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We show that gravitational wave emission from neutron star binaries can be used to discover any generic
long-ranged muonic force due to the large inevitable abundance of muons inside neutron stars. As a
minimal consistent example, we focus on a gauged Uð1ÞLμ−Lτ

symmetry. In pulsar binaries, such Uð1ÞLμ−Lτ

vectors induce an anomalously fast decay of the orbital period through the emission of dipole radiation. We
study a range of different pulsar binaries, finding the most powerful constraints for vector masses below
Oð10−18 eVÞ. For merging binaries, the presence of muons in neutron stars can result in dipole radiation as
well as a modification of the chirp mass during the inspiral phase. We make projections for a prospective
search using both the GW170817 and S190814bv events and find that current data can discover light
vectors with masses belowOð10−10 eVÞ. In both cases, the limits attainable with neutron stars reach gauge
coupling g0 ≲ 10−20, which are many orders of magnitude stronger than previous constraints. We also show
projections for next generation experiments, such as Einstein Telescope and Cosmic Explorer.
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I. INTRODUCTION

New long range interactions give rise to distinctive
signatures in a wide range of observables. Such interactions
are, however, strongly constrained by fifth-force tests
[1–4], unless they are either screened or the couplings to
the first generation fermions are suppressed. We show that
the dynamics of neutron star (NS) binaries provide ideal
laboratories to probe long range muonic forces due to the
significant abundance of muons inside them (by mass
≳0.1%M⊙). The observations of the NS merger event,
GW170817 [5], an NS-black hole (BH) candidate merger
event, S190814bv [6,7], and various pulsar binaries [8–17]
give us the opportunity to probe these new exotic forces.
These methods of probing muonic forces via NS binaries
are completely general, applicable to both vector and scalar
mediators. However, as a concrete realization, we focus on
a long-range gauged U(1) symmetry.
Additional U(1) gauge symmetries with masses below

the weak scale are simple extensions of Standard Model
that can act as a mediator to the dark sector (see, e.g.,

[18–21]), are common predictions of string theory [22],
and can explain experimental anomalies [23–28]. The
observed matter content limits the linearly independent
conserved currents to B − L, hypercharge (equivalent to
kinetic mixing), and (up to neutrino masses) Le − Lμ,
Lμ − Lτ, and Le − Lτ.

1 The small number of possibilities
highlights the need to find all experimental ways to probe
these light vectors. While most of the focus when studying
the phenomenology of new U(1) gauge symmetries has
been above the eV scale, it is interesting to study the
constraints for lighter masses, where forces are long-
ranged. For B − L, Le − Lμ, and Le − Lτ, the constraints
below this scale become extremely powerful from fifth
force tests [1–4] which constrains such forces to be weaker
than gravity once the vector mass drops belowOð10−4 eVÞ
and constraining the gauge coupling g0 ≲ 10−20 at the
lowest masses. Kinetically mixed dark photons do not
experience such constraints due to screening of the charge
between protons and electrons leading to rich phenom-
enology at low masses (see, e.g., [32] and references
therein). Interestingly, Lμ − Lτ forces also are not bound
by these constraints since the muon fraction in ordinary
matter is negligible.
For vector masses above an MeV, the strongest con-

straints on Lμ − Lτ range from beam dump experiments,
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1Relaxing the requirement of anomaly cancellation with just
the Standard Model fields greatly enlarges the possibilities but is
highly constrained from searches for flavor changing neutral
currents [29–31].
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muonic g − 2 measurements, neutrino trident processes,
and collider experiments (see, e.g., [28,33–48]). For lower
vector masses, the best published constraints on Lμ − Lτ

arise from ΔNeff through observations of big bang nucleo-
synthesis [49,50], from SN1987A [51],2 and neutrino self-
interactions [53–55] constraining g0 ≲ 10−5.3 Such searches
are inherently much weaker than searches for long range
forces as they do not scale with the size of the apparatus,
which will allow us to present constraints much stronger
than in previous work. Alternatively, if there exists a mass
mixing between the Standard Model Z boson and the new
vector, L ⊃ εZm2

ZXμZμ, it can induce a long-range force
that would have been observed in neutrino oscillations
unless εZg0 ≲ 10−52 [42]. However, since a mass mixing
can only arise after gauge symmetry breaking, it is naturally
small and is highly constrained experimentally [56].
The existence of NSs is contingent entirely on the

stability of the neutron through sufficient Pauli blocking
of the process n → pþ e− þ ν̄e [57–61]. As the neutron
density increases similar processes involving muons, rather
than electrons, become energetically favorable. This leads
to the production of a significant number of muons and
forbids their subsequent decay [62]. NSs with masses of
order a solar mass subsequently have 0.15%–0.75% of their
mass stored in muons, providing a unique laboratory to test
couplings of muons to light new degrees of freedom. This
has been leveraged to place constraints on muon-philic dark
matter due to its accretion in NSs [45,63,64].
A key feature of this muon population is their asym-

metric nature, i.e., the production of only muons and not
antimuons. Consequently, the presence of new long-range
forces coupled to muons leads to NSs acquiring large
effective charges. The coupling we are interested in
constraining is that of Lμ − Lτ,

L ⊃ g0Vαðμ̄γαμ − τ̄γατ þ ν̄μγ
ανμ − ν̄τγ

αντÞ; ð1Þ

where Vα and g0 denote the new vector and its coupling
strength. We will rely on the couplings to muons as NSs
contain negligible numbers of taus or neutrinos. Extending
the constraints we derive here to a scalar force is straight-
forward, where Oð1Þ changes are expected in the limits on
the coupling relative to the vector case.
The observation of gravitational waves (GWs) from NS-

NS/NS-BH mergers as well as timing measurements of
binary pulsars provides exquisite sensitivity to not only
these scenarios, but also many types of dark matter
candidates (see [65] and references therein). In both cases,
GWs are the dominant energy loss mechanism required to
describe the dynamics of the system. For the case of

mergers, sensitivity arises from the long observation
duration of the post-Newtonian stage of the GW signal
[5]. While for the case of binary pulsars, precise measure-
ments of the change in pulsar period yield accurate
determinations of both the relativistic corrections to the
binary orbits and the orbital decay (see, e.g., [66]).
Therefore, both of these systems are sensitive to additional
energy loss mechanisms through the emission of the light
vector, while NS mergers are also sensitive to an additional
force sourced between the muon content of the two NSs;
see Fig. 1. These effects have been studied in the context of
new long-range forces in a hidden sector [67–75]. In what
follows, we consider the impact a gauged Uð1ÞLμ−Lτ

symmetry can have on NS binaries.

II. MUONS IN NEUTRON STARS

The presence of muons in NSs arises due to chemical
equilibrium and charge neutrality maintained via the pro-
cesses n → pþ e−=μ− þ ν̄e=μ and e− → μ− þ ν̄μ þ νe,
referred to as beta equilibrium. The existence of muons
in NSs follows from estimating the Fermi energy of a
neutron gas, EF ¼ ð3π2nnÞ2=3=2mn (where mn and nn are
the nucleon mass and number density of the neutrons,
respectively). NS masses around a solar mass and radius of
10 km give typical Fermi energies of order 100 MeV,
suggesting a significant muon abundance.
In the absence of the gauged Uð1ÞLμ−Lτ

symmetry,
the muon abundance is determined purely by local chemi-
cal equilibrium between electrons and muons, namely,

μeðrÞ ¼ μμðrÞ, where μlðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ ð3π2nlðrÞÞ2=3
q

(see,

for example, Ref. [76]). Inclusion of the gauged Uð1ÞLμ−Lτ

symmetry perturbs this picture inducing an unscreened
electric field experienced by the muons. This leads to the
following integral equation for the chemical potential:

μeðrÞ ¼ μμðrÞ þ g02
Z

r

∞
dr0

1

r02

Z
r0

0

dr00r002nμðr00Þ: ð2Þ

This new potential term encompasses the additional energy
cost of producing a muon, suppressing their production in

FIG. 1. Sketch of an NS binary system showing the modifi-
cations induced by a generic muonic repulsive force and the
radiation of the force mediator. Note that the force between
the bodies is only present for the case of an NS-NS binary,
i.e., X ¼ NS.

2The robustness of the supernova bounds has recently been
called into question in [52].

3If we insist on a reheating temperature above the muon mass,
then there is a stronger bound of g0 ≲ 10−9 [47].
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the core of the NS. Given neðrÞ, one can then solve this
equation for nμðrÞ to extract the muon number of an NS.
In the limit where the potential term is negligible,
the equation can be inverted to find nμðrÞ permitting a
simple solution. This will be a good approximation when
g02Nμ=4πrNS ≪ μe, where rNS and Nμ are the radius and
the total muon number of the NS, respectively. In the
absence of an Lμ − Lτ force, Nμ is of order 1% for typical
NS parameters meaning for g0 ≳ 10−18 one can no longer
neglect the Lμ − Lτ force contribution to Eq. (2). However,
the muon abundance does not entirely disappear for larger
gauge coupling. Muons will continue to be produced in the
NS until the point at which the energy stored in the Lμ − Lτ

field becomes of order the total energy stored in the
electron gas, i.e.,Z

V
dVE2

μ ≲ Neμe ⇒ Nμ ∝ 1=g0; ð3Þ

where we have approximated the Lμ − Lτ electric field as
Eμ ∼ g0Nμ=r2, andNe is the total number of electrons in the
NS. We therefore conclude that Nμ is constant for g0 ≲
10−18 after which it then scales ∝1=g0. However, the
observables of interest depend on the total muonic charge
of the astrophysical objects, g0Nμ, which for g0 > 10−18 will
subsequently asymptote to a constant value. For the
remainder of this paper, we will focus on the case where
g0 ≲ 10−18, with a detailed derivation of the total muon
number given in Appendix A, postponing the larger gauge
coupling scenario to future work.

III. NEUTRON STAR BINARY MERGERS

A new muonic force can have a dramatic effect on NS-
NS and NS-BH binaries. In the absence of exotic forces, the
dynamics of these inspirals are determined by gravitational
attraction and emission of gravitational waves. Any new
exotic force changes the dynamics in two different ways:
(i) the Yukawa force between the muon cores can accelerate
or decelerate the merger, and (ii) the emission of the
mediator particle increases the energy loss of the system
and accelerates the merger. For concreteness, we consider a
repulsive force mediated by a vector boson and follow the
techniques advocated in [70]. In this section, we outline the
technique via which we derive our new constraints. We
postpone the detailed formulas to Appendix B.
If the muonic charges carried by the two astrophysical

objects are denoted by q1 and q2, then the Yukawa force
between them can be written as [69]

jFðrÞj ¼ GNm1m2

r2
ð1þ αe−mVrð1þmVrÞÞ; ð4Þ

where α≡ g02q1q2=ð4πGNm1m2Þ ¼ q̃1q̃2 > 0 and r
denotes the distance between the two astrophysical objects.

The masses of the NSs are denoted by m1 and m2, and the
mass of the mediator vector boson is denoted by mV. The
presence of such a new force modifies Kepler’s law and
the total energy of the system, Etot. The energy loss rate of
the system, dEtot=dt, is then determined by the energy loss
via gravitational waves, dEGW=dt, and the energy loss via
the emission of the new vector particle, dEV=dt,

dEtot

dt
¼ −

d
dt
ðEGW þ EVÞ; ð5Þ

where dEV=dt ∝ γ and γ ≡ g02ðq1=m1 − q2=m2Þ2=ð4πGNÞ
is the charge-to-mass ratio. Due to the presence of
this exotic force, both the plus and the cross polari-
zations of the GWs are affected. We analytically cal-
culate the GW amplitude and its phase to first order in
α and γ. We add post-Newtonian corrections follow-
ing [77]. To derive the upper limits on α and γ (and
therefore g0), we follow the standard Fisher information
matrix analysis [78–81]. A complete prescription is given
in Appendix B.

IV. BINARY PULSARS

Binary pulsars are a powerful probe of ultralight vectors.
In a binary system, the motion of the pulsar and its
companion are imprinted in the pulsar time-of-arrival data
as an oscillation with a period, Pb, which is typically of
OðdaysÞ. This is much larger than the pulsar period, which
is Oðmsec − 10 secÞ. While Keplerian orbits can explain
the qualitative motion of a binary pulsar system, the
precision of pulsar measurements allows the detection of
deviations from classical mechanics due to relativistic
effects.
The deviations of a binary pulsar system from

simple orbital motion can be described in terms of
post-Keplerian parameters [82,83] (see also [66] for a
review), the periastron precession, _ω, the combination of
gravitational redshift and Doppler shift, γd, as well as the
secular drop in the binary period, _Pb, typically of
Oð10−12Þ. The three parameters depend on different
combinations of the pulsar and companion masses.
Since measurements of _ω and γd typically carry a much
smaller uncertainty than _Pb, it is natural to use these to fix
the masses and use _Pb to set constraints on new physics as
advocated in Ref. [84].
For a binary pulsar system, the large muon abundance

leads to the emission of the light Lμ − Lτ vector.4 The
subsequent rate of change in the energy of a pulsar relative
to gravity is given by [84]

4In addition, there are relativistic corrections to the force
between two NSs which are prominent at slightly higher vector
masses than radiation; however, these are subdominant to
constraints from ensuring the new force does not eclipse gravity
during NS mergers.
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h _EVi
h _EGWi

¼ 5π

12
γ
gVðmV; ϵÞ
gGRðϵÞ

�
Pb

2πGNðm1 þm2Þ
�

2=3
; ð6Þ

where the elliptic correction functions for an eccentricity,
ϵ, are

gVðmV; ϵÞ≡
X
n>n0

2n2
�
J 02

n ðnϵÞ þ
1 − ϵ2

ϵ2
J 2

nðnϵÞ
�
;

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

n20
n2

r �
1þ 1

2

n20
n2

��
ð7Þ

gGRðϵÞ≡ 1þ ð73=24Þϵ2 þ ð37=96Þϵ4
ð1 − ϵ2Þ7=2 ; ð8Þ

where J n is the Bessel function of nth order and J 0
n is its

derivative, while the sum begins at n0 ¼ mVPb=2π. The
observable for each binary pulsar is the ratio of the intrinsic
change in the binary orbital period,5 Pint

b , to the prediction
from GR, PGR

b . Rewritten in terms of the energy ratios from
above yields

_PGR
b

_Pint
b

¼ 1 −
h _EVi
h _EGRi

: ð9Þ

We are now in a position to set constraints using current
pulsar systems. There are many binary pulsars which have
by now observed gravitational radiation including pulsar-
(nonpulsating) NS binaries [10,15–17,85], a pulsar-pulsar
binary [8], pulsar-white dwarf binaries [9,12–14], as well as
a pulsar-Oe-type star binary [11]. In setting limits, different
systems have different advantages. Since the energy ratio in
Eq. (6) is proportional toP2=3

b , large orbit binaries are ideal at
probing low vector masses. On the other hand, binaries can
only emit radiation efficiently if mV ≲ 2π=Pb leading to
smaller binaries becoming effective at probing larger mV.
Furthermore, we note that in order to have significant
emission, the binary must carry a dipole moment, requiring
the pulsar and its companion to have differing charge-to-
mass ratios [as is apparent from the linear dependence of
Eq. (6) on the charge-to-mass ratio]. This quantity is
maximized in pulsar-white dwarf or pulsar-visible star
binaries where the charge of the white dwarf/star is
negligible.
To set our constraints on gauged Lμ − Lτ using pulsar

binaries, we take the 2σ limit on _Pint
b = _PGR

b provided by
experiments with the parameters summarized in Fig. 5 of
Appendix C.

V. RESULTS AND DISCUSSION

The constraints on a gauged Uð1ÞLμ−Lτ
derived in

Secs. III and IV are shown in Fig. 2. The lines marked
NS-NS (NS-BH) merger show the sensitivity that could
be achieved with a dedicated LIGO/VIRGO analysis
using GW170817 (S190814bv). The sensitivity curves
in blue and black rely on dipole emission of the vector
while the green curve arises from the new force between
the two NSs. The right-hand boundaries of both these
constraints are functions of fISCO (frequency of the
innermost stable circular orbit). These boundaries lie at
different Lμ − Lτ vector masses due to the different
dependencies of the vector emission (force) on the
angular velocity (binary separation) and therefore fre-
quency of the binary. The dipole emission constraint
asymptotes to a constant value at small vector masses as
the only dependence on the vector mass arises in the step
function [see Eq. (B12) in Appendix B]. Finally, the thin
(thick) lines of a given color indicate a pessimistic
(optimistic) assumption on the muon abundance of the
NS involved in the merger (additional details are given in
Appendix A).
The constraints shown in red are obtained using

current binary pulsar data. We show the envelope of
the constraints from all pulsars as the shaded purple
region in Fig. 2, while we defer the results for individual
pulsars to Fig. 5 of Appendix C. For eccentric binaries,
the typical distance between the binaries changes sig-
nificantly across the orbit and allows vector emission
across different masses leading to the observed steplike
pattern. Given the pulsar binary separations, the dipole
radiation emission is only active for vector masses below
Oð10−18 eVÞ. The sensitivity to the gauge coupling is
weaker than the equivalent constraints from NS-NS
mergers; however, they do not require additional analysis
by LIGO and are a present constraint. As such, the binary
pulsar constraints serve as a robust alternative to LIGO’s
GW measurements.
We now consider the validity of the constraints, which

were derived assuming the muon number was unaffected
by the presence of Lμ − Lτ. As argued in Sec. II, this
approximation breaks down for g0 ≳ 10−18, at which point
Nμ ∝ 1=g0. However, both the dipole and force effects
depend on powers of the combination g0Nμ which tends
to a constant and therefore observable value for
g0 > 10−18. As the dipole emission for NS-NS binaries
depends on γ (the difference squared of the respective
bodies charge-to-mass ratios), NS-NS binaries that are
almost symmetric in charge-to-mass ratios are therefore
unobservable irrespective of the gauge coupling size. This
also explains the more pronounced difference in sensi-
tivity between the optimistic and pessimistic muon
abundances for the NS-NS dipole constraints in Fig. 2
compared to either the force constraints or the NS-BH

5Note that Pint
b is the observed value of the period drop which

requires subtraction of the effects due to galactic rotation.
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dipole constraints as only one astrophysical body con-
tains muons.

VI. CONCLUSION AND OUTLOOK

We demonstrate the discovery reach to a new muonic
force using NSs binary systems. The significant muon
abundance inside NSs leads to two new effects: (i) dipole
emission of the force mediator and (ii) an additional force
between binaries comprising of two NSs. These effects
lead to changes in the dynamics of both inspiraling NSs
and pulsar binaries. Measuring the deviation in the
gravitational waveform and the pulsar period, respec-
tively, are powerful tests of the presence of these new
forces. Based on current data and assuming a Uð1ÞLμ−Lτ

force as an example, Fig. 2 shows the discovery reach to
gauge couplings as small as Oð10−20Þ, orders of magni-
tude better than current probes.
Given the estimated sensitivity of current gravitational

wave experiments to these scenarios, we advocate for
dedicated studies using improved calculations of the
gravitational wave waveform confronted with data from
the measured NS-NS merger event GW170817. In addi-
tion, future detection of BH-NS events, such as S190814bv,
would allow for the isolation of the vector emission.
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APPENDIX A: DEPENDENCE ON NEUTRON
STAR EQUATION OF STATE

The exact muon content of a neutron star depends upon
the QCD equation of state (EOS) relating the energy
density to the pressure in the interior of the neutron star.
We base our estimates of the muon content on the most
recent Brussels-Montreal EOS [76], which is an update of
older works based on the two- and three-nucleon force
calculations of [59,76]. These EOS are all compatible with
recent limits on the tidal deformability constraints from
GW170817 [5,88]. Note, however, that two of these EOS,
BSk22 and BSk26, are disfavored due to neutron star
cooling measurements. Measurements suggest that rela-
tively few neutron stars exhibit large cooling rates asso-
ciated with the direct Urca process [89,90]. The former
EOS admits direct Urca processes for neutron star masses
in excess of 1.151 M⊙, and therefore anomalously large

FIG. 2. Current sensitivity of NS binaries to a Lμ − Lτ gauge coupling, g0, as a function of the vector mass, mV . The merger curves are
projections and require a dedicated analysis to be carried out by the LIGO Collaboration. The gray hatched regions indicate parameter
space where the light vector is constrained by BH superradiance considerations [86]. See Sec. V for the discussion of the boundaries of
these constraints.
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cooling rates in the majority of the neutron star population
[91], while the latter EOS cannot support these processes
at all which is in conflict with recent results in [92], sug-
gesting the presence of this process in the neutron star
MXB 1659-29. Nevertheless, we take the envelope (shown
in Fig. 3) of all four EOSs from [76] as a conservative
estimate of the neutron star muon content as a function of
the neutron star mass relevant for the different binary
systems we consider. Finally, we note that similar EOSs are
expected to hold for the description of rapidly rotating
neutron star pulsars, while such rotating neutron stars in
binary mergers are expected to aid in the extraction of the
underlying EOS [93].
To estimate the muon content of the relevant neutron

stars, we have utilized the fitting functions from [76]
for the relationship between the pressure and density of
the neutron star. Based on these fitting functions for the
EOS (see Eq. (C4) in [76]), the Tolman-Oppenheimer-
Volkof equations can be solved yielding a relation between
the mass and density of the neutron star as a function of the
radius. To determine the muon abundance, charge neutral-
ity is assumed

Yp ¼ Ye þ Yμ; ðA1Þ

as well as equilibrium between the muons and electrons,
resulting in chemical potentials that are the same μe ¼ μμ.
Here Yi is the abundance i ¼ p, e, μ of protons, electrons,
and muons defined as Yi ≡ ni=nwhere n is the total density
and ni is the density of the species in question. From the
chemical potential, under the assumption of degenerate
electron and muon gases as well as sufficiently small
Lμ − Lτ gauge coupling, we have

me

�
1þ ð3π2neÞ2=3

m2
e

�
1=2

¼ mμ

�
1þ ð3π2nμÞ2=3

m2
μ

�1=2
; ðA2Þ

where me and mμ are the electron and muon masses,
respectively. This yields the muon number density

nμ ¼
m3

e

3π2

�
1þ ð3π2neÞ2=3

m2
e

−
m2

μ

m2
e

�
3=2

: ðA3Þ

To evaluate this expression, we take the number density of
electrons as a function of neutron density from Eq. (C17) in
[76], allowing for the total mass of muons Mμ inside the
neutron star to be determined for the different EOSs. The
results of which are shown in Fig. 3. We observe that neutron
stars with masses greater than a solar mass have Mμ ≥
1.5 × 10−3 MNS, while a two solar mass NS would have
muon content in the range 0.7 × 10−3MNS ≥ Mμ ≥ 0.24×
10−3 MNS. For reference, we also show the two heaviest
observed neutron stars; the NS-WD binary PSR J0348þ
0432 and the millisecond pulsar J0740þ 6620 [94].

APPENDIX B: MODIFICATIONS TO THE
GRAVITATIONAL WAVEFORM

Given the force between the two astrophysical objects as
denoted by Eq. (2), one can derive the orbital frequency, ω,
of the system,

ω2 ¼ GNðm1 þm2Þ
r3

½1 − αe−mVrð1þmVrÞ�; ðB1Þ

where the negative sign before α denotes that the force
is repulsive. While writing the above equation, we neglect
the spins of the astrophysical objects and assume them
to be point objects. The orbital frequency is related to the
frequency of the gravitational waves, fGW, as fGW ¼ ω=π.
The total energy of the system can be written as

Etot ¼ −
GNm1m2

r
ð1 − αe−mVrÞ þ 1

2
μr2ω2; ðB2Þ

where μ denotes the reduced mass of the system. The
energy loss rate due to the emission of gravitational waves
can be written as

dEGW

dt
¼ 32

5
GNμ

2r4ω6: ðB3Þ

The energy loss due to the radiation of a light vector particle
can be written as

dEV

dt
¼ 2

3
γμ2ω4r2Re

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mV

ω

�
2

s �
1þ 1

2

�
mV

ω

�
2
�)

;

ðB4Þ
where γ is defined below Eq. (3).

FIG. 3. Muon content of a neutron star as a function of both the
mass and EOS. For reference, the two heaviest measured neutron
star masses from the NS-WD binary PSR J0348þ 0432 and the
millisecond pulsar J0740þ 6620 [94] are shown in purple and
gray, respectively.
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Due to the presence of this extra new force and a new
way to lose energy from the system, the gravitational wave
signature from the merger of two compact astrophysical
objects change. The two polarizations of the gravitational
waves can be written as [70]

hþðtÞ ¼ −
�
1þ cos2ι

2

�
AðtÞ cos ð2ϕc þ 2ϕðt − tcÞÞ;

h×ðtÞ ¼ −ðcos ιÞAðtÞ sin ð2ϕc þ 2ϕðt − tcÞÞ: ðB5Þ

The inclination angle is denoted by ι, and the time and
phase of the system at coalescence is denoted by tc and ϕc.
The orbital phase of the system is denoted by ϕ and we will
mention how to calculate it later. The amplitude of the
signal is denoted by AðtÞ where

AðtÞ ¼ 4GN

DL
μω2ðtÞr2ðtÞ; ðB6Þ

where the luminosity distance to the source is denoted by
DL. Given the detector responses, Fþ and F×, the strain
detected by the detector is given by

hðtÞ ¼ Fþhþðtþ tc − t0Þ þ F×h×ðtþ tc − t0Þ; ðB7Þ

¼ −Aðtþ tc − t0Þ

×

��
1þ cos2ι

2

�
Fþ cos zþ ðcos ιÞF× sin z

�
; ðB8Þ

where z ¼ 2ðϕc þ ϕðt − t0ÞÞ and the time in the detector
frame when the coalescence is detected is given by t0.
Defining Deff and ϕ0 such that

Deff ¼ DL

�
F2þ

�
1þ cos2ι

2

�
2

þ F2
×cos2ι

�−1=2
;

ϕ0 ¼ ϕc − arctan

�
2 cos ι

1þ cos2ι
F×

Fþ

�
; ðB9Þ

we can write the strain as

hðtÞ ¼ −
4μ

Deff
ω2r2 cos ½2ϕ0 þ 2ϕðt − t0;m; ηÞ�: ðB10Þ

In order to determine the upper limits on the parameters
α and γ from current observations, we need to determine the
Fourier transform of hðtÞ. Using the stationary phase
approximation and restricting our calculations to first order
in α and γ, we get [70]

h̃ðfÞ ¼ −
ffiffiffiffiffiffi
5π

24

r
G5=6

N
M2

Deff
ðπMfÞ−7=6

�
APN −

α

3
CðxÞ − 5γ

96
ðπGNmfÞ−2=3Θ

�
πf
mV

− 1

��
e−iΨ; ðB11Þ

Ψ≡ 2πft0 − 2ϕ0 −
π

4
þ 3

128
ðπGNMfÞ−5=3

�
20α

3
F3ðxÞ −

5γ

84
ðπGNmfÞ−2=3Θ

�
πf
mV

− 1

��
þΨPN; ðB12Þ

where x≡ G1=3
N mmVðπmfÞ−2=3, m≡m1 þm2 is the reduced mass, and the chirp mass is denoted by

M ¼ μ3=5ðm1 þm2Þ2=5. The functions F3ðxÞ and CðxÞ is defined as

F3ðxÞ ¼
�
180þ 180xþ 69x2 þ 16x3 þ 2x4

x4

�
e−x þ 21

ffiffiffi
π

p
2x5=2

erfð ffiffiffi
x

p Þ; ðB13Þ

CðxÞ ¼ ð1þ x − 2x2Þe−x; ðB14Þ

where the error function is denoted by erfðxÞ. Finally, the
PN corrections from the gravity-only contribution take the
form

ΨPN ¼
X4
n¼0

3

128ηðπGNmfÞ5=3 φnðπGNmfÞn=3; ðB15Þ

APN ¼
X4
n¼0

AnðπGNmfÞn=3; ðB16Þ

where η≡m1m2=m2 is the symmetric mass ratio and the
coefficients of the sum are given in [77]. We do not include

corrections with n > 4 as these additional terms do not
significantly alter the presented results.
In order to determine the upper limit on the new physics

parameters, α and γ, we follow the Fisher information
matrix analysis [78–81]. We denote the dimensionless spin
parameters of the two astrophysical objects by χ1 and χ2.
We define the symmetric and antisymmetric dimensionless
spin parameter as χs ¼ ðχ1 þ χ2Þ=2 and χa ¼ ðχ1 − χ2Þ=2,
respectively. For the Fisher information matrix, we take the
underlying parameters to be

θ ¼ flogA; tc;ϕc; logMc; log η; χs; χa;α; γg: ðB17Þ

PROBING MUONIC FORCES WITH NEUTRON STAR BINARIES PHYS. REV. D 102, 023005 (2020)

023005-7



Using these nine parameters, we can construct the
9 × 9 Fisher information matrix Γ whose components
are given by

Γab ≡
� ∂h
∂θa

				 ∂h∂θb
�
; ðB18Þ

where a and b run from 1 to 9. The nine parameters,
defined in Eq. (B17), are denoted by θa;b. The inner product
is defined as

ðh1jh2Þ≡ 4 Re
Z

fhigh

flow

h̃1h̃
�
2

Snðf0Þ
df0: ðB19Þ

We choose flow following [70] and fhigh ¼ fISCO, where
fISCO denotes the frequency of the innermost stable
circular orbit [69]. Finally, SnðfÞ denotes the spectral
noise density of various gravitational wave detectors that
we use in our analysis. We use analytical forms of SnðfÞ
as given in Ref. [70] for the aLIGO and Einstein
telescope (ET) sensitivity curves. The signal-to-noise
ratio, ρ, is given by

ρ≡ ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
: ðB20Þ

We define the covariance matrix, Σ≡ Γ−1. The root-
mean-squared error, that can be determined from an
observation, for a given parameter θa is given by the
square root of the ða; aÞ component of Σ. The same
expression also gives the 1σ upper limits on the new
physics parameters, α and γ,

θanew ≤
ffiffiffiffiffiffiffi
Σaa

p
; ðB21Þ

where θanew denotes α and γ.
For the extraction of the 1σ upper limits, we have

chosen the parameter values to mimic the observed
GW170817 event assuming slowly spinning neutron
stars. This corresponds to the choices m1 ¼ 1.46 M⊙,
m2 ¼ 1.27 M⊙ with χ1 ¼ 0.01 and χ2 ¼ 0.02. While for
the effective luminosity distance, we use Deff ¼ 40 Mpc.
In the left-hand panel of Fig. 4, we show the resulting
sensitivity curves for both aLIGO (solid lines) as well as
the next generation ground-based experiment ET (dashed
lines). In much of the parameter space, ET will improve
sensitivity in g0 by at least an order of magnitude. We
note that the sensitivity curve and therefore resulting
sensitivity for Cosmic Explorer is parametrically similar
to ET. In the right-hand panel of Fig. 4, we also show the
projected sensitivity in the case of the observation of an
NS-BH binary merger. Here we assume that m1 ¼
MBH ¼ 5 M⊙ and m2 ¼ MNS ¼ 1.46 M⊙, again assum-
ing small spins of both compact objects (χ1 ¼ 0.01 and
χ2 ¼ 0.02). This type of merger is particularly sensitive
as the charge-to-mass ratio is maximized given that BHs
carry zero charge under Uð1ÞLμ−Lτ

. Subsequently, the
constraints are also less sensitive to the uncertainty in the
muon content of the neutron star.

APPENDIX C: PULSAR BINARY DATA

The data used to set the binary pulsar constraints is
shown in Fig. 5 (left). For a given binary, the necessary

FIG. 4. Constraints on the gauge coupling g0 as a function of the vector mass mV for a gauged Lμ − Lτ symmetry. The regions above
the curves indicate the projected parameter space where the presence of the light vector would lead to deviations incompatible with
current measurements (solid lines) and future measurements (dashed and dot-dashed lines). Left: projected constraints for an NS-NS
event similar to GW170817. Right: projected constraint assuming the observation of an NS-BH merger at a similar luminosity distance
to GW170817.
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parameters are the binary period, the change in the period
relative to that predicted by gravity, the eccentricity, and
the masses. We use the neutron star equation of state to
compute the muon abundances of the neutron stars as

described in the text. In Fig. 5 (right), we show the
constraints from individual pulsar systems with optimistic
and pessimistic assumptions on the muon abundance as
described in Appendix A.
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