Ka-BAND LINEARIZER STUDIES FOR A COMPACT LIGHT SOURCE[∗]

A. Castilla^{1†}, G. Burt¹, A. Latina², X. Liu², W. L. Millar^{1,2}, X. Wu², W. Wuensch² ¹Lancaster University, Lancaster, UK ²European Organisation for Nuclear Research (CERN), Geneva, CH

Abstract

title of the work, publisher, and DOI The CompactLight project is currently developing the design of a next generation hard X-ray FEL facility, based the author(s). on high-gradient X-band (12 GHz) structures, bright electron photo-injectors, and compact short period undulators. However, to improve the brightness limitations due to the non- linear energy spread of the electron bunches, a Kaband (36 GHz) linearizer is being considered to provide a maintain attribution harmonic compensation during the bunch compression. In this paper, we analyze the feasibility of such linearizer.

INTRODUCTION

 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI The CompactLight (XLS) machine has different schemes must under study, both the science requirements and the facility design options are discussed in [1, 2]. The machine layout work: under study in this paper, requires a 36 GHz linearizer that can provide up to 25 MV of integrated longitudinal voltage, of this to correct for the bunch energy spread. Therefore the scope of this manuscript centres on determining the feasibility Any distribution for such a structure, from the view point of the available rf power [3], and the final structure length necessary to provide the given voltages at such frequency.

SINGLE CELL DESIGN

2019). We start by exploring the parameter space of the single cell geometry. For this, we have selected 2 main cell geome-©tries, a simple and a reentrant cell, depicted in Fig. 1 as (**1**) licence and (**2**), respectively. For each one of these two geometries we scanned three different variations: non curved edges, $\sum_{n=1}^{\infty}$ we scanned three different variations. Note curved edges, $\frac{1}{\infty}$ is single curved edge, and double curved edges, also shown in $\sum_{n=1}^{\infty}$ Fig. 1 as (**a**), (**b**), and (**c**), respectively.

Content from this work may be used under the terms of the CC BY 3.0 licence (ϵ g After exploring the parameter space for each of the geometries, it was determined that for both cases: simple (**1**) $\overline{\Theta}$ and reentrant (2), the most promising variants corresponded to the double bend edges case (**c**). Therefore, to illustrate the optimization process, we will only compare the rf properties Δ of these configurations, as a function of the iris aperture for each phase advance (120° and 150°), as shown in Figs. 2 and 3.

used Figure 2 shows that while the phase advance does not reflects on a considerable difference for the shunt impedance, ತಿ it has a slight improvement on the intrinsic Q-factor (top) may with the aperture, and that the attenuation factor is comparawork ble between both phase advances at around 22-m iris radius and above (bottom), for a given iris aperture, in the case of this the simple geometry. from

Figure 1: Sketches of the simple (**1**) and reentrant (**2**) single cell geometries, and their non (**a**), single (**b**), and double (**c**) curved edges variations.

Figure 2: Plots of the shunt impedance and Q-factor (top), group velocity and attenuation factor (bottom) of the simple double bend geometry as a function of the iris aperture.

Figure 3 shows for the reentrant cell, that the shunt impedance follows a similar trend as for the simple cell, but in this case the 120° and the 150° variations can easily

[∗] Founded by the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 777431. † a.castilla@cern.ch

Figure 3: Plots of the shunt impedance and Q-factor (top), group velocity and attenuation factor (bottom) of the reentrant double bend geometry as a function of the iris aperture.

Figure 4: Typical performance of rf souces as a function of frequency [3].

be distinguished from each other (by 13%). The rest of the significant figures also show similar behaviour to those described in Fig. 2. However, is interesting to note how the intrinsic Q-factor shows a minimum at around an iris radius of 1.75 mm, and that for 150◦ phase advance, the attenuation factor is considerably lower at apertures below 2 mm, while both phase advances are comparable above this iris radius, being the 150◦ variant the one showing better overall performance for a given iris radius aperture.

POWER AVAILABILITY

Figure 4 shows the expected performance for different state of the art rf sources as a function of the operating rf frequency. The University of Strathclyde has been developing gyro-klystron sources that could provide 2-µs pulses of up

MC7: Accelerator Technology

Pulse Compressor Output Klystron) 35 PC Amp 3 **Klystron Amp Kivstron Phase** Amplitude (Normalised to 2.5 **PC Phase** $\overline{2}$ 1.5 $\overline{1}$ 0.5 $\mathbf 0$ 0.5 1.5 $\mathbf 0$ $\overline{2}$ 2.5 3 Time (s) -6 \times 10

Figure 5: Simulated response of a SLEDI pulse compressor.

to 3 MW flat top at 36 GHz [3], which provides the structure under study in this paper with promising operating options.

Even when Strathclyde's gyro-klystron option, 3 MW may not be sufficient to reach the desirable gains in the linearizer, which implies the need for a pulse compressor. Figure 5 shows a simulated response of a SLEDI pulse compressor (red), to a square 2 µs pulse (blue) and a programmed phase ramp (pink). The left hand axis shows the power normalized to the klystron output.

A pulse compressor as the SLEDI es capable of providing 50-ns compressed pulses with a gain of up to four times the klystron output power, which gives a comfortable margin for the operation of the linearizer. There are two important things to point out with this respect: the first one refers to the fact that since the FEL operates with a single bunch scheme, there is no need for a flat top on the compressed pulse, so we do not actually need the programmed phase ramp. The second important thing to mention is that having a SLEDI pulse compressor for this application raises the question of efficiency, since the intrinsic Q-factors of the cavities decreases with the frequency, it is unlikely to get sufficient gains out of a cavity-based pulse compressor. However, using a delay line should avoid this difficulty, making the SLEDII pulse compressor a better choice.

SHORT RANGE WAKEFIELDS

For a single bunch machine, and having structures with such small apertures, the short range wakefields play an important role on he longitudinal beam dynamics. Analytical and numerical calculations of the effects of the wakefields, based on the structure geometry have been used in the past [4]. In a similar fashion, Fig. 6 shows the bunch energy modulation due to the longitudinal wakefields (top) and the transverse kick seen by the bunch due to the short range transverse wakefields with a 10 and 15% of σ_{v} jitter, respectively (bottom), calculated using the parameters described in Table 1 [5].

PERFORMANCE AND CONCLUSIONS

We now calculate the integrated voltages reached by a 1-m long traveling wave structure for different input powers, as a from this work may

licence (©

 3.01

the CC BY

terms of

the i under used \mathbf{g}

କ୍ର

 $\overline{5}$

2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

 $rac{1}{a}$

maintain

this work must

distribution of

 \overline{S}

ion

the author(s), title of the work, publisher, and DOI

Figure 6: Bunch energy modulation due to longitudinal wakefields (top) and transverse kick due to short range transverse wakefields for a jitter of 10% and 15% on σ_y .

function of the iris aperture. Using the conclusions drawn in the single cell design section, we limit our comparison \approx to the simple cell in a $2\pi/3$ mode and the reentrant cell ina $\frac{1}{5}$ 5 π /6 mode, each with the double bend edges (see Fig. 7).

Content from this work may be used under the terms of the CC BY 3.0 licence (ϵ the Taking into account the arguments discussed in the previ- \overline{C} ous sections, we can consider with confidence a 50 ns flat top ms of 8 MW as a comfortable working point for the available $\frac{5}{2}$ rf power. While, from the wakefields view point, a 2-mm $\frac{3}{2}$ iris radius represents a reasonable working point. Then both geometry variants show similar performance at this aperture, as shown in Fig. 7. Therefore a simple geometry is preferred used over a reentrant cell, due to that it makes for an easier–and therefore cheaper—manufacture, with similar performance. تو

Finally, we propose a simple single cell geometry with may symmetrically rounded edges and 120◦ phase advance, for a work₁ 1-m traveling wave structure as baseline for the linearizer. Figure 8 shows a diagrammatic description of the geometry \circledcirc Content from this design, while Table 2 lists the parameters of the proposed design.

©

Figure 7: Integrated voltage for different input powers ,as a function of the iris aperture for the simple double blends and 120◦ phase advance (top), and for the reentrant double bends and 150◦ phase advance (bottom).

Figure 8: Single cell geometry diagram.

Table 2: Proposed Single-Cell Parameters

 n_{norm} to $E_z = 1 \text{MV/m}$

REFERENCES

- [1] XLS Deliverable D2.1, FEL science requirements and facility design, https://www.compactlight.eu/uploads/Main/D2.1_ XLS_Specification.pdf
- [2] A. Aksoy, "WP6 activity report", presented at *First XLS - CompactLight Annual Meeting*, Barcelona, Spain, Dec. 2018, https://indico.cern.ch/event/779185/ contributions/3245341/attachments/1768845/ 2873840/XLS_WP6_progress_11-12-2018_a_aksoy. pdf
- [3] W. He *et al.*, "Update on the 36-GHz and 48-GHz power sources", presented at *First XLS - CompactLight Annual Meeting*, Barcelona, Spain, Dec. 2018,

https://indico.cern.ch/event/779185/ contributions/3245341/attachments/1768845/ 2873840/XLS_WP6_progress_11-12-2018_a_aksoy. pdf

- [4] K. Bane, "Short-range dipole wakefields in accelerating structures for the NLC", Technical Note LCC-0116, SLAC-PUB-9663, Mar. 2003.
- [5] X. Liu and A. Latina, "Longitudinal design considerations", presented at *First XLS - CompactLight Annual Meeting*, Barcelona, Spain, Dec. 2018, https://indico.cern.ch/event/779185/ contributions/3245355/attachments/1769007/ 2874740/WP6-1stAnnualMeeting-Barcelona-Liu.pdf