

An Information Aggregation and Analytics System for ATLAS Frontier

J Lozano Bahilo¹, A Formica², E J Gallas³, N Ozturk⁴, M Siamer⁵, I Vukotic⁶

- 1. Univ. of Valencia and CSIC (ES)
- 2. Irfu CEA Saclay (ATLAS collaboration)
- 3. Department of Physics, University of Oxford (ATLAS collaboration)
- 4. University of Texas at Arlington (US)
- 5. Ecole Nationale Supérieure d'Informatique (DZ)
- 6. University of Chicago (US)

- Access to Conditions Data in ATLAS
- Motivations for an Analytics System
- Application Description
- Deployment
- Results

ATLAS Access to Conditions Data in ATLAS

An Information Aggregation and Analytics System for ATLAS Frontier A.Formica

- The Frontier-Squid system suffered from service degradation leading to failures in particularly problematic workflows :
 - Real data underlying events "overlayed" on simulation data
 - Specialised reprocessing
- Requests from these workflows were much less likely to be found in the cache (i.e. low "cache efficiency").
- Using Frontier logs we could extract the SQL requests and re-play them on a separate Frontier instance or via COOLR services (a REST API to the ATLAS Conditions database COOL).
- The analysis found that several requests were accessing the same payload data but using different SQL requests (...different URLs => not cacheable).
- Identification of such problematic requests patterns is essential to improve the system for Run 3.

• The Frontier-Analytics project has the purpose to process the requests of particular tasks or during particular time periods and derive summaries of key information which help to isolate the problematic requests for more detailed inspection.

- This application is based on python libraries and retrieve data from the existing infrastructure via REST APIs:
 - Log data information from Elasticsearch
 - Conditions payload and metadata from ATLAS COOL Conditions database.

Frontier Analytics Architecture

Select a task-id to explore via Flask.

Celery launches data loading from ElasticSearch.

Merge the Elasticsearch data with metadata information from COOLR (add tag, folder names and other information).

Prepare summary plots: requests' time, response size and counters (MC vs Data, # by schema, cached vs not-cached).

Compute caching efficiency for selected folders (payload data via COOLR).

CondDB

CERN

Search

Chicago

Deployment site: Chicago University

CHEP2019 Adelaide Australia

2

User Interface

https://frontier.uc.ssl-hep.org/

FRONTIER FRONTIER Search by Task : Task ID Discover Visualize Caching Efficiency Choose Queries type: All Queries The parquet File name :		
FRONTIER ANALYTICS Search by Task : Task ID Discover Obscover Search by time range : mm/dd/yyyy,:: mm/dd/yyyy,:: Choose Queries type: All Queries The parquet File name :	2 EXPERIMENT	ElasticSearch Filters
Discover Visualize Caching Efficiency C All Queries The parquet File name :	FRONTIER ANALYTICS	Search by Task :
Discover Search by time range : Visualize Caching Efficiency Choose Queries type: All Queries The parquet File name :		Task ID
Visualize Caching Efficiency Choose Queries type: All Queries The parquet File name :	Discover	Search by time range :
Caching Efficiency Choose Queries type: All Queries The parquet File name :	√isualize	mm/dd/yyyy,: mm/dd/yyyy,:
 All Queries \$ The parquet File name : 	Caching Efficiency	Choose Queries type:
The parquet File name :		All Queries
		The parquet File name :
name.parquet		name.parquet
Extract Frontier logs		Extract Frontier logs

Parquet Files List						
Show 10 🗢 entries	Search:	:h:				
Parquet File Name 1	size (MB) ∿∿	Created	∿ Dele	te ∿	Down	
18480400	3.32	Tue Oct 2 17:14:10 2019	1		4	
18628864_pPboverlay	59.55	Fri Oct 4 11:21:35 2019	0		4	
task_14675347	0.70	Thu Oct 3 14:33:42 2019	3		₹	
task_18264547	13.43	Thu Oct 3 14:39:04 2019	3		₹	
Showing 1 to 4 of 4 entries			Previous	1	Next	

An Information Aggregation and Analytics System for ATLAS Frontier A.Formica

CHEP2019 Adelaide Australia

proton-lead overlay task: 18628864

count of queries per db instances

query percentage per Schema for a given DB

An Information Aggregation and Analytics System for ATLAS Frontier A.Formica

Results: Visualize (2)

High Quey Time distribution per Node for a given Schema

Queries with high query time (>1 s) are mostly from ONL_SCT, in particular from node /SCT/DAQ/Config/Chip

Results: Caching efficiency

Folder	#Queries	#Different Queries	#Different Payloads	Payload size
CONDBR2 , ATLAS_COOLONL_SCT , /SCT/DAQ/Config/Chip	3437	2885	2	24.7366361618042
CONDBR2 , ATLAS_COOLONL_SCT , /SCT/DAQ/Config/MUR	5635	4067	1	1.027754783630371
CONDBR2 , ATLAS_COOLONL_SCT , /SCT/DAQ/Config/Module	2392	2063	1	0.9073104858398438
CONDBR2 , ATLAS_COOLONL_SCT , /SCT/DAQ/Config/ROD	834	804	1	0.034732818603515625
CONDBR2 , ATLAS_COOLONL_TDAQ , /TDAQ/OLC/CALIBRATIONS	168779	19805	7	0.021941184997558594

The different queries are queries with a different range in time (so different SQL / URLs to Frontier-Squid).

Size in MB for 1 payload

The different payloads show the number of different conditions data retrieved by those queries.

Ideally we would like to have the same query for the same payload retrieved (to improve caching).

Workflow type	Subsystems with high query time	Folders with bad caching efficiency
pPb, PbPb overlay: EVNT, DRAW->AOD	ONL_SCT, OFL_DCS, OFL_LAR OFL_TRIGGER, ONL_TDAQ	/SCT/DAQ/Config/Chip, /Module, /MUR, /ROD /TDAQ/OLC/CALIBRATIONS
Reprocessing: DRAW_RPVLL ->DAOD_RPVLL	ONL_SCT, OFL_DCS, ONL_TRIGGER ONL_LAR, ONL_RPC, OFL_TRIGGER	/SCT/DAQ/Config/Chip ONL_TRIGGER: /TRIGGER/Receivers/Conditions/VgaDac
Data scouting: calibration, DataScouting.merge.RAW -> AOD	ONL_TDAQ ONL_LAR	/TDAQ/OLC/LHC/FILLPARAMS /LAR/Configuration/FEBConfig/Physics/EMECC1
Perf-idtracking: pathena, DAOD_EGAM1->ROOT files	OFL_DCS (PIXEL and SCT) /PIXEL/DCS/HVCURENT	No calculation done: # of different queries will be equal to # of different payloads for DCS

We have an application to analyse problematic Conditions access patterns in several workflows. This application benefits of the existing monitoring infrastructure in Frontier sites like CERN, Lyon, RAL and Chicago.

It will be used by experts in order to improve Conditions access stability for current operations through LS2 as well as design more cache-friendly conditions data for Run 3.

The application is easy to deploy in a Kubernetes cluster, thanks to a complete Gitlab-CI chain in place.

