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ABSTRACT: We report the first ionization potentials
(IP1) of the heavy actinides, fermium (Fm, atomic
number Z = 100), mendelevium (Md, Z = 101), nobelium
(No, Z = 102), and lawrencium (Lr, Z = 103), determined
using a method based on a surface ionization process
coupled to an online mass separation technique in an
atom-at-a-time regime. The measured IP1 values agree
well with those predicted by state-of-the-art relativistic
calculations performed alongside the present measure-
ments. Similar to the well-established behavior for the
lanthanides, the IP1 values of the heavy actinides up to No
increase with filling up the 5f orbital, while that of Lr is the
lowest among the actinides. These results clearly
demonstrate that the 5f orbital is fully filled at No with
the [Rn]5f147s2 configuration and that Lr has a weakly
bound electron outside the No core. In analogy to the
lanthanide series, the present results unequivocally verify
that the actinide series ends with Lr.

Extending the periodic table and classifying newly
discovered heavy elements are among the most

fundamental and exciting aspects of the chemical sciences.
This leads to architect the periodic table and revise its structure

in the heavy element region. The most recent revision of the
structure of the periodic table took place in the 1940s when
Glenn T. Seaborg introduced the ground-breaking actinide
concept,1,2 placing a new actinide series below the lanthanides.
In this new series, the 5f electron shell is filled in a manner
similar to the filling of the 4f electron shell in lanthanides. The
actinide concept did not only allow for the immediate
discoveries of the elements 95, americium, and 96, curium,
but was also instrumental for the discovery of heavier ones.
Chemical properties of weighable amounts of nuclear-reactor-
produced actinides up to Fm have been extensively studied.3

However, much less is known about the heavier actinides due
to stringent limitation on experimental procedures4 with
increasing atomic number as these heavy elements are available
in decreasing quantities of only one atom at a time.5,6

The first ionization potential (IP1) of an atom is one of the
most fundamental chemical and physical quantities of every
element. The first measurements of IP1 of actinides were
performed by a surface ionization technique.7 Then laser
spectroscopy and resonance ionization mass spectroscopy of
macroscopically available actinides up to einsteinium have
been conducted to measure accurate IP1 values.
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Recently, we reported the successful measurement of IP1 of
Lr in an atom-at-a-time scale experiment using a method based
on surface ionization coupled to mass separation and α-particle
detection techniques.12 The result suggested that Lr has the
lowest IP1 value of all actinide elements, although those of
other heavy actinides, Fm, Md, and No, have not yet been
determined experimentally. According to the systematic
variation of the IP1 values of heavy actinides, an increasing
trend is anticipated up to No due to filling electrons up in the
5f orbital.13−16 Nobelium is expected to have the highest IP1
among the actinides due to the closed-shell structure of
[Rn]5f147s2. Very recently laser resonance ionization spectros-
copy of No, using 254No (half-life, T1/2 = 51.2 s) in one-atom-
at-a-time quantities, was performed and the IP1 has been
measured to be 6.62621 ± 0.00005 eV,17,18 supporting the
scenario of closed 5f and 7s atomic shells in No. However, to
unequivocally confirm the filling of the 5f electron shell in the
heavy actinides, it is indispensable to experimentally determine
the successive IP1 values from Fm to Lr.
In the present study, we have applied the earlier developed

surface-ionization method12 to determine the IP1 values of Fm,
Md, and No. In addition, IP1 of Lr has been also measured to
improve the accuracy of the previously reported IP1.

12 Surface

ionization process takes place on a solid surface kept at a high
temperature and can be described by the Saha−Langmuir (S-
L) equation.19 The ionization efficiency (Ieff) depends on the
work function of the ionizing material, ϕ (eV), the temperature
of the material surface, T (K), and IP1 of the element. The
detailed experimental setup and the analytical method used in
this work have been described in our previous papers.12,20,21

Short-lived isotopes 249Fm (T1/2 = 2.6 min), 251 Md (T1/2 =
4.27 min), 257No (T1/2 = 24.5 s), and 256Lr (T1/2 = 27 s) were
produced in nuclear fusion reactions (Supplement Table 1).
The produced atoms, recoiling from the target, were
transported via a Teflon capillary20−22 to a surface ion-source

installed at the JAEA-ISOL (Isotope Separator Online) by the
He/CdI2 gas-jet transport system.21 Transported products
were injected into the ionization cavity of the ion-source.
Metallic tantalum (Ta) was selected as the cavity material in
this work. The products were surface-ionized on the hot
surface of the Ta cavity kept at a temperature between 2550
and 3000 K. Produced ions are extracted and mass separated in
the ISOL. The number of collected ions after the mass-
separation was determined by α spectrometry.12,20 The Ieff
value was calculated from a ratio of the number of mass-
separated ions to that of directly collected atoms transported
by the gas-jet system.20

The α spectra after surface ionization and following mass-
separation are shown in Supplement Figures 1−4. The
measured Ieff values for 249Fm, 251 Md, 257No, and 256Lr are
listed in Table 1 with the related surface temperature. On the
basis of the S-L equation,19,23 Ieff in a small cavity configuration
can be expressed as12,24
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where N is a parameter that depends on the effective number
of atom−surface interactions in the cavity, and k is the
Boltzmann constant. IP1*, the effective IP1, is directly related
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where Qi and Q0 are the partition functions for the ion and
atoms at a given temperature, which can be calculated using
excitation energies and statistical weights of their ground and
excited states. Thus, IP1* can be calculated from the
experimentally determined Ieff value of the isotope of interest
via eq 1. Then, IP1* can be converted to IP1 using eq 2.
To confirm the correlation between Ieff and IP1* in the

present system, Ieff values of short-lived lanthanides, an alkali
metal, and a chromium isotope were measured. The short-lived
isotopes, 143mSm, 142m,143Eu, 148mTb, 153,154Ho, 157Er, 162Tm,
165Yb, 168Lu, 80Rb, and 49Cr were employed. Figure 1 shows
the typical plot of the measured Ieff values vs IP1* of these
elements at T = 3000 K. The IP1* values of the above elements
were calculated via eq 2 using their known IP1 values compiled
in the National Institute of Standard and Technology (NIST)
atomic spectra database (ASD).25 Low-lying excited states for
the calculation of Qi and Q0 were also taken from NIST ASD.
Values of the parameter N were obtained by a best-fit with eq 1
to the measured Ieff values for the isotopes; summarized with
the other quantities in Table 1. The determination of IP1* =
6.45 eV for No from Ieff = 0.77% at T = 3000 K is depicted in
Figure 1. The Ieff vs IP1* plot at 2900 K for Md and Fm is
shown in Supplement Figure 5.

Table 1. IP1* Obtained from Ieff and N at Temperature T

element T (K) Ieff (%) N IP1* (eV) kT ln(Qi/Q0) (eV) IP1
a (eV)

100Fm 2900 ± 100 1.3 ± 0.4 71 ± 20 6.39 ± 0.13 0.13 ± 0.02 6.52 ± 0.13
101Md 2900 ± 100 1.2 ± 0.3 71 ± 20 6.43 ± 0.13 0.16 ± 0.01 6.59 ± 0.13
102No 2850 ± 80 3000 ± 100 0.54 ± 0.09 0.77 ± 0.10 43 ± 8 34 ± 7 6.44 ± 0.08 6.45−0.10

+0.09 0.17 ± 0.01 0.18 ± 0.01 6.61 ± 0.08 6.63−0.10
+0.08

103Lr 2550 ± 50 2850 ± 50 23 ± 5 39 ± 6 35 ± 3 47 ± 3 5.31−0.06
+0.09 5.30−0.05

+0.09 −0.37−0.04+0.06 − 0.32−0.04
+0.06 4.99−0.07

+0.10 4.94−0.07
+0.10

aThe IP1* and the temperature-dependent correction factor, kT ln(Qi/Q0), give IP1 (see text).

Figure 1. Ionization efficiency (Ieff) of various short-lived isotopes as a
function of the effective IP1, IP1*, at 3000 K. The red-dashed curve is
obtained by fitting eq 1 to the experimental data.
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To calculate the IP1 values of Fm, Md, No, and Lr from their
IP1* values, excitation energies and statistical weights of the
low-lying states of each atom and ion are required. As no
experimental data on excited states in the heavy actinides are
available, we calculated these values using relativistic computa-
tional methods. The intermediate-Hamiltonian Fock space
coupled cluster (IHFSCC) method26 was applied to
calculations of the atomic and ionic states of Md and No
(for some of the levels the single reference coupled cluster with
single, double, and perturbative triple excitations (CCSD(T))
was employed), while the Multi-Configuration Dirac−Fock
(MCDF) method, as implemented in the Graps2k code,27 was
used for the Fm atom and its ion. Excited states of No and Lr
were taken from refs 28, 29, where they were also calculated
within the IHFSCC approach. The methods used here were
also applied to the lower excitation energies of the lanthanide

homologues of the elements of interest (Er, Tm, Yb, and Lu).
For the lighter elements, we can compare our results to the
available experimental data, thus assessing the accuracy of our
calculations and of our predictions for Fm through Lr. The
obtained values are compiled in the Supplement Table 2.
Although several low-lying states were found in Fm+, only one
state should be considered for the Fm atom (Supporting
Information). There are no excited states in the range of
interest for Md, while one state is present for Md+. In No and
No+, only the ground states are expected to contribute. The
errors in the energy of the excited states were evaluated from
relative errors of the calculated values compared to the
experimental transition energies of the respective lanthanide
homologues. The kT ln(Qi/Q0) values are presented in Table
1. For the case of Lr, the values were obtained in the same
manner in ref 12. The IP1 values of Fm, Md, and No are
determined to be 6.52 ± 0.13, 6.59 ± 0.13, and 6.62−0.07

+0.06 eV,
respectively, where IP1 of No was obtained by taking a
weighted average of the IP1 values listed in Table 1. A more
accurate IP1 of Lr of 4.96−0.04

+0.05 eV was determined by also taking
a weighted average of our previous12 and present values. Errors
in IP1 mainly come from counting statistics, surface temper-
ature, and fitting procedure with eq 1.
In parallel to the measurements, we calculated the IP1 values

of Fm, Md, and No within the relativistic CCSD(T) approach,
corrected for the Breit term and the higher order quantum
electrodynamic (QED) corrections, using a similar scheme to
that employed in ref 30.
The experimental and theoretical IP1 values obtained in the

present work are summarized in Table 2 together with earlier
theoretical predictions12−16,28,31,32 and measurements.12,18,33

The present experimental values for Md and No agree with the
semiempirical values13,14 as well as with the more recent
relativistic calculations28 for No and the DKH2-B3LYP
calculations16 for both atoms. Our result on IP1 of No also
agrees with the recent value from laser-spectroscopic measure-
ments,18 thus providing independent validation to our
experimental method. The calculated IP1 of Er, the homologue

Table 2. Experimental and Theoretical IP1 Values

IP1 (eV)

ref method Fm Md No Lr

Theoretical
Sugar13 semiempirical 6.50 6.58 6.65
Rajnak and Shore14 semiempirical 6.46 6.57 6.67
Liu et al.15 QRPP-CASSCF+APCFa 6.26 6.10 6.14 5.28
Cao et al.31 RPP-CASSCF+APCFb 6.13 6.23 6.27 4.79
Borschevsky et al.12,28 IHFSCC 6.632 4.963(15)

ref 28 ref 12d

Pantazis and Neese16 DKH2-B3LYPc 6.45 6.54 6.64 4.56
Dzuba et al.32 CI+SDd 6.743 4.9
present work CCSD(T) 6.469 6.557 6.638

MCDF 6.22

Experimental
literature <6.76 6.62621(5) 4.96−0.07

+0.08

ref 33 ref 18 ref 12
present work 6.52 ± 0.13 6.59 ± 0.13 6.62−0.07

+0.06 4.96−0.04
+0.05

aQuasirelativistic ab initio pseudopotential (QRPP) complete active space self-consistent field (CASSCF) calculations combined with averaged
coupled-pair functional (ACPF) and corrected for spin−orbit coupling. bRelativistic ab initio pseudopotential (RPP) CASSCF calculations
combined with ACPF and corrected for spin−orbit coupling. cSecond order Douglas−Kroll−Hess approach combined with density functional
theory (B3LYP functional). dRelativistic configuration interaction (CI) combined with the linearized single−double coupled cluster method.

Figure 2. Variation of the experimental IP1 values of heavy actinides
and heavy lanthanides with atomic numbers. Closed circles indicate
the values obtained in the present work.
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of Fm, is 5.94 eV as obtained from the present MCDF
calculation, that is significantly lower than the experimental
value of 6.11 eV. Therefore, the MCDF prediction probably
also underestimates the IP1 value of Fm. The CCSD(T) +
Breit + QED calculations of IP1 agree well with the
measurements for all elements investigated here.
The variation of the IP1 values of the heavy actinides with

atomic number in comparison with those of the heavy
lanthanides is shown in Figure 2. As expected from the
prediction,13−16 the IP1 values increase up to No via Fm and
Md with filling of the 5f orbital in analogy to the heavy
lanthanides. We take this as an indication that the 5f orbital is
fully filled at No. The lowest IP1 value of Lr is confirmed; the
ground-state electronic configuration of the Lr atom has closed
5f14 and 7s2 shells with an additional weakly bound electron in
the valence orbital. The results unambiguously confirm that the
actinide series end with Lr.34
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