectable frequency

shift for microwave atomic clocks. Because of all the nec-

essary constraints, we find that for boson stars subject

to the Higgs portal, the frequency shift induced is several

orders of magnitude smaller than the currently detectable

frequency shift for microwave atomic clocks. However, as

noted above, if the BBN constraint can be shifted due the

formation of the ADM after BBN, the parameter space

could open considerably. Also, one can open the param-

eter space by assuming a smaller minimum collision fre-

quency with the Earth. For example, one can satisfy all

constraints, assuming the ADM forms before BBN, if the

minimum collision frequency is lowered to f ∼ 10−5 yr−1.

Several comments are in order here. First, it is obvi-

ous that further improvements to microwave atomic clock

sensitivities will lead to an extension of the parameter

space probed within this class of models as is apparent

from Fig. 3. For all of the parameter space shown, we

have assumed that these dilute boson stars make up 100%

of the DM relic abundance in our galaxy. More param-
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FIG. 3: Total mass M (top left), radius R (bottom left),

collision frequency f (top right), and frequency shift

δω/ω (bottom right) of the ADM boson star vs. particle

mass m for which β = 10−2, λ = 10−45, and the

frequency of collision between the boson star and

detector is f ≥ 1 yr−1. Blue dots corresponds to

δω/ω ≥ 10−16, red dots to 10−16 > δω/ω ≥ 10−17, and

black dots to 10−17 > δω/ω ≥ 10−18. Notice that this

value of β is excluded from BBN constraints if the ADM

is assumed to have formed before BBN.

eter space can be probed by atomic clocks if one relaxes

this condition. If boson stars compose a smaller fraction

of DM, part of the parameter space can still be probed

as long as the rate of events remains sufficient. This can

happen for example in cases where the dilute boson star

is large yet it makes up a small fraction of DM because

the probability of passing through the Earth can still re-

main high. In addition, the clocks of the GPS network

have been collecting data for more than 10 years and

therefore, the same technique used in [82] can be used

to probe boson stars that could have a rate of events of

∼ 0.1/year if the accuracy of the GPS clocks improve in

the near future.

We can also define the difference in the induced frac-

tional frequency shift between two atomic clocks as,

δω

ω

∣∣∣
rel

=
δω

ω

∣∣∣
1
− δω

ω

∣∣∣
2

(IV.2)

where the induced fractional frequency shift at clocks 1

FIG. 4: Total mass M (top left), radius R (bottom left),

collision frequency f (top right), and frequency shift

δω/ω (bottom right) of the ADM boson star vs. particle

mass m for which β = 10−4, λ = 10−45, and the

frequency of collision between the boson star and

detector is f ≥ 1 yr−1. Red dots corresponds to

10−16 > δω/ω ≥ 10−17 and black dots to

10−17 > δω/ω ≥ 10−18. Notice that this value of β is

excluded from BBN constraints if the ADM is assumed

to have formed before BBN.

and 2 can be determined as a function of time,

δω

ω
(t) =

β

m2
h

∣∣∣ψd ( vE |t|σd

)∣∣∣2
2m

, (IV.3)

where ψd is given by Eq. (II.6) and σd is given by Eq.

(II.7).

Fig. 5 shows (δω/ω|rel) between two microwave atomic

clocks for different distances between the clocks. Fig. 6

shows (δω/ω|rel) between two synchronized optical and

microwave [99–101] (left panel) and the absolute value

of (δω/ω|rel) between two synchronized microwave (right

panel) atomic clocks given two sets of parameter space.

Since optical atomic clocks are not sensitive to the pass-

ing of these particular boson stars, the difference in the

induced fractional frequency shift is either always posi-

tive or always negative depending on how one defines the

difference between the fractional frequency shifts. Notice

that for both of these plots, the Higgs coupling constant



11

-60 -40 -20 0 20 40 60
-3.×10-16

-2.×10-16

-1.×10-16

0

1.×10-16

2.×10-16

3.×10-16

Time[days]

FIG. 5: The relative induced fractional frequency shift

δω/ω|rel vs. time as two synchronized microwave atomic

clocks pass through a boson star. The boson star is

taken to have parameters λ = 10−45, m = 2× 10−7 eV,

n = nmax, and β = 10−2 which results in M ∼ 1016 kg,

R99 ∼ 109 km, and f ∼ 2 yr−1. The minimum time here

is taken to be when the edge of the boson star starts to

pass through the first clock, while the maximum time is

taken to be the time at which the boson star fully passes

through the second clock. The dashed line corresponds

to a distance of 108 km between the detectors while the

thick line corresponds to a distance of 107 km. The filled

in region corresponds to |δω/ω|rel| ≤ 10−18. Notice that

this value of β is excluded from BBN constraints if the

ADM is assumed to have formed before BBN.

is β = 10−2, which is excluded from BBN constraints for

this mass range. If it is assumed that the ADM forms

before BBN, then the frequency shifts would decrease by

the appropriate orders of magnitude.

One can see from the left panel of Fig. 6 that, if

it is assumed that one can neglect the BBN constraint

for the Higgs coupling constant, for a given set of ADM

parameters, a fractional frequency shift that is greater

than δω/ω ∼ 10−18 is induced between a given pair of

synchronized microwave and optical atomic clocks (inde-

pendently of the distance between the clocks). In this

case, there is some chance of observing passing ADM bo-

son stars with future microwave atomic clock sensitivi-
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FIG. 6: The absolute magnitude of the induced

fractional frequency shift δω/ω vs. time as two

synchronized atomic clocks pass through a boson star.

The left panel shows the signal for two synchronized

microwave and optical atomic clocks while the right

panel shows the signal for two synchronized microwave

atomic clocks. The top panel shows the signal for

λ = 10−43, m = 10−6 eV, and n = nmax which results in

a boson star with M ∼ 1015 kg, R99 ∼ 108 km, and

f ∼ 2 yr−1, while the bottom panel shows the signal for

λ = 10−45, m = 10−6 eV, and n = 0.1nmax which results

in a boson star with M ∼ 1015 kg, R99 ∼ 109 km, and

f ∼ 10 yr−1. For all plots, it is assumed that β = 10−2.

The gridlines in the left panels show the position of the

microwave atomic clock inside the boson star, while the

labels in the right panels show the distance between the

two microwave atomic clocks. Notice that this value of

β is excluded from BBN constraints if the ADM is

assumed to have formed before BBN.

ties, assuming one can neglect the BBN bounds on the

Higgs coupling constant. However, one can see from the

right panel of Fig. 6 that the prospect of observing pass-

ing ADM boson stars with two synchronized microwave

atomic clocks is more impractical. Because the size of the

systems that correspond to the available parameter space

of Figs. 1, 2, and 3 tend to be O(108− 1010) km, and the

induced fractional frequency shift O(10−18 − 10−14), the

distance between the two synchronized microwave atomic
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clocks must be large in order to obtain a difference in the

signal that is greater than 10−18. Of course, smaller sys-

tems will result in synchronized microwave atomic clocks

that can be put closer together while still getting an ob-

servable signal, however these systems will collide with

the Earth less often.

Note that measurements made with the atomic clocks

are subject to the uncertainty principle (i.e. δωδt ≥ 1

where δω is the frequency shift and δt is the transient time

of the boson star). For a typical microwave frequency of

1010 Hz, the transient time of the boson star must satisfy

δt ≥ 10−10 (δω/ω)
−1

s. Notice from Fig. 5, that the

fractional frequency shift is δω/ω ' 10−16 for a transient

time of the boson star δt ' 3 × 106 s. In this case, the

uncertainty principle is just satisfied.

B. Photon portal

In Fig. 7 we show the mass and radius of the boson

star subject to the photon portal as a function of the DM

mass where δω/ω ≥ 10−20 with a frequency of collision

events f ≥ 10−2 yr, after having chosen two different val-

ues of λ and having fixed g = 10−10 GeV−2 in order to

satisfy both the BBN and supernova constraints. In Fig.

8 we show how the aforementioned parameter space is

distributed in terms of δω/ω and rate of events. We also

show how the available parameter space changes when the

photon coupling constant g is increased by three orders

of magnitude in Fig. 9. Fig. 10 shows (δω/ω|rel) between

two optical atomic clocks for different distances between

the clocks. Notice that the parameter space for which all

constraints are satisfied correspond to rare events.

Finally, as described above, the uncertainty principle

should hold throughout the transient time of the bo-

son star. For a typical optical frequency of 1014 Hz,

the transient time of the boson star must satisfy δt ≥
10−14 (δω/ω)

−1
s. From Fig. 10, one can see that the

uncertainty relation holds for a fractional frequency shift

δω/ω & 5 × 10−17. In this case, though, the collision

frequency between the boson star and the Earth is very

rare, f ' 10−5 yr−1.

V. CONCLUSIONS

In this paper, we entertain the possibility that dark

matter is entirely composed of light asymmetric dark

matter with attractive self-interactions that has collapsed

FIG. 7: Total mass M and radius R of the boson star

subject to the photon portal vs. particle mass m for

which g = 10−10 GeV−2, δω/ω ≥ 10−20, the frequency of

collisions between the ADM boson star and the detector

is f ≥ 10−2 yr−1, and the self-coupling of the ADM is

λ = 10−40 (left panel) and λ = 10−39 (right panel).

in dilute formations. If the dark sector communicates

with the visible sector via a Higgs or photon portal, the

passing of such a dilute object through the Earth can in-

duce a small change in physical constants like the mass

of the electron or the fine structure constant. Due to

the fact that dark matter in boson stars is in a BEC

state, the nonzero expectation value of the boson field

creates an extra contribution to the mass of the electron

or the fine structure constant. Since the timing frequency

of atomic clocks depends on these parameters, a clock

that finds itself embedded in the boson star as the latter

crosses the Earth, measures time at a different rate com-

pared to a clock that remains, at that time, outside the

star. We search the parameter space for a class of dilute

boson stars subject to a photon or Higgs portal where

conventional techniques such as gravitational waves from

mergers, gravitational lensing and direct dark matter de-

tection fail. We demonstrate that, taking into account all

constraints on the Higgs and photon coupling constants,

the induced frequency shift of both microwave and opti-

cal atomic clocks is several orders of magnitude smaller

than the currently detectable frequency shift for these in-
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FIG. 8: Collision frequency f and frequency shift δω/ω

vs. particle mass m for the parameter space in Fig. 7.

struments or the events are rare.

In particular, we assume that the complex scalar field

composing the asymmetric dark matter boson stars has

a quadratic coupling to the Higgs or to the photon. We

discuss the constraints that the dark matter self-coupling,

Higgs coupling constant, and photon coupling constant

must satisfy. We then scan the available parameter space

subject to these constraints. Additionally, we set the con-

straints that the frequency of collisions between a boson

star and the Earth and the induced fractional frequency

shift due to the shift in the electron mass or fine structure

constant are greater than some minimum values, that the

boson stars do not overlap, and that the radius of the

boson stars are small enough to pass the Earth within

one year. For both the Higgs and photon portals, we

find that the induced frequency shifts are several orders

of magnitude smaller than the currently detectable fre-

quency shifts for microwave and optical atomic clocks.

However, it may be possible that the ADM forms after

BBN, in which case, the constraint on the Higgs coupling

constant will change and may open up some available

parameter space. We also see more available parameter

space by taking a smaller minimum frequency of collisions

between the ADM boson stars and the Earth. For the

photon portal, we begin to obtain some available param-

eter space satisfying all constraints when assuming one

FIG. 9: otal mass M , radius R, collision frequency f ,

and frequency shift δω/ω for a boson star subject to the

photon portal vs. particle mass m for which

g = 10−7 GeV−2, δω/ω ≥ 10−20, the frequency of

collisions between the ADM boson star and the detector

is f ≥ 10−2 yr−1, and the self-coupling of the ADM is

λ = 10−39.

collision every one hundred years. We stress that even

if the accuracies of atomic clocks improve considerably

in the near future, such probes of astrophysical objects

are still subject to the uncertainty principle which can

diminish the available parameter space.
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Appendix A: Possible Additional Constraints

Constraints can be placed on the Higgs coupling con-

stant, β, in Eq. (III.1) from fifth-force experiments if a

nonzero expectation value of φ exists at the location of the

experiment. One way φ can obtain an expectation value

is if φ gets its mass from the Higgs and the Higgs coupling

constant β is negative [102]. In this case, the expectation

value is different from that defined in Eq. (III.5), and

we leave the search for the possible parameter space cor-

responding to these systems for future studies. Another

way fifth-force experiments can constrain β, is if the field

φ is assumed to form a condensate around or inside the

Earth, Sun, etc. [62, 103, 104]. In this case, fifth-force

experiments on the Earth will always be affected by the φ

expectation value given by Eq. (III.5). In this study, we

show the constraints on β that arise given that the φ field

has a nonzero expectation value that effects the fifth-force

experiments. However, we do not take these constraints

into account for our calculations as we assume that the

ADM boson stars are not bound to the Earth as a halo

and refer to [62] for such discussions.

From [92, 105, 106], the presence of φ, with a mass m,

induces an interaction between two massive bodies with

a potential,

V (r) = −m1m2

r

(
α

MP

)2

e−mr, (A.1)

where mi is the mass of the i-th body and α is a coupling

constant given by,

α = ghNN

√
2MP

mN
ε. (A.2)

Here, mN is the nucleon mass, ε is the mixing parameter

which is proportional to the Higgs coupling constant β in

Eq. (III.1),

ε ≈ β vφ vew
m2
h

, (A.3)

where we again neglected terms of O(β2) and ghNN is the

coupling of the Higgs to nucleons given by

ghNN =
∑

q=u,d,s,c,b,t

〈N |q̄q|N〉ghqq =
∑

q=u,d,s,c,b,t

fNTqmN

vew
.

(A.4)

Here, fNTq are the nucleon parameters [105, 107–109]

and it has been used that,

〈N |q̄q|N〉 = fNTqmN/mq ghqq = mq/vew. (A.5)

For protons and neutrons, the couplings are ghpp ≈
0.3776mp/vew and ghnn ≈ 0.3755mn/vew, respectively.

Taking an average of these two couplings, Eq. (A.2) be-

comes,

α ∼ 105
(
β vφ
eV

)
. (A.6)

The value of α2 is constrained by the aforementioned

fifth-force experiments [92, 110–112] and from Eq. (A.6)

one can draw constraints on β vφ as depicted in Fig. 11.
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FIG. 11: Constraints on the product of the Higgs

coupling β with vφ given by Eq. (III.5) from

gravitational inverse-square law tests [92, 110–112]. The

reference labels in the left panel correspond to those

described in [110], while the reference labels in the right

panel correspond to those described in [112].

If the U(1) symmetry of the Lagrangian is unbroken,

then φ is protected from decays into two photons. How-

ever, if the U(1) charge of φ is not conserved, one can

check that the decay process φ → γγ has a lifetime that

is several orders of magnitude larger than the age of the

universe. From [102], the decay rate of a virtual Higgs to

two photons is given by,

ΓH∗→γγ =
GFα

2
QEDm

3

128
√

2π3
F 2, (A.7)

where F ' 11/3 includes all loop contributions from

charged fermions and the W bosons. The Fermi constant

GF will shift due the the shift in the Higgs VEV,

GF =
1√
2v2

=
ḠF

1− βv2φ/m2
h

(A.8)

where ḠF ≡ 1/(
√

2vew) is the Fermi constant for β = 0.

Due to the interactions between φ and the Higgs, there

is some mixing, ε, given by Eq. (A.3) that will suppress

the decay rate of φ→ γγ

Γφ→γγ = ε2 ΓH∗→γγ (A.9)

Taking βv2φ � m2
h, the lifetime for φ is then,

τφ ∼ 1043 yr

(
10−2

β

)2(
10−6 eV

m

)3(
104 eV

vφ

)2

.

(A.10)

If we assume that all of the DM in the galaxy is in the

form of boson stars, the nonzero expectation value of φ

can be taken to be given by Eq. (III.5) inside the boson

star and to be equal to zero outside the boson star. In

this case, it can be shown that for β . 10−2 and a given

vφ that can create a recordable clock shift, this lifetime

is much larger than the age of the universe.

[1] N. Aghanim et al. [Planck Collaboration],

arXiv:1807.06209 [astro-ph.CO].

[2] G. Bertone, D. Hooper and J. Silk, Phys. Rept.

405, 279 (2005) doi:10.1016/j.physrep.2004.08.031 [hep-

ph/0404175].

[3] W. Hu, R. Barkana and A. Gruzinov, Phys. Rev.

Lett. 85, 1158 (2000) doi:10.1103/PhysRevLett.85.1158

[astro-ph/0003365].

[4] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper

and J. March-Russell, Phys. Rev. D 81, 123530 (2010)

doi:10.1103/PhysRevD.81.123530 [arXiv:0905.4720

[hep-th]].

[5] L. Hui, J. P. Ostriker, S. Tremaine and E. Wit-

ten, Phys. Rev. D 95, no. 4, 043541 (2017)

doi:10.1103/PhysRevD.95.043541 [arXiv:1610.08297

[astro-ph.CO]].

[6] P. H. Frampton, JCAP 0910, 016 (2009)

doi:10.1088/1475-7516/2009/10/016 [arXiv:0905.3632

[hep-th]].

[7] P. H. Frampton, M. Kawasaki, F. Takahashi

and T. T. Yanagida, JCAP 1004, 023 (2010)

doi:10.1088/1475-7516/2010/04/023 [arXiv:1001.2308

http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/hep-ph/0404175
http://arxiv.org/abs/hep-ph/0404175
http://arxiv.org/abs/astro-ph/0003365
http://arxiv.org/abs/0905.4720
http://arxiv.org/abs/1610.08297
http://arxiv.org/abs/0905.3632
http://arxiv.org/abs/1001.2308


16

[hep-ph]].
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