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Abstract
LHC Optics Measurements and Corrections (OMC) re-

quire efficient on-line software applications to acquire and

analyze data and to compute the necessary corrections. Dur-

ing Run 2 various measurement and correction techniques

have been merged to yield unprecedented optics quality, in-

creasing the required number of steps to finalize the optics

commissioning and the size of the software project. In turn,

this calls for a higher level of automation, with possible im-

plementation of machine learning techniques. During the

Long Shutdown 2 the codes are being largely re-factored to

improve performance, maintainability and extensibility. A

description of the current status of the software and future

plans is given.

DESCRIPTION OF THE SOFTWARE
The OMC software aims at enabling accurate and effi-

cient beam-based optics measurements and corrections on-

line. LHC machine safety and performance have been the

main drivers for the software development over more than a

decade [1–27]. The main structural philosophy is to place

the data analysis algorithms in independent Python codes

that can be invoked from a command or from GUIs written

in Java to be compatible with the LHC controls software,

LSA [28]. This structure has allowed to easily adapt analysis

codes to other accelerators [19, 29–38] and to package them

using Docker software for use in other applications [39].

Profiting from the Long Shutdown 2 (LS2) between end of

2018 and end of 2020, a thorough review, extension, and

consolidation of software is taking place. Python software is

being migrated to Python 3.6 as Python 2 development will

stop by the end of 2019 and, more importantly, the Python 2

backwards compatibility is already abandoned for new fea-

tures in scientific packages such as numpy, scipy, pandas

and matplotlib.

Figure 1 shows a schematic view of the ensemble of the

OMC applications used in the control room. Multiturn is

a Java GUI that controls the transverse beam exciters (AC

dipoles, tune kickers or aperture kickers) and acquires the

turn-by-turn (TbT) Beam Position Monitor (BPM) data. It

automatically executes the Python codes for the first analysis

of TbT data, especially to allow for fast coupling correc-

tion [40]. Online Model is a set of Java libraries to extract in-

formation on the machine settings [13]. TIMBER is the soft-

ware developed by the CERN Beams Department Controls
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Figure 1: Flow chart of software applications involved in

the optics measurement and corrections.

group to log and access time-series data [41]. Beta-beat and

K-mod represent the two core applications to measure and

correct optics from TbT data and from quadrupole strength

modulations. The Beta-beat GUI written in Java executes

appropriate Python codes for analysis and provides interac-

tive view of the results. Optionally, it performs additional

data cleaning and submits corrections to the hardware. The

K-mod GUI [25], written in Java, modulates quadrupole

strengths and records tune data, which are later automati-

cally analysed by Python suite. The Beta-beat GUI imports

results from the k-modulation analysis to be included in the

optics corrections calculations.

The flow chart within the Python 3 suite corresponding to

data analysis and optics calculations is shown in Fig. 2. The

TbT data in binary SDDS format [42] is first cleaned. This
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Figure 2: Flow chart of the Python 3 suite for harmonic anal-

ysis of TbT data and calculation of the optical parameters.
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Figure 3: Sketch of optics measurements modules in Python 3 taking as input harmonic analysis results in linx/y files

together with the module inputs (green arrows) and outputs (black arrows).
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Figure 4: Sketch of the workflow of the software for non-

linear measurements. GetLLM is Python 2 equivalent to

optics measurement modules from Fig. 3.

is achieved by removing malfunctioning BPMs and applying

noise reduction to the data via singular value decomposi-

tion [43]. Harmonic analysis is performed either with the

Python code harpy [20] or with the Fortran code Sussix [44].

The harmonic analysis results are output into files with suf-

fixes “linx” and “liny” for horizontal and vertical planes,

respectively. Further BPM cleaning can be applied at this

stage based only on tune values or on a collection of features

applying Isolation Forest [21–24].

The cleaned linx/y files are passed to the Python suite for

optics calculations, which is called GetLLM in the Python 2

suite. A sketch of the different modules in the Python 3

suite to compute optics parameters and their dependencies is

shown in Fig. 3. Measured optics parameters are displayed

in grey boxes including tunes, phase advances, coupling [8],

β functions (from phase and from amplitude) [10, 17] at
BPMs and at Interaction Points (IPs) [9, 12, 15], disper-

sion [27], amplitude of the excitation (kick) and resonance

driving terms (RDTs) [45–47].

Non-linear measurements and corrections, in particular

amplitude detuning and crossing angle scans, require a large

human effort. Amplitude detuning is measured by acquiring

many AC dipole excitations with increasing strength in the

horizontal and vertical planes. The natural tunes represent

a small signal in the spectra of the driven TbT data. It is

fundamental to use noise-cleaning techniques to uncover

the natural tunes. Often, human intervention is required to

avoid confusing the natural tunes with spectral lines arising

from the non-linear motion. Crossing angle scans are per-

formed to sample the non-linear components of the triplet

by measuring their feed-down to tune and linear coupling.

The bump non-closure when changing the crossing angle

is corrected to avoid contributions from other non-linear

components in the machine. AC dipole excitations are also

applied at every step of the scan. A variety of extra codes are

used for these measurements, which are not fully incorpo-

rated into the above main environment. Figure 4 shows the

work flow corresponding to these non-linear measurements

and corrections with the connections to modules already

described.

Table 1 shows the lines of code, the commits in 2018,

and the static issues of the different software packages. The

incomplete Python 3 suite, currently being migrated from

Python 2, is included in the table. A sizable improvement is

observed in the static analysis issues.

DEVELOPMENT PLANS
A new frequency analysis framework has been devel-

oped [48] within the Python 3 showing superior performance

with respect to the current software.

During Run 2, optics measurements based on 3D beam

excitation were experimentally demonstrated [49, 50]. In

the LHC, such measurements are an order of magnitude

faster compared to standard methods. Dedicated analyses

are being implemented in the Python 3 suite.

The measurement of second order dispersion is currently

being tested with experimental data from Run 2 [27] and

should become fully operational on-line for 2021.

The possibility of improving the linear optics corrections

by using machine learning techniques is currently under
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Table 1: Lines of code, commits, and static code analysis is-

sues in 2018. Corresponding data during 2017 for a fraction

of these codes can be found in [16]. In Python 3 reposi-

tory, the git squash command is used. Therefore, the actual

number of commits would be considerably higher.

Language Lines of Code Commits Issues

Python 2 48007 1214 16051

Python 3 4196 31 69

Java (GUIs)

β-beat 32139 108 82

Multiturn 20425 20 788

K-mod 16272 32 43

investigation [51]. First promising results suggest first ap-

plications in Run 3. Strength limitations in the quadrupolar

circuits might appear when operating at 7 TeV, requiring

new algorithms for the calculation of corrections. True lo-

cal observables of linear imperfections are being developed

in [52] in view of the 2021 commissioning.

During Run 2 various limitations in the current algorithms

for the measurement of IP optics parameters were observed

and new techniques were successfully tested [53]. One im-

provement consists in using the existing high-resolution

DOROS BPMs [54] in the IRs to measure the minimum

β function near the IP via phase advance. Currently, these
BPMs are not included in the regular acquisition requiring

new developments. Luminosity scans will be fundamental

for accurate measurement of the betatron waist displacement

from the IP [53] and for verifying the linear coupling cor-

rection at the IP. Studies are on-going to explore how these

tasks could benefit from existing operational software for

luminosity optimization and scanning.

An experimental demonstration of RDT correction was

accomplished in [45–47]. The actual software to perform

this correction on-line needs to be developed for 2021.

Automation of crossing angle scans and amplitude de-

tuning is being investigated. This includes monitoring and

correcting tune and orbit jitters of the machine [55,56]. A

challenging target for Run 3 is to fully validate IR dodecapo-

lar corrections as a first step towards the even more complex

HL-LHC non-linear commissioning in Run 4 [56].

With the increasing use of Python in LSA, it should be pos-

sible to establish new communications between the Python

suite and the machine, that is currently done in the Java GUIs.

More efficient solutions for data management concerning

input data and output results should be explored to allow

staged analyses and easy access to stored measurements.
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