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Abstract

A study of the production of prompt J/ψ mesons contained in jets in proton-proton
collisions at

√
s = 8 TeV is presented. The analysis is based on data corresponding to

an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For
events with at least one observed jet, the angular separation between the J/ψ meson
and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows
that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y| < 1 are
contained in jets with pseudorapidity |ηjet| < 1. The differential distributions of the
probability to have a J/ψ meson contained in a jet as a function of jet energy for a
fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting
jet function approach. The data agree best with fragmenting jet function calculations
that use a long-distance matrix element parameter set in which prompt J/ψ mesons
are predicted to be unpolarized. This technique demonstrates a new way to test pre-
dictions for prompt J/ψ production using nonrelativistic quantum chromodynamics.
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1 Introduction
The mechanism for producing J/ψ mesons as bound states of charm quark pairs (cc) in hadronic
collisions has been under intensive experimental and theoretical study since the 1974 discov-
ery of the J/ψ meson in proton-nucleon collisions [1] and in e+e− annihilations [2]. The early
theoretical descriptions of the hadronic production process considering only color-singlet pro-
duction [3, 4] were at odds with the differential cross section measurements as a function
of the J/ψ transverse momentum pJ/ψ

T made by experimenters at the Fermilab Tevatron [5]
for pJ/ψ

T > 6 GeV. A new theoretical approach, nonrelativistic quantum chromodynamics
(NRQCD), was used to address the problem [6–8]. The NRQCD model includes both color-
singlet and color-octet amplitudes for the cc system that ultimately produces the J/ψ meson. It
proved to be capable of explaining the cross section data, using phenomenological parameters
called long-distance matrix elements (LDMEs) that are adjusted to describe J/ψ meson pro-
duction data. Within the NRQCD factorization assumption, the LDME parameters are process
independent. However, each determination of an LDME set can choose a specific collection
of J/ψ meson production data and J/ψ meson kinematic requirements. Furthermore, different
LDME sets that describe the production data may have different predictions for the J/ψ meson
polarization [9]. Experiments [10, 11] have shown that the prompt J/ψ meson polarization at
large pJ/ψ

T (>12 GeV) is small. Recent NRQCD studies extend the range of experimental input to
include low-pT data and attempt to make global fits to the full set of charmonium information.
A review of these studies can be found in Ref. [12].

A remaining theoretical problem is to determine the mechanism by which a cc system in an
angular momentum state and quark color configuration 2S+1Ln

J hadronizes into a J/ψ meson.
Here, S, L, and J are the spin, orbital, and total angular momentum quantum numbers of the cc
system. Its color state is labeled by n, with n = 1 or 8 referring to a color-singlet or color-octet
configuration, respectively. The J/ψ meson has J = S = 1 and n = 1. The analysis described
in this Letter combines the experimental measurement of J/ψ mesons contained in jets with
a theoretical approach based on the fragmenting jet function (FJF) model [13]. The FJF model
postulates that the cc pair is not produced directly in the hard scattering, but is a fragmentation
product of a high-pT jet. The model uses the methodology of NRQCD to compute the cross
section contributions for all relevant 2S+1Ln

J terms. Each cross section term has a characteristic
relation between the jet energy Ejet and its fraction carried by the J/ψ meson: z = EJ/ψ /Ejet.

A study of J/ψ mesons contained in jets in the rapidity region yJ/ψ > 2, dominated by charm
fragmentation for large z, has been reported by the LHCb Collaboration [14]. The LHCb analy-
sis, which measured the z distribution integrated over jet energy, does not have the sensitivity
to LDME parameter sets that characterizes this analysis.

The data for this analysis were collected by the CMS detector in proton-proton (pp) collisions
from the CERN LHC, corresponding to an integrated luminosity of 19.1 fb−1 at

√
s = 8 TeV. It

is the first experimental study of prompt J/ψ mesons contained in jets produced in the gluon-
dominated central rapidity region, where the FJF theory for gluonic jet fragmentation applies.

2 Theoretical framework
The hadronization process is nonperturbative. It is handled in the FJF approach by an NRQCD
expansion of the fragmentation function for a jet initially produced in a hard scattering at high
energy. The observables are Ejet and z. Following Ref. [13], the differential cross section for dijet
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production, with one jet fragmenting to a J/ψ meson, can be written symbolically as

d2σ(Ejet; z)
dEjet dz

= ∑
A, B, i, j

fA/p fB/p dσABij(ccX, n,Jj)⊗ FS ⊗ G
J/ψ
i (Ejet, z|R, µ). (1)

In this expression, A and B are the partons in the colliding protons with fractional flavor content
fA/p, fB/p, respectively, while i and j are the outgoing partons. The symbolic hard-scattering
cross section dσABij(ccX, n,Jj) produces the fragmenting jet from outgoing parton i and the re-
coil jet Jj from outgoing parton j. The fragmenting jet produces a cc system characterized by S,
L, J, and n quantum numbers, plus an inclusive hadronic state X that represents the remainder
of the jet. The function FS controls the evolution of the fragmenting system down to the energy
scale µ equal to the mass of the cc system, to allow the development of jet structure from soft
gluons. The nonperturbative fragmentation of the cc system into the observed J/ψ meson is
described by the function GJ/ψ

i (Ejet, z|R, µ), where Ejet is determined in a cone of angular radius
R.

The type of parton i that produces the fragmenting jet, and ultimately the J/ψ meson, depends
on the jet rapidity region. In the central rapidity region covered by this analysis, gluon frag-
mentation dominates [15]. The FJF expression for GJ/ψ

i sums over all contributing partons, but
the light flavor contributions are suppressed and can be neglected. In Ref. [13], the small cen-
tral charm quark fragmentation contribution was absorbed into the 3S1

1 contribution to gluon
fragmentation, so GJ/ψ in this Letter represents only gluon fragmentation.

In Ref. [16], the authors updated the work of Ref. [13] to make an explicit computation of the
perturbative dijet double-differential cross section, followed by the fragmentation of one of
the jets to a J/ψ meson. They integrated over the kinematic variables of the second jet to give
an FJF expression for the absolute differential cross section to produce a jet of energy Ejet that
fragments into a J/ψ meson carrying energy fraction z of the parent jet energy along with the
remaining fragments. In the NRQCD decomposition of GJ/ψ for central J/ψ meson hadropro-
duction with pT > 10 GeV, four FJF terms are relevant: 3S1

1, 1S8
0, 3S8

1, and 3P8
J . Only the 1S8

0
term has all angular momenta equal to zero in the cc rest frame. If this NRQCD term were to
dominate the jet fragmentation process, then the J/ψ meson would be produced unpolarized.

3 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintilla-
tor hadron calorimeter, each composed of a barrel and two endcap sections. When combin-
ing information from the entire detector, the jet energy resolution amounts typically to 15% at
10 GeV and 8% at 100 GeV [17]. Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid, covering the pseudorapidity range |η| < 2.4.
The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. It
consists of 1440 silicon pixel and 15 148 silicon strip detector modules. For nonisolated par-
ticles of 1 < pT < 10 GeV and |η| < 1.4, the track resolutions are typically 1.5% in pT and
25–90 (45–150) µm in the transverse (longitudinal) impact parameter [18]. Matching muons to
tracks measured in the silicon tracker results in a relative transverse momentum resolution, for
muons with 20 < pT < 100 GeV, of 1.3–2.0% in the barrel [19]. Events of interest are selected
using a two-tiered trigger system [20]. The first level, composed of custom hardware proces-
sors, uses information from the calorimeters and muon detectors to select events at a rate of
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around 100 kHz within a fixed time interval of less than 4 µs. The second level, known as the
high-level trigger (HLT), consists of a farm of processors running a version of the full event
reconstruction software optimized for fast processing. This reduces the event rate to around
1 kHz before data storage. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [21].

4 Event selection and background subtraction
The experimental methods follow those used by previous CMS analyses of inclusive J/ψ and
Υ(nS) production at

√
s = 7 TeV [22–26]. The event selection is based on a dimuon trigger

involving the silicon tracker and muon systems. The trigger requires two oppositely charged
muons with rapidity of the dimuon system |y| < 1.25 and its invariant mass range 2.7 < mµµ <

3.5 GeV. The three-dimensional fit to the dimuon vertex must have a χ2 probability (the p-value
of the χ2 returned by the fit) >0.5%. Only dimuon pairs in which the muons bend away from
each other in the magnetic field are used to allow a precise dimuon efficiency determination.
The dimuon pT trigger threshold varied from 5 to 9 GeV during the data-taking period. The
primary event vertex is defined as the one with the largest summed pT of its associated tracks.

The offline selection requires a dimuon pair with pT > 10 GeV, |y| < 1, energy E > 15 GeV,
and vertex fit χ2 probability >1%. In order to guarantee agreement to within 3% between
the single-muon efficiencies from control samples and from simulation, each muon must have
pµ

T > 6 GeV and |ηµ | < 2.1, or pµ
T > 5 GeV and |ηµ | < 0.8. The muon candidate must satisfy

the CMS “tight” muon quality requirements on the number of tracker hits, the muon track fit
quality, and the distance along the beam line from the primary event vertex [19]. No muon
isolation requirements are applied, because we look for J/ψ + jet associations. The J/ψ signal
invariant mass range is 2.95 < mµµ < 3.20 GeV. After the data selection, we observe at most
one J/ψ candidate per event.

The trigger does not use any information about jets in the event. Jets are reconstructed from
particle-flow objects [27], using an anti-kT algorithm with a distance parameter of 0.5 [28], as
implemented in the FASTJET package [29]. The jet response has been corrected to the particle
level [17]. Although the J/ψ candidate is not a particle-flow object, its decay muons are. This
does not exclude jets that consist only of a J/ψ meson. However, such jets constitute less than
10−4 of this sample and do not affect the results presented here. The jet properties include
the energy Ejet, the transverse momentum magnitude pjet

T , the number of constituents, and the
number of included muons. Each bunch crossing in the data produces, on average, 14 recon-
structed pp vertices, corresponding to 21 interactions per bunch crossing. The extra interac-
tions produce so-called pileup distortions, which are corrected using the procedure described
in Ref. [17]. For this analysis, the jet selection requirements are pjet

T > 25 GeV and |ηjet| < 1.

The J/ψ event candidates are classified as prompt, nonprompt, or combinatorial. Nonprompt
events include those J/ψ mesons that come from decays of b hadrons. Combinatorial candidates
are accidental pairings of an identified µ+ and a µ− such that the dimuon invariant mass falls
within the signal mass interval. The nonprompt background is strongly reduced by applying
a selection on the variable ΣTD, which is the sum of the squares of the significance (in units
of standard deviations) of the transverse distance of closest approach of each muon track to
the primary vertex. The ΣTD distribution has a sharp peak near zero from prompt events and
a long tail at larger ΣTD from nonprompt sources, which we fit with an exponential function.
From a prompt J/ψ meson Monte Carlo (MC) sample, we find that >99% of the events have
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ΣTD < 10. The simulated ΣTD shape agrees with that in data for this region, so we require
ΣTD < 10 to define the prompt dimuon events. In the J/ψ data, the exponential function that
describes the nonprompt background is extrapolated into the range ΣTD < 10 to estimate the
fraction of nonprompt events in the prompt signal mass range. This is (5.7± 0.1)%. The events
in the prompt signal mass range also contain combinatorial background, which is determined
by interpolating the mµµ low (2.70–2.90 GeV) and high (3.25–3.50 GeV) sideband regions. We
find that the combinatorial background fraction in the prompt signal mass range is (1.4± 0.2)%.
The quoted uncertainties in the backgrounds are statistical only. All distributions shown in
this Letter have the nonprompt and combinatorial backgrounds subtracted. After background
subtraction, there are 1.63× 106 prompt J/ψ meson candidates.

5 Association of jets and J/ψ mesons
The analysis makes no restriction on the number of jets that pass the jet selection requirements,
which we term “observed jets”. For jet requirements pjet

T > 25 GeV and |ηjet| < 1, the fractions
of J/ψ meson events that have 0, 1, 2, or 3 observed jets are (55.12± 0.06)%, (34.03± 0.05)%,
(9.58± 0.02)%, and (1.27± 0.08)%, respectively, where the uncertainties are statistical only. For
events with at least one observed jet, the association of a J/ψ meson with a jet is made using the
angular separation ∆R =

√
(ηjet − ηµµ)

2 + (φjet − φµµ)
2. Here, ηjet (ηµµ) and φjet (φµµ) are the

pseudorapidity and azimuthal angle (modulo π), respectively, of the jet (dimuon) direction.
The ∆R distribution for the best-matched jet is sharply peaked at zero, as seen for events with
one observed jet in Fig. 1 (left). The J/ψ meson and the jet are defined as associated if ∆R < 0.5.
Furthermore, if both decay muons from the J/ψ meson are among the objects that comprise the
jet, we say that the J/ψ meson is a constituent of the jet.

When there are two observed jets in the event, further evidence that J/ψ meson production
comes primarily from jets is shown in Fig. 1 (right). This plot shows ∆R for the J/ψ meson
with respect to each observed jet in two-jet events. The higher-energy (leading) jet has ∆Rl,
the lower-energy (subleading) one ∆Rsl. Note that the energy labels here play no role in the
analysis; the jets need only to pass the jet pT and |ηjet| requirements given above. The J/ψ meson
is not required to come from either jet. The clusters of events in Fig. 1 (right), near (∆Rl , ∆Rsl) =
(0, π) and (π, 0), show that (94.1± 0.1)% of the time, the J/ψ meson is a constituent of one of
the two jets in the event. In events with a J/ψ meson and two jets, the mean and RMS deviation
of the distribution of the number of jet constituents, charged and neutral, for the fragmenting
jet (25± 8) and the recoil jet (29± 8) are similar. The shapes of the jet energy spectra for the
jet containing the J/ψ meson and the recoil jet are indistinguishable. The difference in the
probability for the J/ψ meson to be a jet constituent in the one- and two-jet cases, along with a
discussion of the small excess for 2.4 < ∆R < 3.5 in Fig. 1 (left), will be addressed in Section 12.

6 Experimental application of the FJF approach
The authors of Refs. [13, 16] emphasize that experimental sensitivity to the FJF terms in jet
fragmentation comes from measuring the jet energy dependence of the function G in Eq. (1) at
fixed z. In the FJF framework, the dependence of the fragmenting jet differential cross section
on the J/ψ properties comes solely through the z variable. Integrating Eq. (1) over z gives
the single-jet differential cross section for the production of J/ψ mesons contained in jets, as a
function of Ejet. This is used as a normalization term in Ref. [16], where the differential cross
section for a jet to fragment to a J/ψ meson with the energy fraction z is calculated for jets having
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Figure 1: The distributions of (left) ∆R(jet, J/ψ) for one-jet events and (right) ∆Rl(leading jet,
J/ψ) vs. ∆Rsl(subleading jet, J/ψ) for two-jet events

pjet
T > 25 GeV and pseudorapidity |ηjet| < 1.2. The resulting J/ψ meson is required to have

energy above 15 GeV and rapidity |yJ/ψ | < 1. The jet fragmentation cross section is normalized
by integrating over the z range 0.3–0.8. The authors showed that the jet energy dependence of
the normalized FJF terms is insensitive to the exact z range used. At a fixed z value, called z1,
the ratio of the fragmenting jet differential cross section due to a single FJF term i to the sum
of the cross section integrals for 0.3 < z < 0.8 for all FJF terms is termed (dσ̃i/dEjet dz)|z1

in
Ref. [16]. The sum of this ratio over all four FJF terms is denoted as (dσ̃/dEjet dz)|z1

. For a
given LDME parameter set, each of the four FJF terms is different. Also, changing the LDME
parameter set changes the FJF predictions for the four terms.

The authors of Ref [16] cite next-to-leading order (NLO) calculations [30–33] to argue that the
pJ/ψ

T range for the three z1 values used in this analysis is large enough that the 3S1
1 NRQCD term

cannot contribute to the sum. Therefore, in computing (dσ̃/dEjet dz)|z1
to compare to these data,

only the three color-octet terms are included. However, in the low-z region included in the
normalizing integral, the 3S1

1 NRQCD term can play a role and is included in their calculation
for 0.3 < z < 0.8.

The experimental proxy for (dσ̃/dEjet dz)|z1
, evaluated for a jet energy bin centered at Ec, is

called Ξ(Ec; z1):

Ξ(Ec; z1) ≡
N(Ec; z1)∫ 0.8

0.3 N(Ec; z) dz
, (2)

where N(Ec; z1) is the number of events having a J/ψ meson contained in a jet for a z interval
∆z centered on z1 in that Ejet bin. The number of events is weighted to correct for the J/ψ meson
efficiency and acceptance, as described in Section 7, as well as corrected for jet efficiency and jet
energy resolution, as described in Section 8. We use a z interval ∆z = ± 0.025 around z1, which
is small enough to be insensitive to z variations in Ξ and large enough to provide a reasonable
number of events in each Ejet bin.

7 Efficiency corrections for J/ψ mesons
Measuring the properties of events when a J/ψ meson is a jet constituent requires an event-by-
event J/ψ meson efficiency correction. Each entry in the signal or background event distribu-
tions has an event weight, defined as 1/εJ/ψ . The dimuon acceptance times efficiency εJ/ψ is
determined using a simulated sample of unpolarized J/ψ meson events, uniformly distributed
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in 1 GeV wide pT bins and uniformly distributed over |yJ/ψ | < 1.5. Only the J/ψ meson is simu-
lated; studies [25, 26] show that using a complete PYTHIA [34] event simulation does not change
the efficiency results. The J/ψ → µ+µ− decay is simulated using EVTGEN [35]; radiative effects
are treated by PHOTOS [36]; and the detector response to the two muons is simulated using the
GEANT4-based [37] CMS simulation program. The simulated J/ψ meson must pass the quality
requirements listed in Section 4. The total efficiency εJ/ψ varies with the rapidity and transverse
momentum of the J/ψ meson because the muon reconstruction, dimuon vertex reconstruction,
and dimuon trigger efficiencies depend on these variables. There is also an HLT trigger inef-
ficiency if two muons in the event have a small angular separation. This is also taken from
simulation and checked against data taken using a single-muon trigger.

8 Jet energy corrections and unfolding
A crucial part of the analysis is measuring the energy of the jet that contains the J/ψ meson. To
test whether there might be an influence on the jet energy distribution due to the presence of
the J/ψ meson, we study the two-jet events shown in Fig. 1 (right). The energy distributions of
the fragmenting jet and the recoil jet are compared for 0.3 < z < 0.8 and for z ranges of 0.40–
0.45, 0.50–0.55, and 0.60–0.65. The shapes of the measured energy distributions of the recoil
and fragmenting jets for each sample are indistinguishable. There is no evidence that having a
J/ψ meson as a constituent affects the jet energy distribution.

The jet energy distributions are compared to the FJF model predictions in bins of jet energy. Ex-
perimentally, the jet energy bin width ∆Ejet is constrained by the finite jet energy resolution of
the CMS apparatus, which must be unfolded. We use ∆Ejet = 8 GeV. The D’Agostini unfolding
method [38] from the ROOUNFOLD package [39] is used to extract the unsmeared Ξ distribu-
tion. The procedure uses an input generator-level jet energy distribution (truth distribution)
derived from PYTHIA light-quark or gluon jets. Simulation shows that for measured jet energy
Ejet > 44 GeV, the jet reconstruction efficiency exceeds 98.5% and is consistent with being en-
ergy independent. Thus, 44 GeV is the lowest jet energy considered in the unfolding procedure.
The unfolding procedure uses the CMS jet energy resolution and jet finding efficiency [27] to
determine the unfolded jet energy matrix and the MISS matrix. The latter is filled for events
that fail the jet efficiency test or fall outside the unfolded jet energy window 44–140 GeV. The
method was validated using several different simulated jet energy input truth distributions,
including a fit to the PYTHIA shape using the sum of exponentials and the raw data itself in a
bootstrap approach. There was no change in the unfolded distributions that exceeded σstat/4
for any jet energy bin. Based on unfolding studies in simulation that used three to six itera-
tions, we found that four unfolding iterations gave stable matches to the simulation events and
showed no sensitivity to different choices for the input truth distribution. Based on the simu-
lation results, the unfolded jet energy range is 56 < Ejet < 120 GeV. This range is stable when
the input distribution is changed. Henceforth, Ejet will refer to the unfolded quantity, unless
otherwise noted.

The unfolded jet energy distributions for the Ξ(E; z) functions have bin-to-bin correlations that
affect the statistical uncertainty in Ξ for each jet energy bin. The statistical uncertainties are
evaluated by repeating the unfolding procedure 250 times, forming the covariance matrix, and
determining the uncertainty for each jet energy bin. The statistical uncertainties computed by
this procedure are 0.02 to 0.06%. The unfolding in z is dominated by the Ejet resolution. The
changes in z from the unfolding procedure for the region of interest (0.40–0.65) are less than
0.01 in z. Therefore, the measured z values are used in the Ξ(Ejet; z) determinations.
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9 Systematic uncertainties
The systematic uncertainties arise from the determination of the event weight, based on the J/ψ
meson and muon properties, and from a bias in the J/ψ-jet association, discussed below. The
systematic uncertainty in the jet energy scale is small compared to the jet energy resolution used
in the unfolding. Varying the jet energy by the jet energy scale systematic (< 2.2%) uncertainty
before the unfolding made no change in the Ξ results.

The CMS studies at
√

s = 8 TeV using a tag-and-probe method [22, 23] show that, for the
offline requirements used in this analysis, the ratio of the single-muon efficiency in data and
MC simulation is consistent with unity within <3%, independent of pµ

T [40]. The tracking
efficiency in data and simulation agree to within 1% per track. The dimuon vertex and trigger
simulation also have 1% systematic uncertainties. The dimuon HLT trigger inefficiency varies
with pJ/ψ

T in the range 4.5–7.5%. For the few dimuons with pT > 60 GeV, it can go up to 15%.
The difference between unity (no loss) and the simulated HLT trigger efficiency is assigned as
the HLT systematic uncertainty for each event. All of the above systematic uncertainties are
added in quadrature to determine the total systematic uncertainty in the weight for each event.
To estimate the impact of the weight systematic uncertainty on the Ξ(Ejet; z1) function, two
additional Ξ(Ejet; z1) functions are made for each z1. One uses distributions in which the weight
for each event is raised by one standard deviation; in the other, the event weight is lowered by
one standard deviation. The shifted Ξ(Ejet, z1) values are compared to the unshifted value in
each energy bin. The relative systematic uncertainty in the event weight ranges from 0.2 to
0.9% of the standard-weight Ξ(Ejet; z1) values.

In addition, there is a selection bias in the J/ψ meson and jet association that disfavors the
configuration when the difference ηjet − ηJ/ψ has the opposite sign to ηjet. The bias originates
from events that are lost in the section on |ηjet − ηJ/ψ | and is evaluated from data. The number
of events per Ejet bin in the biased region is rescaled to match the yield in the unbiased region.
Half of the difference between the measured and corrected number of events in each Ejet bin
is assigned as its bias systematic uncertainty. The weight and bias systematic uncertainties are
added in quadrature to obtain the systematic uncertainty in Ξ(Ejet; z1), which ranges from 0.3
to 1.0%. These uncertainties are then added in quadrature with the uncertainty in the unfolding
procedure discussed in the previous section.

10 The FJF predictions of the jet energy spectrum
In this analysis, we use three z1 values: 0.425, 0.525, and 0.625. These are the centers of three
nonoverlapping z subregions with ∆z = 0.05 from the measurement region 0.3 < z < 0.8. In
these three z regions, the FJF terms have different jet energy distributions for a given LDME pa-
rameter set. The authors of Ref. [16] supplied tables of the normalized differential cross section
terms (dσ̃i/dEjet dz)|z1

, computed for
√

s = 8 TeV and jet radius R = 0.5. The cone algorithm
used for the theoretical calculation does not introduce a systematic effect since there are no
background or pileup sources in the theory. As described in Section 6, we compare the data to
sum of the 1S8

0, 3S8
1, and 3P8

J FJF functions for the LDME parameter sets from Bodwin, Chung,
Kim, and Lee (BCKL) [30], Butenschoen and Kniehl (BK) [41], and Chao, et al. (Chao) [42].
The LDME parameter sets for these three studies are derived from different selections of J/ψ
meson production measurements, e.g., the BK set includes electroproduction data and uses a
lower J/ψ meson pT limit than is used in the hadroproduction-only selection of the BCKL and
Chao sets. All groups report that their LDME sets yield J/ψ meson differential cross sections
that agree with the J/ψ meson production data on which the extractions were based.
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11 Comparison of data with FJF total cross section predictions
In this section we compare the data with the prediction for the FJF total differential cross sec-
tion from each of the three LDME sets. Figure 2 shows the normalized jet energy distributions
for the data and the FJF total cross section predictions for each LDME set at each of the three
z1 values used in the analysis. The uncertainties in the data include the statistical and sys-
tematic components added in quadrature. For each z1, the bin-averaged FJF values are used
to calculate the χ2 for the comparison of the FJF total differential cross section prediction to
the data. The LDME calculations from Refs. [30, 41, 42] have normalization uncertainties, as
shown in Ref. [16]. The FJF calculations give the ratio of the cross section in a small-z region
to the cross section integral over a wide z range. The uncertainty in the predicted FJF values
due to the theory normalization uncertainty is almost completely correlated for the numerator
and denominator of the ratio. The resulting theoretical uncertainty is negligible compared to
the experimental uncertainty in the Ξ(Ejet; z1) values. We therefore ignore it in computing the
χ2 values to match data and theory. The χ2 value and the associated p-value for comparison
of data to each LDME set are given in Table 1. An a priori decision was made that a model
prediction is an acceptable match to the data only if the χ2 p-value is larger than 0.1% for seven
degrees of freedom. Otherwise, we say that the model does not match the data. For all three z1
ranges, the FJF predictions using the BCKL LDME parameters match data. Neither the BK nor
the Chao LDME parameter sets describe these jet + constituent J/ψ data for any z1 value.

The observation that these new data on J/ψ meson production as constituents of jets match
the FJF predictions for the BCKL LDME parameter set and reject two others validates the FJF
approach to treating jets as a major source of J/ψ production in the gluon-rich central region
in pp interactions. It also demonstrates that the BCKL LDME parameter set can describe new
features of J/ψ hadronic production at large pJ/ψ

T . The BCKL LDME parameters were developed
from a completely different data set than these J/ψ + jet data, so there is no a priori reason to ex-
pect them to have predicted these measurements. The BCKL parameters are known to predict
small J/ψ polarization [30], in agreement with experiment [10, 11] for the range of pJ/ψ

T values
selected in this analysis (10-40 GeV). Because this analysis studies only high-pT J/ψ meson pro-
duction and shows that the BCKL LDME parameters describe the process and other sets do
not, it suggests a tension between high-pT J/ψ results and global charmonium studies [12].

Table 1: The χ2 value and the associated p-value (in parentheses) for 7 degrees of freedom from
the comparison of the data and the predictions for the total FJF cross section shape at z1 = 0.425,
0.525, and 0.625, using the BCKL, the BK, and the Chao LDME parameter sets.

0.425 0.525 0.625
BCKL 22.2 (0.23%) 11.0 (14%) 10.7 (15%)
BK 59.6 (<0.001%) 60.1 (<0.001%) 64.0 (<0.001%)
Chao 267 (<0.001%) 96 (<0.001%) 164 (<0.001%)

12 Total fraction of J/ψ mesons from jets
In this section, we determine whether jets are the major source of prompt energetic J/ψ mesons
(EJ/ψ > 15 GeV) in the central region (|ηjet| < 1). Here, Ejet refers to the measured jet energy
before unfolding. As shown in Fig. 1 (left), for events with a J/ψ meson and only one observed
jet, (84.0± 0.1)% of the J/ψ candidates are within ∆R < 0.5 of that jet. This is consistent with jets
being the dominant source of J/ψ production in this kinematic range when there is at least one
observed jet in the event. However, events with one or more observed jets having pjet

T > 25 GeV
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Figure 2: Comparison of Ξ(Ejet; z1) versus Ejet from data with FJF predictions of the total dif-
ferential cross section, each normalized to unit area, for the BCKL (squares), BK (inverted tri-
angles), and Chao (diamonds) LDME parameter sets. The three z1 ranges are (upper left) z1 =
0.425; (upper right) z1 = 0.525; (lower) z1 = 0.625. The curves show the detailed energy depen-
dence of the predictions. The vertical bars on the data points are the quadrature sum of the
statistical and systematic uncertainties.

account for only (44.9± 0.1)% of the prompt J/ψ meson sample.

To understand the source of J/ψ meson events with no jets passing the pjet
T > 25 GeV require-

ment, termed zero-jet events, we note that a jet that has a constituent J/ψ meson can fail the
pjet

T threshold even though the J/ψ meson is observed. For instance, when the pjet
T threshold is

raised from 25 to 30 GeV, the fraction of zero-jet events with an identified J/ψ meson increases
from 55 to 65%. For one-jet events in data with pjet

T thresholds of 30, 35, and 40 GeV, the ob-
served jet is found within ∆R < 0.5 of the J/ψ meson in the event (84.0± 0.2)% of the time,
i.e., the probability of a jet having a constituent J/ψ meson is independent of pjet

T . Only jets
with Ejet > 44 GeV pass the pjet

T > 25 GeV requirement with 100% efficiency over the range
0 < |ηjet| < 1. Jets having Ejet < 44 GeV can contain observed J/ψ mesons with EJ/ψ > 15 GeV,

but some of these jets will not pass the pjet
T > 25 GeV requirement.

In order to correct for this effect, we fit the Ejet distribution for jets containing a J/ψ meson to the
sum of two exponential functions in the range 44 < Ejet < 150 GeV. We use the fit to extrapolate
the number of jets containing a J/ψ meson to lower Ejet values, in order to estimate the number
of jets with a constituent J/ψ meson that would be present in the lower-energy region for full
pT acceptance. Jet reconstruction efficiency corrections are not applied at this stage. The FJF
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model is valid for z < 0.8 [13]. In the data, only (1.3± 0.1)% of jets having a constituent J/ψ
meson have z > 0.8; we truncate the model at z = 0.8, setting a limit of Ejet > 19 GeV for
the extrapolation. Some jets in the Ejet = 25–44 GeV range have sufficiently large polar angles

to pass the pjet
T > 25 GeV requirement. These are subtracted from the extrapolation to avoid

double counting. The number of jets from extrapolation in each 1 GeV wide jet energy bin i
is corrected for the jet reconstruction efficiency εi to predict the total number Ni of jets with
energy Ei.

In order to contribute to the data sample, a jet with energy Ei must produce a J/ψ meson with
energy Ej. The probability Pj for the J/ψ meson to have energy Ej is taken from the results of
this analysis, normalized to unity for 55 bins covering the range 15 < EJ/ψ < 70 GeV. The total
number Ai of jets with energy Ei that contain a J/ψ meson with energy fraction zij = Ej/Ei in
the range 0.3–0.8 is

Ai = Ni

55

∑
j=1

Pj w(zij). (3)

The function w(zij) is the probability that a jet of energy Ei will contain a J/ψ meson having
energy Ej. To proceed, we need a specific model for the jet and J/ψ kinematics. We use the
jet fragmentation model in Ref. [13] for Ejet = 50 GeV. The probability is zero for z > 0.8. The
model predicts that (43± 3 (stat))% of the J/ψ mesons should be accompanied by zero observed
jets, compared to 55% found in the data.

There are systematic uncertainties in this result. In a private communication, the authors of
Ref. [13] also provided a z probability calculation for Ejet = 20 GeV. The model prediction for
the number of zero-jet events using the 20 GeV z probability calculation differs by 3% from the
50 GeV result. This difference is taken as the systematic uncertainty in the z fragmentation prob-
ability. The uncertainty in the MC prediction of the low-energy jet efficiency is 13%. We also
made a closure test by using the model to predict the number of observed jets lost when the jet
pT threshold was raised from 25 to 40 GeV. The model prediction agrees with the actual number
of lost jets to within (3.5 ± 0.1)%. However, there is a jet energy dependence in the matching
between the data and the prediction. Extrapolating the bin-by-bin jet energy dependence of
that difference into the 19–44 GeV range, the closure study gives a 7% systematic uncertainty in
the predicted number of zero-jet events having jet energies less than 44 GeV. Adding the sys-
tematic uncertainties in quadrature, the predicted fraction of zero-jet events with a J/ψ meson
as a constituent of a jet with pjet

T < 25 GeV is (43± 3 (stat)± 7 (syst))%.

If we apply this reasoning to results from Section 5, the small peak in the range 2.5 < ∆R < 3.4
in Fig. 1 (left) is actually the recoil jet in a dijet pair for which the parent jet of the J/ψ meson
was not observed. This increases the fraction of J/ψ mesons that are constituents of a jet in the
one-jet sample from (84.0± 0.1)% to (94.3± 0.1)%. With this interpretation, and the results from
Section 5, we find that the one- and two-jet fractions for a jet to have a constituent J/ψ meson are
both essentially 94%. The overall fraction of J/ψ mesons that come from jets is, then, 0.94·45% =
42% from events with one or more observed jets, plus 43% from the zero-jet sample. While the
zero-jet model is simple, it passes an experimental closure test. Also, it follows the trend of the
data as the jet pT requirement is raised in steps from 25 to 40 GeV. Using it, we conclude that
(85± 3 (stat)± 7 (syst))% of the J/ψ mesons within our kinematic acceptance, EJ/ψ > 15 GeV
and |yJ/ψ | < 1, are constituents of jets with Ejet > 19 GeV and |ηjet| < 1.
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13 Summary
The first analysis has been presented comparing data for prompt J/ψ mesons produced as con-
stituents of central gluonic jets with a theoretical analysis based on the fragmenting jet function
(FJF) approach. The term prompt means that the J/ψ meson is consistent with originating from
the primary vertex. In the FJF model, the jet fragments into a cc system in an angular momen-
tum state and quark color configuration 2S+1Ln

J , plus other hadrons. Here, S, L, and J are the
spin, orbital, and total angular momentum quantum numbers of the cc system and n indicates
a color-singlet (n = 1) or color-octet (n = 8) configuration. The FJF analysis uses the nonrel-
ativistic quantum chromodynamics (NRQCD) approach to compute the cross section for the
formation of a J/ψ meson from the cc system for four specific S, J, L, and n configurations: 1S8

0,
3S8

1, 3S1
1, and 3P8

J .

The data were collected by the CMS Collaboration in proton-proton collisions at
√

s = 8 TeV,
corresponding to an integrated luminosity of 19.1 fb−1. The kinematic selections for the analy-
sis are EJ/ψ > 15 GeV, |yJ/ψ | < 1, pjet

T > 25 GeV, and |ηjet| < 1. In z ranges 0.40–0.45, 0.50–0.55,
and 0.60–0.65, where z is the J/ψ meson fraction of the jet energy, the shape of the masured
differential cross section as a function of Ejet for J/ψ meson production as a jet constituent is
compared to the FJF prediction for this quantity, using three different long-distance matrix el-
ement (LDME) parameter sets. The FJF predictions using the Bodwin, Chung, Kim, and Lee
(BCKL) [30] LDME parameters match the data for all three z ranges. In contrast, the FJF pre-
dictions for the LDME parameter sets from Butenschoen and Kniehl (BK) [41] and Chao, et al.,
(Chao) [42] disagree with the data for all three z ranges. This establishes the ability of the FJF
analysis to describe J/ψ meson production from central gluonic jets and the ability of this kind
of experiment to distinguish among different sets of LDME parameters, all of which describe
inclusive J/ψ meson production for their choice of data. The BCKL LDME set, constructed us-
ing inclusive hadronic production data with pJ/ψ

T > 10 GeV, not only describes the production
of high-pT J/ψ mesons as constituents of jets but also predicts small J/ψ meson polarization.

When a jet is observed in an event, the fraction of J/ψ mesons that are jet constituents is (94.2±
0.1)%, averaged over one- and two-jet events. Using a simple model to estimate the fraction
of J/ψ mesons that are constituents of jets that fail the analysis pjet

T requirement, we find that
jets are the source of (85 ± 3 (stat) ± 7 (syst))% of the J/ψ mesons produced in the kinematic
region probed in this study. Interpreting the results in the framework of the FJF model, jet
fragmentation accounts for almost all prompt J/ψ mesons produced at large pJ/ψ

T . The data are
consistent with an NRQCD treatment of the FJF process using the BCKL parameter set.
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J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro13, M. Titov

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique
de Paris
S. Ahuja, C. Amendola, F. Beaudette, P. Busson, C. Charlot, B. Diab, G. Falmagne,
R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando,
P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche
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Budapest, Hungary
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ballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodrı́guez Bouza, S. Sanchez Cruz

Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez,
P.J. Fernández Manteca, A. Garcı́a Alonso, G. Gomez, C. Martinez Rivero, P. Mar-
tinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno,
L. Russo48, L. Scodellaro, N. Trevisani, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
K. Malagalage

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney,
J. Bendavid, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, C. Botta, E. Brondolin, T. Camporesi,
A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci,
V. Daponte, A. David, O. Davignon, A. De Roeck, N. Deelen, M. Deile, M. Dobson, M. Dünser,
N. Dupont, A. Elliott-Peisert, F. Fallavollita49, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher,
W. Funk, S. Giani, D. Gigi, A. Gilbert, K. Gill, F. Glege, M. Gruchala, M. Guilbaud,
D. Gulhan, J. Hegeman, C. Heidegger, Y. Iiyama, V. Innocente, P. Janot, O. Karacheban21,
J. Kaspar, J. Kieseler, M. Krammer1, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli,
A. Massironi, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba,
J. Niedziela, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo18, L. Pape, E. Perez, M. Peruzzi,
A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rovere,
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