
THE 2018 HEAVY-ION RUN OF THE LHC
J.M. Jowett∗, C. Bahamonde Castro, W. Bartmann, C. Bracco, R. Bruce, J. Dilly, S. Fartoukh,

A. Garcia-Tabares, M. Hofer, M.A. Jebramcik, J. Keintzel, A. Lechner, E.H. Maclean, L. Malina,
T. Medvedeva, T. Persson, B. Petersen, S. Redaelli, M. Schaumann, M. Solfaroli, R. Tomas,

J. Wenninger, J. Coello, E. Fol, N. Fuster-Martinez, E.B. Holzer, A. Mereghetti, B. Salvachua,
C. Schwick, M. Spitznagel, H. Timko, A. Wegscheider, D. Wollmann, CERN, Geneva, Switzerland

D. Mirarchi, University of Manchester, Manchester, UK

Abstract
The fourth one-month Pb-Pb collision run brought LHC

Run 2 to an end in December 2018. Following the tendency
to reduce dependence on the configuration of the preceding
proton run, a completely new optics cycle with the strongest
ever focussing at the ALICE and LHCb experiments was de-
signed and rapidly implemented, demonstrating the maturity
of the collider’s operating modes. Beam-loss monitor thresh-
olds were carefully adjusted to provide optimal protection
from the multiple loss mechanisms in heavy-ion operation.
A switch from a basic bunch-spacing of 100 ns to 75 ns was
made as the beam became available from the injector chain.
A new record luminosity, 6 times the original design and
close to the operating value proposed for HL-LHC, provided
validation of the strategy for mitigating quenches due to
bound-free pair production (BFPP) at the interaction points
of the ATLAS and CMS experiments. Most of the beam
parameters of the HL-LHC Pb-Pb upgrade were attained
during this run and the integrated luminosity goals for the
first 10 years of LHC operation were substantially exceeded.

INTRODUCTION
From the first Pb-Pb collision run in late 2010, the LHC

heavy-ion programme has evolved to include p-Pb runs and
a short Xe-Xe run in 2017. Each run has been unique
in terms of beam energy, colliding species, bunch filling
schemes, beam optics and other collision conditions [1].
The 3rd Pb-Pb run in 2015 [2] saw the design luminosity,
L = 1×1027 cm−2s−1, exceeded by a factor 3.6 at a new beam
energy of 6.37 Z TeV, thanks to the high beam intensities
delivered by the heavy-ion injector chain [3–5] and measures
implemented to mitigate performance limits, mainly related
to beam losses, in the LHC [6]. LHCb took its first Pb-Pb
collisions at a lower luminosity.

The principal goals of the 4th Pb-Pb run in late 2018 were
to complete the delivery of 1 nb−1 of luminosity to the AL-
ICE, ATLAS and CMS experiments, substantially increase
the luminosity for LHCb, and demonstrate the peak luminos-
ity L > 6.5× 1027 cm−2s−1 specified for future runs [1,7,8].

NEW OPTICS AND MAGNETIC CYCLE
Since 2010, when they were essentially identical [1, 9],

the p-p and heavy-ion optics cycles used in a given year
have steadily accrued their own specificities, including
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Figure 1: Timing structure of the CRS (left) and of the small
squeeze segment at top energy (right) in terms of the β∗
values at the experimental IPs. Changes of the multiple
crossing-angle, separation and other orbit bumps are not
indicated. Dots indicated fully matched two-ring optics.

lower β∗ at IP2 for heavy ions. Following the imple-
mentation of telescopic (ATS) collision optics for p-p in
2017 [10], the decision was taken, weighing commissioning
time against cycle length, to fully decouple the two cycles,
which now only share the injection conditions. The Pb-Pb
cycle for 2018 aimed for the smallest ever β∗ in ALICE
and LHCb. The combined ramp and squeeze (CRS) [11]
was redesigned, bringing β∗ down to β∗ = (1,1,1,1.5)m
at IP1(ATLAS), IP2(ALICE), IP5(CMS) and IP8(LHCb),
compared to β∗ = (1,10,1,3)m at the end of the p-p ramp.
After the CRS, a short squeeze segment (4.5 min) at constant
energy was enough to establish the target collision config-
uration β∗ = (0.5,0.5,0.5,1.5)m, keeping LHCb constant,
while reducing β∗ by a further factor of 2 in the other three
experiments. Figure 1 shows the efficient timing of these
two beam processes (CRS and squeeze at collision energy).

The variously horizontal and vertical half-crossing an-
gles in collision were brought to 160 µrad in ATLAS and
CMS, θb −170 µrad in LHCb, and θA±137 µrad in ALICE,
where θA =77 µrad and θb =−150 µrad are the angles gen-
erated by the internal spectrometer compensation bumps
of ALICE and LHCb. The ALICE spectrometer polarity
was reversed half-way through the run, requiring a passage
of the external crossing angle through zero at the end of
the squeeze. To reduce the associated risk, the horizontal
separation was increased from 2 to 3 mm. As in 2015 [2],
the ALICE interaction point was lowered by 2 mm.
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Figure 2: Evolution of the total beam charge ZN for Beam 1 (blue) and 2 (red) and luminosity of ATLAS (black), CMS
(blue), ALICE (violet) and LHCb (green) throughout the 2018 run with major changes indicated. Spurious luminosity
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used for lack of Pb from the source. After recovery of the source, the number of bunches was increased from fill to fill
in accordance with machine protection requirements. After the ALICE polarity reversal and correction of the betatron
coupling at IP2, it was increased further with the transition from a basic bunch spacing of 100 ns to 75 ns implemented in
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Figure 3: Calculated secondary beams from collisions in the four experiments. The 10σ main-beam envelope is shown
in blue, and the 5σ BFPP and EMD secondary-beam envelopes are shown in red and green. Note that these beams are
smaller than the main beam at the IP since their source is the luminous region but their size varies differently along the beam
line because of chromatic effects. In IR1 and IR5 the orbit bumps displace the BFPP beam into the connection cryostat,
allowing luminosity, 6.1 × 1027 cm−2s−1, far beyond the quench level, 2.4 × 1027 cm−2s−1 found in 2015 [6]. In IR2 the
luminosity is levelled at 1 × 1027 cm−2s−1, the design and present saturation value of the ALICE detector, but the risk of
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COMMISSIONING AND OPERATION
Starting with a few shifts in advance of the heavy-ion run,

optics measurement and correction [12] with low-intensity
proton beams converged rapidly. Figure 2 provides an outline
of the course of the one-month Pb-Pb run itself. Because of
a fault in the ion source, protons had to be used to advance
commissioning for longer than planned in the first few days.
When Pb beams became available, the delicate optimisations
of the collimation set-up [13] and the BFPP orbit bumps [6]
in collision conditions, could proceed. Final validation of
the definitive collision configuration for machine protection
was then possible. During the week of source recovery, the
quality of the Pb beam was degraded, resulting in lower
beam intensity, longer turn-around time, shorter levelling
periods and less time in physics.

Despite the apparent soundness of the optics corrections,
the luminosity in ALICE was initially about 50% less than ex-
pected. After eliminating other possible explanations (waist
shift, spurious dispersion, etc.), the local betatron coupling
at IP2 was varied using a knob developed for flat-optics
experiments [14], consisting of anti-symmetric excitations
of skew quadrupole correctors around IP2. This induced a
local coupling “bump”, maximal at the IP and invisible in
terms of observables such as local and global coupling reso-
nance driving terms. A setting was found that restored the
luminosity, cancelling what turned out to be an erroneous
swap of the skew corrector settings in the set-up phase [15].
The correction was introduced with the re-validation of the
configuration for the second half of the run with reversed
polarity of the ALICE spectrometer.

Luminosity, levelling duration and fill length in the sec-
ond half also benefited from increased bunch intensity and
number of bunches thanks to the implementation of a filling
scheme with a basic bunch spacing of 75 ns in the injec-
tors [3–5]. This filling scheme also created many more
bunch encounters at LHCb. Fills were generally kept until
luminosity could no longer be levelled in ALICE.

BEAM LOSSES, MACHINE PROTECTION
In the LHC itself, beam intensity is limited, and fills some-

times dumped prematurely by losses. Collimation efficiency
is lower than for protons due to nuclear reactions occurring
in collimators [13,16]. The hierarchy of dump thresholds of
the beam-loss monitors (BLMs) in the collimation insertion
IR7 were adjusted to the new magnetic cycle and the quench
level with nuclide loss patterns [13, 16, 17].

Luminosity is limited by the secondary beams created by
the BFPP and electromagnetic dissociation (EMD) processes
at the IPs [6,18,19]. At the peak luminosity achieved in 2018,
four tightly focused BFPP secondary beams emerging from
IP1 and IP5 each carried over 140 W of 208Pb81+ ions. Mag-
net quenches were avoided by the implementation of orbit
bumps as described in [6, 20] and Fig. 3. Beam dumps and
quenches were avoided by a detailed optimisation of BLM
thresholds in the impact regions. In IR8, where no bump
mitigation was possible, the quench detection threshold and

Table 1: Key beam parameters at the start of the highest
luminosity physics fills in 2015 and 2018 compared with de-
sign values [21]. Peak luminosities are averages for ATLAS
and CMS, ALICE being levelled at the design value.

Quantity Design Achieved
Year 2015 2018
Weeks in physics - 2.5 3.5
Fill no. (best) 4720 7473
Beam energy E[A TeV] 2.76 2.51
Collision energy √

sNN [TeV] 5.52 5.02

Bunch intensity Nb [108] 0.7 2.0 2.2
No. of bunches kb 592 518 733
Norm. emittance ϵN [µm] 1.5 2.1 2.0
β∗ [m] (IP1/5) 0.55 0.8 0.5
Stored energy MJ/beam 3.8 8.6 13.3
Luminosity L [1027cm−2s−1] 1 3.6 6.1
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0
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1500

2000

2500
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LHC Goal(all runs)

HL-LHC Goal/month
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Figure 4: Integrated Pb-Pb luminosity for each experiment
in 2015 and 2018, compared to the initial LHC Goal for
all runs until now and the goal for each 1-month run at the
future “HL-LHC”.

evaluation time were lowered to increase the protection level
in the Q10 quadrupoles in case of symmetric quenches.

SUMMARY AND OUTLOOK
The peak luminosity of the ALICE experiment was always

levelled at the saturation luminosity of 1×1027 cm−2s−1 and
its integrated luminosity in 2018 was equivalent to spending
10.4 days, continuously at this constant luminosity.

Apart from the number of bunches, kb , which awaits the
implementation of slip-stacking in the SPS [22], all the “HL-
LHC” upgrade parameters (compare Table 1 with Table 1
in [1] and [7, 8]) were very close to being achieved by the
end of the 2018 run. In future, the upgraded ALICE will
accept similar luminosity to ATLAS and CMS.

Figure 4 shows that, despite the limitations during the
first half of the run, the integrated luminosity achieved in
2018 was already comparable to the goal for future “HL-
LHC” operation. This establishes the 75 ns filling scheme
as a backup for the 50 ns scheme that should be enabled by
slip-stacking in the SPS [5, 22].
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