Measurement of the VH, H→bb production as a function of the vector boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

Giulia Di Gregorio

On behalf of the ATLAS Collaboration

Higgs Couplings Oxford, 30th September – 4th October 2019

Outline

- Motivation for VH, $H \rightarrow b\overline{b}$ search
- Analysis strategy
- Results
- Differential pp \rightarrow VH cross section measurements
- Conclusions

Why VH, H→bb?

- Large BR (58%) <u>YR4, CERN-2017-002-M</u>
- Direct coupling between Higgs and quarks

Why VH, H→bb?

0

- $\overline{[}qd] (X+H \leftarrow dd)$ LHC HIGGS XS WG 2014 $pp \rightarrow H (NNLO+NNLL QCD + NLO EW)$ **10**⊨ $pp \rightarrow qqH$ (NNLO QCD + NLO EW) $pp \rightarrow WH (NNLO QCD + NLO EV)$ $\ensuremath{\mathsf{pp}}\xspace \to \ensuremath{\mathsf{ZH}}\xspace$ (NNLO QCD + NLO EW $pp \rightarrow bbH$ $pp \rightarrow ttH (NLO QCD)$ $M_{\rm H} = 125 \text{ GeV}$ 10 **MSTW2008** 10 8 9 11 12 13 √s [TeV]
- Large BR (58%) YR4, CERN-2017-002-M
- Direct coupling between Higgs and quarks

- Associated production with a vector boson V (V=Z or W)
 - V leptonic decay
 - \rightarrow clear signature

VH, H→bb̄ channel

Event selection

Higgs decay production selection 2 or 3 jets (or more *) *only in 2-lepton channel exactly 2 jet b-tagged (MV2c10) with 70% b-jet eff. c-jet mis. eff: 12.5%, light jet mis. eff.: 0.3% **0-lepton channel 1-lepton channel** 2-lepton channel h b

- 0 charged leptons
- $E_T^{miss} > 150 \text{ GeV}$
- Angular cuts to reduce multi-jet background

- 1 charged lepton
- $p_T^W > 150 \text{ GeV}$

- 2 charged leptons
- Z mass:
 - $81 \text{ GeV} < m_{\underline{ll}} < 101 \text{ GeV}$
- 75 GeV $< p_T^Z < 150$ GeV, $p_T^Z > 150$ GeV

Main backgrounds

- Main backgrounds modelled using simulated samples
- **Z+jets** and **W+jets**

Top (ttbar and single-top)

Dominant backgrounds, studied with control regions

- Diboson (WZ, ZZ) \rightarrow final state similar to VH, used to validate the analysis
- Multi-jet \rightarrow suppressed with dedicaded cuts, contribution studied using a data-driven method

Multivariate analysis

Variable	$0 ext{-lepton}$	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(\vec{b_1}, \vec{b_2})$	×	×	×
$ \Delta\eta(ec{b_1},ec{b_2}) $	×		
$\Delta \phi (ec V, b ec b)$	×	×	×
$ \Delta \eta(ec{V}, ec{bb}) $			×
$m_{\rm eff}$	×		
$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
$m^W_{ m T}$		×	
$m_{\ell\ell}$			×
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×
$m_{ m top}$,		×	
$ \Delta Y(ec V, bec b) $		×	
	Only	v in 3-jet ev	vents
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

Boosted Decision Tree (BDT)

- Input: kinematics variables
- Output: BDT variable
 - \rightarrow discriminate between signal and bkg events

Results of VH, H→bb analysis

Sign	al strength	Signal strength		p_0	Signifi	cance
51811		Signal Strongon	Exp.	Obs.	Exp.	Obs.
0-lep	oton	$1.04_{-0.32}^{+0.34}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lep	oton	$1.09\substack{+0.46\\-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lep	oton	$1.38_{-0.42}^{+0.46}$	$4.0 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$	2.6	3.4
VH	, $H \to b\bar{b}$ combination	$1.16\substack{+0.27\\-0.25}$	$7.3\cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9
	From dibo	son analysis		From c	ut-base	ed analysis
Cut-based selection and diboson analysis used to validate the multivariate analysis	ATLAS ATLAS $\sqrt{s} = 13 \text{ TeV}, 79.8 \text{ fb}^{-1}$ 0 lepton, 3 jets, 2 b-tags $p_T^{\nu} \ge 150 \text{ GeV}$ 10^3 10^4 $p_T^{\nu} \ge 150 \text{ GeV}$ 10^2 $10^$	Data $VZ, Z \rightarrow b\overline{b} (\mu=1.20)$ WW VH $t\overline{t}$ Single top W+jets Uncertainty $-VZ, Z \rightarrow b\overline{b} \times 15$ $-VZ, Z \rightarrow b\overline{b} \times 15$ 0 0.2 0.4 0.6 0.8 BDT output	Events / 10 GeV (Weighted, backgr. sub.)	ATLAS $\sqrt{s} = 13 \text{ TeV}, 79.1$ 16 0+1+2 leptons 2+3 jets, 2 b-tag 14 Weighted by Highted by Hi	B fb ⁻¹	→ Data VH, H → $b\bar{b}$ (µ=1.06) Diboson Uncertainty Dijet mass analysis 0 140 160 180 200 m _{bb} [GeV]

Observation of VH and H \rightarrow b\bar{b}

Simplified template cross-sections

- Same event classification and selection
- Signal parametrization (done at truth level):
 - Production mode \rightarrow ZH or WH
 - $p_T^V \rightarrow cut at 75 \text{ GeV}, 150 \text{ GeV} and 250 \text{ GeV}$

Differential $pp \rightarrow VH$ cross section measurements

Constraints on BSM effects

Parameterization of BSM effects using **effective Lagrangian** with **dimension-6 operators** in the SILH* basis

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} c_i^{(6)} O_i^{(6)} / \Lambda^2$$

- $c_i^{(6)}$ = Wilson coefficient
- $O_i^{(6)} = \text{dimension-6 operator}$
- $\Lambda = BSM$ energy scale

*SILH= Strongly Interacting Light Higgs

Conclusions

- First observation of $H \rightarrow b\bar{b}$ decay mode
- First observation of VH production mode
- First differential cross section $pp \rightarrow VH$ measurement
- Studies of **BSM effects:**
 - constraints on Wilson coefficients
 - possible **BSM deviations** are more evident at high momentum

BACKUP SLIDES

Detailed event selection

Selection	0-lepton	1	-lepton	2-lepton
Selection		e sub-channel	μ sub-channel	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	1 tight electron $p_{\rm T} > 27 { m GeV}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$ > 1 lepton with $p_{\rm T} > 27 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV	_	
$m_{\ell\ell}$	-		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$
Jets	Exactly 2	/ Exactly 3 jets		Exactly 2 / \geq 3 jets
Jet $p_{\rm T}$		> 20 Ge > 30 GeV	eV for $ \eta < 2.5$ for $2.5 < \eta < 4.5$	
$b ext{-jets}$		Exactly	2 b-tagged jets	
Leading <i>b</i> -tagged jet $p_{\rm T}$		>	$45 { m GeV}$	
H_{T}	$> 120~{\rm GeV}$ (2 jets), $> 150~{\rm GeV}$ (3 jet	ets)	_	_
$\min[\Delta \phi(\vec{E}_{T}^{miss}, jets)]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	-
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{bb})$	$> 120^{\circ}$		_	—
$\Delta \phi(b_1, b_2)$	$< 140^{\circ}$		_	—
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	—
$p_{\rm T}^V$ regions	>	$150 { m GeV}$		75 GeV $< p_{\rm T}^V < 150$ GeV, > 150 GeV
Signal regions	_	$m_{bb} \ge 75 { m ~GeV}$	f or $m_{\rm top} \le 225~{\rm GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions	_	$m_{bb} < 75~{\rm GeV}$	and $m_{\rm top} > 225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges

- Lepton selection
- Higgs selection
- Multi-jet cuts

Detailed event categorization

	0-Lepton	I-Lepton	2-Lep	otons
	p⊤ ^V > 150 GeV	p⊤ ^V > 150 GeV	75 < p⊤ ^V < 150 GeV	p⊤ ^V > 150 GeV
2 jet	SR	SR	SR	SR
3(+) jet	SR	SR	SR	SR
2 jet		W CR	Top CR	Top CR
3(+) jet		W CR	Top CR	Top CR

Profile likelihood fit

Events

1400

1200

1000

800

600

400

200

0.5

/stents 1400 1200

1000

800

600

400

200

0.5

Data/Pred. 1.5

Data/Pred. 1.5

- Simultaneous **fit** on the 14 regions (8 SR + 6 CR)
- **Top CR**
- W+HF CR
- In 0-lepton channel
 - Z estimated with 2lepton
 - **Top** estimated with 1-lepton

BDT. output

W+HF control region

 \sim Events / Data ATLAS VH, H ightarrow b $\overline{
m b}$ (μ =1.16) CRs are orthogonal to the signal 1400 √s = 13 TeV, 79.8 fb⁻¹ Diboson regions, with negligible level of 1 lepton, 2 jets, 2 b-tags tĒ 1200 $p_{\tau}^{V} \ge 150 \; GeV$ signal contamination Single top Multijet W+HF CR 1000 W+jets W+HF CR built in 1-lepton Z+iets 800 Uncertainty channel splitting events in 2 jets Pre-fit background and **3 jets**. 600 ~75% purity 400 Reduce VH contamination 200 Variable Cut > 225 GeV m_{top} <75 GeV m_{bb} Data/Pred. 5.0 2.1 1.5 Reduce top contamination 0.2 -0.6 - 0.4 - 0.20.4 0.6 0.8 BDT_{VH} output

eµ control region

- CRs are orthogonal to the signal regions, with negligible level of signal contamination
- *eµ* **CR** built in **2-lepton** channel splitting events in **2 jets** and **3**+ **jets**.
- Very pure CR to constraint top events

Systematics uncertainties

- Analysis **limited** by **systematics uncertainties**
- Main systematics:
 - Flavor tagging calibration
 - Signal and background modelling
 - MC stat

	Source of un	σ_{μ}	
	Total		0.259
	Statistical		0.161
→	Systematic		0.203
	Experimenta	al uncertainties	
	Jets		0.035
	$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
	Leptons		0.009
		<i>b</i> -jets	0.061
	b-tagging	c-jets	0.042
		light-flavour jets	0.009
		extrapolation	0.008
	Pile-up		0.007
	Luminosity		0.023

Theoretical and modelling uncertainties

Signal	0.094
Floating normalisations	0.035
Z + jets	0.055
W + jets	0.060
Single top quark	0.030 0.028
Diboson	0.054
Multi-jet	0.005
MC statistical	0.070

Results of cut-based analysis

 $\mu_{VH}^{bb} = 1.06^{+0.36}_{-0.33} = 1.06 \pm 0.20(\text{stat.})^{+0.30}_{-0.26}(\text{syst.}),$

Observed significance: 3.6 σ

Results of diboson analysis

 $\mu_{VZ}^{bb} = 1.20^{+0.20}_{-0.18} = 1.20 \pm 0.08(\text{stat.})^{+0.19}_{-0.16}(\text{syst.}),$

BDT distribution 1L

• Different BDT shape between signal events according to pTV value

BDT_{VH} output

Correlation matrix STXS fit

Relating STXS to EFT

 $B_{ij}\bar{c}_i\bar{c}_j$

 $\sigma = \sigma_{\rm SM} + \sigma_{\rm int} + \sigma_{\rm BSM}$

 $A_i \bar{c}_i +$

0	_	1	1
-	-	1	T
$\sigma_{\rm SM}$			

 σ

Linear term

1120	rati		torm
Zuau	Iau		
		1	

		Cross section region	$\sum_{ij} B_{ij} \bar{c}_i \bar{c}_j$
		$q\bar{q} \rightarrow H l \nu \ (150 \le p_{\rm T}^V \le 250) \ { m GeV}$	839cHW ² + 1555cWW ² + cHW(900cWW)
Cross section region	$\sum_{i} A_i \bar{C}_i$	$q\bar{q} \rightarrow H l \nu \ (p_{\rm T}^V \ge 250) \ { m GeV}$	$14000 \text{ cHW}^2 + 16000 \text{ cWW}^2 + \text{ cHW}(30000 \text{ cWW})$
$a\bar{a} \rightarrow Hly (150 < n^V < 250) \text{ GeV}$	50 cHW + 74 cWW	$q\bar{q} \rightarrow Hll \ (75 \le p_{\mathrm{T}}^V \le 150) \ \mathrm{GeV}$	85cHW ² + 400cWW ² + 8cHB ² + 35cB ²
$q\bar{q} \rightarrow Hlv \ (100 \ge p_T \ge 200) \ \text{GeV}$	170 cHW + 200 cWW		+cHW(150cWW + 20cHB + 42cB)
$q\bar{q} \rightarrow H^{II} (75 < n^V < 150) \text{ GeV}$	13cuw + 38cuw + 30cuP + 105cP		+cHB(44cWW + 12cB) + cWW(140cB)
$qq \rightarrow mn (75 \le p_T \le 150) \text{ GeV}$	27 - 111 + 61 - 11 - 11 - 11 - 12 - P	$q\bar{q} \rightarrow Hll \ (150 \le p_{\rm T}^V \le 250) \ { m GeV}$	462cHW ² + 982cWW ² + 41cHB ² + 86cB ²
$qq \rightarrow Hil (150 \le p_T \le 250) \text{ GeV}$	37 CHW + 01 CWW + 11 CHB + 18 CB		+cHW(1255cWW + 277cHB + 358cB)
$qq \rightarrow Hil \ (p_{\rm T} \ge 250) \ {\rm Gev}$	130CHW + 150CWW + 38CHB + 46CB		+cHB(373cWW + 105cB) + cWW(587cB)
		$q\bar{q} \rightarrow Hll \ (p_{\rm T}^V \ge 250) \ { m GeV}$	$8000cHW^{2} + 9600cWW^{2} + 720cHB^{2} + 850cB^{2}$
			+cHW(17000cWW + 4800cHB + 5100cB)

+cHB(5100cWW + 1500cB) + cWW(5700cB)

Example of EFT constraint

1-D fits of the coefficients have been performed

EFT coefficients

Coefficient	Expected interval	Observed interval
	Results at 68% co	onfidence level
\bar{c}_{HW}	[-0.003, 0.002]	[-0.001, 0.004]
(interference only	[-0.002, 0.003]	[-0.001, 0.005])
\bar{c}_{HB}	[-0.066, 0.013]	$[-0.078, -0.055] \cup [0.005, 0.019]$
(interference only	[-0.016, 0.016]	[-0.005, 0.030])
$\bar{c}_W - \bar{c}_B$	$[-0.\overline{006}, 0.\overline{005}]$	[-0.002, 0.007]
(interference only	[-0.005, 0.005]	[-0.002, 0.008])
\bar{c}_d	[-1.5, 0.3]	$[-1.6, -0.9] \cup [-0.3, 0.4]$
(interference only	[-0.4, 0.4]	[-0.2, 0.7])
	Results at 95% co	onfidence level
\bar{c}_{HW}	[-0.018, 0.004]	$[-0.019, -0.010] \cup [-0.005, 0.006]$
(interference only	[-0.005, 0.005]	[-0.003, 0.008])
\bar{c}_{HB}	[-0.078, 0.024]	[-0.090, 0.032]
(interference only	[-0.033, 0.033]	[-0.022, 0.049])
$\bar{c}_W - \bar{c}_B$	[-0.034, 0.008]	$[-0.036, -0.024] \cup [-0.009, 0.010]$
(interference only	[-0.009, 0.010]	[-0.006, 0.014])
\bar{c}_d	[-1.7, 0.5]	[-1.9, 0.7]
(interference only	[-0.8, 0.8]	[-0.6, 1.1])