

Design and test of the <u>electron Feature EX</u>tractor (eFEX) pre-production module for the ATLAS Phase-I Upgrade

Weiming Qian On behalf of the ATLAS Collaboration

Outline

> Introduction:

ice & Technology

- ATLAS Phase-I Upgrade
- > Architecture:
 - ATLAS Level-1 Calorimeter Trigger at Phase-1
- Electron Feature Extractor (eFEX):
 - Algorithms
 - Pre-production board design
 - Firmware design and integration test
- > Summary

Introduction

- ATLAS Phase-I upgrade
 - LHC luminosity $\rightarrow 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - Event pile-up μ =80
 - But Level-1 trigger constraints remain:
 - Total trigger rate \leq 100kHz
 - · Latency $\leq 2.5 \mu s$
- Strategy for Level-1 Calorimeter Trigger
 - Use higher granularity data from calorimeter
 - $\cdot \rightarrow$ Multi-Gb/s serial links
 - More complex algorithms, e.g.
 - Shower-shape information
 - Event-wide information
 - Large-radius jets

ATLAS Level-1 Calorimeter Trigger

Legacy & Phase-1 systems to run in parallel during commissioning in 2021

ATLAS Level-1 Calorimeter Trigger

Legacy & Phase-1 systems to run in parallel during commissioning in 2021

New Hardware Level-1 Trigger Modules

Fibre Optical eXchange (FOX)

Tile Read Extension board(TREX)

HUB-ROD

Science & Technology Facilities Council

electron Feature EXtractor (eFEX)

FEX Test Module (FTM)

global Feature EXtractor (gFEX)

Jet Feature Extractor (FEX)

Focus of this talk

eFEX Algorithms

- \blacktriangleright *e*/ γ algorithms well defined
 - Shower-shape & isolation distinguish e/ γ hits from dominant jet background

 ϕ

e/γ seed finder

Calorimeter Cells

η

Comparison Table

X = comparison

0 = non-adjacent comparison to choose between 2 local maxima ud = comparison to find highest-energy neighbour in ϕ

- > The seed finder searches for local maxima
- > All 36 comparisons are done in parallel
 - In case of same value
 - \cdot top wins over bottom and left wins over right

e/γ algorithm f/w implementation

For single 3x3 algorithm window

Each shower-shape algorithm resolved to 2 adders + multiplier + comparators

e/γ algorithm performance

- EM trigger rate reduced by a factor of ~3, or
- The threshold lowered by ~7GeV
 - Compared at reference points of 20KHz

eFEX subsystem partitioning

- > 24 eFEX modules in total covering $|\eta| \le 2.5$
 - 3 eFEX modules cover a η -strip
- Each eFEX module
 - Produces trigger candidates for area $\leq 1.7(\eta) \times 0.8(\phi)$
 - Which requires data from area of $1.8(\eta) \times 1.0(\phi)$
 - · (as algorithms examine neighbouring cells)

ATLAS calorimeter

ence & Technology lities Council

Area for which trigger candidates are produced
Area of data examined by algorithms
Extra area in LAr + Tile carried within fibres, but not used by algorithms
Extra area in Tile carried within fibres, but not used by algorithms

eFEX Module

> ATCA form factor

nce & Technology

- 4 Xilinx Virtex-7 FPGAs (XC7VX550T) algorithm
- 1 Xilinx Virtex-7 FPGA (XC7VX330T) control + readout
- 156 optical inputs @11.2G (13 MiniPODs)
- 48 optical outputs @11.2G (4 MiniPODs)
- 100 on-board high-speed fan-out buffers
 - $\cdot\,$ Algorithm environment data-sharing
- 450 differential track-pairs @11.2G
- 14 electrical links @ 6.4G
 - $\cdot\,$ TTC and Readout over ATCA backplane
- Final Design Review successful (Dec 2017)
 - Major functions demonstrated successfully
 - Prototype eFEX module power ~300W
- Pre-production eFEX module designed and manufactured

eFEX PCB design method

eFEX Signal Integrity simulation

Single channel simulation and optimization flow for 10G+

eFEX Power Integrity simulation

High-current power plane optimization

- Increase copper weight on power planes
- Optimise DC-DC placement and breakout area

prototype VMGTAVCC Power Plane (½ oz.)

ce & Technology

eFEX Power Integrity simulation

- Power plane split optimization
 - Repartition the power plane

eFEX PCB TDR test

- eFEX PCB has embedded coupon
 - Check PCB impedance before assembly
 - eFEX pre-production PCB impedance are within spec
 - Taking into account measurement error (a few Ω)

eFEX high-speed link tests

- > LAr Trigger prOcessing Mezzanine(LATOME) \rightarrow FOX \rightarrow eFEX
 - optical input to eFEX@11.2G
- \succ eFEX ← → FTM

ience & Technology cilities Council

- optical in put/output @ 11.2G
- electrical input/output @ 6.4G via ATCA BP
- \succ eFEX → L1Topo
 - Optical output @ 11.2G
- \succ eFEX ← → HUB-ROD
 - electrical input/output @ 6.4G via ATCA BP

TWEPP2019, Santiago Spain

eFEX link test results

➢ BER < 10⁻¹⁴

Science & Technology Facilities Council

- Very good margin

Open Area of Eye Scans @ 11.2 Gbps on eFEX

Typical eye diagram on L1Topo Ultrascale+ FPGA

16 x EMB/EMEC (A-side

Stat ★ State ★

Optical attenuation link tests

16 x EMB/EMEC (C-side)

- Complex Fibre Optical eXchange (FOX)
 - Between LATOME/TREX and FEXes
 - · Mapping validated with eFEX
 - Many optical connections
 - Optical attenuation up to 5dB

Optical attenuation tests

Optical attenuation test results

- Link optical power margin ~7dB
 - No error observed with 7dB attenuator
 - BER < 10^{-13} (30-minute tests)
 - Errors observed with 10dB attenuator
 - BER limited to ~ 10⁻¹²

eFEX IPBus and DCS (Detector Control System)

- IPBus firmware implemented in FPGAs
 - Soak test very reliable
 - · No packet lost under normal operation
- CERN IPMC (Intelligent Platform Management Card for ATCA module)
 - ATCA shelf address setting
 - V/I/T monitoring for DCS

[atlun01] ~/ipmc % ipmitool -I lan -H shelf1.pp.rl.ac.uk -A NONE -t 0x8a sensor						
Hot Swap	0x0	discrete	0x1080	na	na	na
IPMB Physical	0x88	discrete	0x0880	na	na	na
Version change	0x0	discrete	0x0080	na	na	na
Internal temp.	29.000	degrees C	ok	na	na	na
LM82 internal	28.000	degrees C	ok	na	na	na
LM82 FPGA temp	49.000	degrees C	ok	na	na	na
QBDW033 Vinput	48.250	Volts	ok	na	40.000	na
QBDW033 Voutput	11.640	Volts	ok	na	1.112	na
QBDW033 Ioutput	7.568	Amps	ok	na	na	na
QBDW033 temp	40.485	degrees C	ok	na	na	na
MDT040 Vinput	11.983	Volts	ok	na	5.039	na
MDT040 Ioutput	1.892	Amps	ok	na	na	na
MDT041 Vinput	12.045	Volts	ok	na	4.543	na
MDT041 Ioutput	1.902	Amps	ok	na	na	na

Ele Edit Mindows Help Screendip Main Window Address MemSize DataValue Image: Streen CFPGA 0 1 0 1 Image: Streen CFPGA 0 1 0 1 Image: Streen CFPGA 0 1 1 45 Image: Streen CFPGA 0 1 1 45 Image: Streen CFPGA 0 1 1 45 Image: Streen CFPGA 1 1 45 1 6 Image: Streen CFPGA 2 1 5 1 0 1 6 Image: Streen CFPGA 2 1 5 1 0 1 6 6 6 6 6 6 7 0 1 1 4 1 6 6 7 0 1 1 4 1 6 6 7 0 1 1 4 1 6 6 0 1 1
Serendip Main Window Node Address MemSize DataValue EFEX0-CFPGA 0 1
Node Address MemSize DataValue
EFEXO-CFPGA 0 1 ← MOdUle JD 0 1 ← MVJD 0 1 ← FPGA_DD 2 1 ← FPGA_DD 2 1 ← FPGA_DD 2 1 ← FW_Tag 4 1 FW Mev 3 1 Module_Status 8 1 Module_Control a 1 Module_Status 8 1 1 0 1 0 1 0

na	na
na	na
na	na
60.000	80.000
60.000	80.000
80.000	80.000
55.000	na
16.152	na
9.998	na
50.191	53.145
14.029	na
2.500	na
14.029	na
2.500	na
	na na na 60.000 60.000 80.000 55.000 16.152 9.998 50.191 14.029 2.500 14.029 2.500

ce & Technology

eFEX MGT clock domain

- FEX real-time path requires minimum and deterministic latency
 - No Virtex-7 MGT internal elastic buffers
 - Each MGT QUAD uses GT0_RXOUTCLK to drive its fabric user clocks
 - \cdot Resulting in too many clock domains in a single processor FPGA
- > New MGT clocking scheme in eFEX processor FPGA
 - Single MMCM_clk280 to drive the fabric user clocks for all MGTs
 - eFEX and upstream/downstream modules are running off the same clock
 - It works with following reset sequence

Science & Technology Facilities Council

TWEPP2019, Santiago Spain

eFEX scheme

eFEX real-time f/w

- Critical parts done and well tested
- Real-time latency measured with FTM
 - \cdot (512-377)/7 4 (20m fibre) 2.4 (FTM MGT) = 12.89 BCs
 - eFEX latency budget: 13.5 BCs

000003c

00000bc

FTM Tx packet starts

ILA Status: Idle

U. [3] Ա[2] կ [1]

🐳 mgt_sink_data_prereg[1][data][31:0]

🖬 mot source data reod[1][data][31 Mot_source_data_regd[1][ctrl][3:0

Name

Science & Technology Facilities Council

eFEX TOB packet arrives

eFEX readout f/w

eFEX readout f/w

Segments of readout chain tested successfully

eFEX f/w management

- > eFEX firmware repository is stored on Gitlab
- A collaborative HDL management tool
 - A set of TCL (Tool Command Language) scripts manage firmware repository
 - A Gitlab Continuous Integration script automatically synthesizes and implements HDL projects when a Git Merge Request is opened

https://indico.cern.ch/event/697988/contributions/3055928/attachments/1716495/2769398/gonnella-TWEPP2018.pdf

https://pos.sissa.it/343/142/

eFEX pFPGA utilization

- Processor FPGA utilization
 - Fabric logic utilization < 50%
 - · Comfortable spare capacity

Summary

- > The eFEX is a complex high-density high-speed module.
- The prototype has been tested extensively with very good results.
- Many optimizations, e.g. in power distribution, have been made for the pre-production design.
- > The firmware design for eFEX is well advanced.
- eFEX firmware development is well managed and coordinated with custom tools.
- FEX is well positioned to take part in the oncoming Calorimeter-Trigger slice test.

nce & Technology

Backup

Tau algorithm - seeding

- Needs to prevent double counting
- > Most studies assume the same seeding as e/γ
 - Layer 2 supercell = ET maximum
 - 1 seed per tower
- Efficient for Tau, but two drawbacks
 - Insensitive to potential long-lived particles
 - One tau can produce multiple seeds
- Could address both by requiring central tower (EM+Had) = ET maximum
 - Some algorithms will still require most energetic cell in central tower to be identified

nce & Technology

Tau algorithm - cluster

- Many cluster definitions
 - Performance comparable to Run 2
 - Generally larger clusters give sharper turn-on
 - Try to find smaller cluster with comparable performance
 - · Potentially less pileup sensitivity
 - Complexity of implementation

ice & Technology

Tau algorithm - jet rejection

- > Width of deposit is main jet discriminant
 - Preliminary studies focus on layer 2
 - Layer 1 also offers fine granularity
 - Mainly R_{η} -like variables
 - \cdot Ratio of ET in small/large regions
 - ► TDR isolation (from TDR)
 - EM2(3 × 2) / EM2(9 × 3)
 - Oregon isolation (from Oregon group)
 - EM2(3×2) / EM2(12×3)
 - Nagoya isolation
 - EM2(1 \times 2 or 2 \times 1) / EM2(12 \times 3)

- Results so far comparable to Run 2 rejection (which is to say not spectacular)
 - $\cdot~$ ~15% rate reduction for ~5% efficiency loss

nce & Technology ties Council

eFEX PCB

eFEX preproduction module

