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Abstract We compute the next-to-next-to-leading or-

der (NNLO) QCD corrections to event shape distribu-

tions and their mean values in deep inelastic lepton-

nucleon scattering. The magnitude and shape of the

corrections varies considerably between different vari-

ables. The corrections reduce the renormalization and

factorization scale uncertainty of the predictions. Using

a dispersive model to describe non-perturbative power

corrections, we compare the NNLO QCD predictions

with data from the H1 and ZEUS experiments. The

newly derived corrections improve the theory descrip-

tion of the distributions and of their mean values.

1 Introduction

Event shape variables allow various kinematical prop-
erties of hadronic final states to be analysed. The re-

sulting event shape distributions were measured exten-

sively in e+e− [1] and ep [2] collisions, enabling a variety

of precision QCD studies, including measurements of

the strong coupling constant, resummation and parton-

shower effects, investigations of non-perturbative power

corrections, and tuning of multi-purpose event simula-

tion models.

Precision studies of event shapes distributions de-

mand that their theoretical description is of comparable

accuracy to the experimental measurements, requiring

the calculation of higher order contributions in pertur-

bative QCD. For e+e− event shapes, an appropriate

level of theory precision was achieved already some time

ago with the calculation of the next-to-next-to-leading

order (NNLO) QCD corrections [3–9] in the form of

generic parton-level event generators that allow any

infrared-safe event shape distribution to be computed.

These fixed-order NNLO results can be combined with

resummation of large logarithmic corrections to next-

to-next-to-leading logarithmic level (NNLL) and be-

yond for specific event shape variables [10–15].

For event shapes in deeply inelastic ep scattering

(DIS), the currently available level of theoretical accu-

racy is lower, with fixed-order results only known to

next-to-leading order (NLO) [16–18] and resummation

at next-to-leading logarithmic level (NLL) [19–22]. The

theory uncertainty (as quantified through variation of

the renormalization and factorization scales) on these

predictions is often comparable to or larger than the

experimental errors on the event shape measurements

from H1 [23] and ZEUS [24], thereby limiting the ex-

traction of fundamental QCD parameters from these

data. To overcome this limitation requires an improve-

ment of the fixed-order predictions to NNLO, which is

presented in the following.

This paper is structured as follows. In Section 2,
we summarise the definitions of the most common DIS

event shape variables, and the kinematical ranges cov-

ered by the H1 [23] and ZEUS [24] measurements. The

calculation of NNLO corrections to event shape distri-

butions is performed in the NNLOJET framework [25]

and follows closely the related NNLO calculations of

jet production in DIS [26, 27] and is documented in

Section 3. To compare the resulting parton-level NNLO

predictions with experimental hadron-level data, we em-

ploy a dispersive model [28–30], described in Section 4,

determining the non-perturbative power corrections to

the event shape distributions. We perform detailed com-

parisons of the hadron-level predictions to event shape

data from H1 and ZEUS in Section 5. Our findings are

summarized in Section 6.
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2 Event shape variables

Event shapes in DIS are measured in the Breit frame,

defined by the momentum directions of the virtual pho-

ton (current axis) and the proton (remnant axis), and

boosted such that the energy component of the virtual

photon momentum vanishes. The Breit frame provides

a separation in pseudorapidity η between the proton

remnant (remnant hemisphere, η > 0) and the hard

scattering process (current hemisphere, η < 0). The

event shape variables are dimensionless quantities that

are determined from the four-momenta ph = (Eh,ph)

of all particles in the current hemisphere. The different

variables [22], which are generically denoted as F , are

defined as follows.

The thrust τγ measures the longitudinal momentum

components projected onto the current axis:

τγ = 1− Tγ , with Tγ =

∑
h |pz,h|∑
h |ph|

. (1)

Thrust τT is the thrust with respect to the thrust

axis in the direction nT which maximizes the longitu-

dinal momentum components projected onto this axis:

τT = 1− TT , with TT = max
nT

∑
h |ph · nT |∑
h |ph|

. (2)

This is analogous to the definition of thrust in e+e−

collisions.

The jet mass parameter ρ is the squared invari-

ant mass in the current hemisphere, normalized to four

times the total energy squared:

ρ =
(
∑
h ph)2

(2
∑
hEh)2

. (3)

The jet broadening Bγ measures the sum of the

transverse momenta with respect to the current axis:

Bγ =

∑
h |pt,h|

2
∑
h |ph|

. (4)

As with thrust, the jet broadening can also be de-

fined with respect to the thrust axis:

BT =

∑
h |ph × nT |
2
∑
h |ph|

. (5)

Finally, the C-parameter is derived from the linear

momentum tensor Θij :

Θij =
1∑
h |ph|

∑
h

pihp
j
h

|ph|
. (6)

with the eigenvalues λ1, λ2, λ3 of Θij yielding

C = 3(λ1λ2 + λ2λ3 + λ3λ1) . (7)

Equivalently, it can be expressed as

C =
3

2

∑
h,h′ |ph||ph′ | sin2 θhh′

(
∑
h |ph|)2

, (8)

where θhh′ is the angle between particles h and h′.

In the experimental analysis, the event shapes are

computed from the hadron momenta in the current

hemisphere, while the theoretical calculation uses the

parton momenta. For the Born-level contribution to

inclusive DIS, lepton-quark scattering, only the final

state quark is produced in the current hemisphere, with

thrust axis and current axis coinciding. Consequently,

all event shape variables defined above become triv-

ially zero. The first non-trivial contribution to the event

shape distributions arises from two-parton final states:

eq → eqg or eg → eqq̄, such that the leading-order (LO)

perturbative contribution is O(αs). The event shape

distributions are thus closely related to DIS two-jet pro-

duction in the Breit frame.

In higher-multiplicity final states, it is possible that

all partons scatter into the remnant hemisphere, leav-

ing the current hemisphere empty. To ensure infrared

safety of the observables, these events are not accepted

by demanding that the total energy in the current hemi-

sphere of an event exceeds some minimum value εlim∑
h

Eh > εlim . (9)

Event shapes in deep inelastic scattering have been

measured at HERA by the H1 [23] and ZEUS [24] exper-

iments, based on the analysis of electron-proton scat-

tering data taken at a centre-of-mass energy of
√
s =

319 GeV (the H1 data set also contains a small fraction

of data taken at
√
s = 301 GeV). The DIS kinematics

in the process e(k) + p(p) → e(k′) + X(pX), with mo-

mentum transfer q = k′−k is described by the variables

Q2 = −q2, x = Q2/(2q · p) and y = Q2/(xs).

The H1 analysis [23] selects events with

0.1 < y < 0.7 , 196 GeV2 < Q2 < 40000 GeV2 , (10)

which are then classified into bins in Q =
√
Q2, as

listed in Table 1. For the event shape determination,

εlim = Q/10 is used.

The ZEUS analysis [24] covers the kinematic range

0.0024 < x < 0.6 , 0.04 < y < 0.9 ,

80 GeV2 < Q2 < 20480 GeV2 , (11)

with events binned into in (Q2, x), described in Table 2.

The energy cut in the current hemisphere used by ZEUS

is εlim = Q/4.

Both experiments normalize the event shape distri-

butions to the DIS cross section integrated over the

kinematical bin under consideration, which is deter-

mined without applying the εlim cut.
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Bin Q(GeV)

1 14 – 16
2 16 – 20
3 20 – 30
4 30 – 50
5 50 – 70
6 70 – 100
7 100 – 200

Table 1 Kinematic boundaries of the bins in Q2 in the H1
analysis [23].

Bin Q(GeV) x

1 80 – 160 0.0024 – 0.010
2 160 – 320 0.0024 – 0.010
3 320 – 640 0.01 – 0.05
4 640 – 1280 0.01 – 0.05
5 1280 – 2560 0.025 – 0.150
6 2560 – 5120 0.05 – 0.25
7 5120 – 10240 0.06 – 0.40
8 10240 – 20480 0.10 – 0.60

Table 2 Kinematic boundaries of the bins in Q2 and x in the
ZEUS analysis [24].

Both experiments performed measurements [23, 24]

of the event shape distributions for F = τγ , τT , ρ, Bγ ,

C. In addition, they also measured the mean values 〈F 〉
for these variables, supplemented in the ZEUS study

by a measurement of the mean value 〈BT 〉 of the jet

broadening with respect to the thrust axis. The mea-

surements of the mean values are done for the same

kinematical bins, Tables 1–2, as used for the distribu-

tions.

3 QCD corrections to event shapes

The event shape variables defined above assume non-

trivial values only for final states containing two or more

partons. Consequently, the event shape distributions in

DIS receive the same parton-level contributions as two-

jet production in DIS. Higher-order QCD corrections

to event shape distributions can thus be obtained from

the corresponding calculation for di-jet production by

replacing the jet reconstruction algorithm by computa-

tions of the event shape variables.

We calculate the differential distributions and mean

values for the DIS event shapes with the parton-level

Monte Carlo event generator NNLOJET, by extending

the existing calculation of NNLO corrections to di-jet

production in DIS [26, 27]. It combines the contribu-

tions from four-parton production at tree-level [31–33],

three-parton production at one loop [34–37] and two-

parton production at two loops [38–41], using the an-

tenna subtraction method [42–44] to isolate infrared

singular terms from the different contributions, which

are then combined to yield numerically finite predic-

tions for arbitrary infrared-safe observables constructed

from the parton momenta. Besides for di-jet production

at NNLO, the same ingredients and setup have been

used previously in the computation of N3LO corrections

to single jet production in DIS [45], in extractions of the

strong coupling constant from DIS jet data [46,47], and

in studies of diffractive di-jet production [48]. The cal-

culations have also been extended to jet production in

charged current DIS [49, 50] at the same perturbative

orders.

We compute the event shapes for electron-proton

collisions with
√
s = 319 GeV, using the NNPDF3.1

parton distributions with αs(MZ) = 0.118 and forNF =

5 massless quark flavours. Central renormalization and

factorization scales are fixed to µF = µR = Q, and the-

ory uncertainties are estimated by the envelope of vary-

ing these scales independently by a factor two up and

down, avoiding the pairings of variations in opposite

directions (seven-point scale variation). Event selection

cuts on the lepton variables and on
∑
hEh are applied

according to the H1 [23] and ZEUS [24] analyses, and

events are then classified into the different kinematical

bins of Tables 1 and 2. The total hadronic DIS cross

section for each kinematical bin (required for the nor-

malization of the event shape distributions and mean

values) is obtained to NNLO from NNLOJET, based on

the one-jet calculation to this order [45]. Central renor-

malization and factorization scales are used for the nor-

malization.

3.1 Event shape distributions

The event shape distributions are computed as histo-

grams in the event shape variables. We use a consider-

ably finer bin resolution than in the experimental anal-

yses [23, 24], which will subsequently allow us to ap-

ply hadronization corrections that result in a dynami-

cal shift of the event shape variables. The histograms

are defined in terms of variable ranges and number of

equal-sized bins:

τγ : [0, 1], 100 ,

τT : [0, 0.5], 100 ,

ρ : [0, 0.25], 80(H1)/100(ZEUS) ,

Bγ : [0, 0.5], 100 ,

C : [0, 1], 100 . (12)

The fixed-order calculation for an event shape F

diverges in the limit F → 0, where all-orders resum-

mation of large log(F )-terms is required. In this limit,

the fixed-order expressions become meaningless, and we



4

10 2

10 1

100

101

1 H
d dF

s = 319 GeV, H1
NNPDF 3.1 

= Q
Q : 30 50 GeV

NNLOJET

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

10 2

10 1

100

101

102
LO
NLO
NNLO

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

10 2

10 1

100

101

1 H
d dF

0.0 0.2 0.4 0.6 0.8 1.0
C

0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

10 2

10 1

100

101

102

0.0 0.1 0.2 0.3 0.4 0.5
T

0.5

1.0

1.5

10 2

10 1

100

101

102

1 H
d dF

0.0 0.1 0.2 0.3 0.4 0.5
B

0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

Fig. 1 Fixed-order predictions for the event shape distribu-
tion for H1 kinematics [23] in Q = 30 − 50 GeV bin: LO
(green), NLO (blue) and NNLO (red), for H1 kinematics [23].
The lower frames display the ratio to the NLO predictions for
the central scale µ2 = Q2.

accordingly apply cuts on the minimum values of each

shape variable, which set the first few bins of the dis-

tributions to zero:

τγ ≥ τ cut
γ = 0.05 ,

τT ≥ τ cut
T = 0.025 ,

ρ ≥ ρcut = 0.01 ,

Bγ ≥ Bcut
γ = 0.05 ,

C ≥ Ccut = 0.05 . (13)

These cuts are typically within the first bin of the ex-

perimental analysis, which should anyhow be discarded

in the comparison of fixed-order theory and experimen-

tal data.

Figure 1 displays the fixed-order predictions (re-

binned from the initial histograms by combining four

adjacent bins each) for the H1 kinematics in the Q =

30−50 GeV bin. Since the qualitative behaviour of the

higher-order corrections to the distributions is similar

for all kinematical bins, we show the fixed-order distri-

butions without power corrections only for one repre-

sentative bin. The quantitative size of the corrections

and of their uncertainties decreases with increasing Q,

mainly due to the decrease in the running coupling con-

stant αs.

In general, we observe that the NNLO corrections

in the bulk of all distributions are typically positive

(up to +20%), often displaying only a marginal or no

overlap of the uncertainty bands at NLO and NNLO.

The scale uncertainty decreases from NLO (∼10%) to

NNLO (∼5%). Even in the bulk, the higher-order cor-

rections are not uniform between the distributions, each

displaying a non-trivial shape in the NNLO/NLO ratio.

Towards the kinematical edges F → 0 and F →
Fmax, the higher-order corrections behave differently for

each distribution, often displaying large effects well be-

yond the scale uncertainty estimates. For F → Fmax,

these features are caused by two different but related

issues. For some of the shape variables, Fmax can not

yet be realised in the Born process, owing to its low

multiplicity. This is the case for the C-parameter which

has a Born-level upper limit of 3/4 and for τT with an

upper limit of 0.293. Higher order real radiation correc-

tions allow to attain larger values of F , thereby result-

ing in a kinematical mismatch between real and virtual

contributions (Sudakov shoulder, [51]), which (although

finite) produces large perturbative corrections in the

vicinity of the Born-level kinematical limit.

In the case of DIS event shape variables, the kine-

matical constraints of the Born process produce further

structures that narrow down the dimensionality of the

final state phase space for specific values of different

variables. These ridges in the multi-dimensional phase

space were investigated in detail in [21] and produce

kinks and spikes in the one-dimensional event shape

distributions. These are sometimes already present at

leading order, and go along with large and unstable

higher order corrections in the immediate vicinity of

the exceptional points, which are visible in particular

in the distributions in C and τT in Figure 1. These

features are typically localised in small patches of the

phase space. For sufficiently large bin sizes, their impact

is diluted to an invisible level. High-resolution measure-

ments of event shape distributions, for example at a fu-

ture electron-ion collider [52] or at the LHeC [53] will

be able to resolve these features, thereby potentially ne-

cessitating resummation of large corrections associated

with them.

At low values of F , the fixed-order predictions con-

tain logarithmic terms logF at each order in perturba-

tion theory, which spoil the convergence of the fixed-
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Fig. 2 Fixed-order predictions for the mean value of the event
shapes at LO (green), NLO (blue) and NNLO (red) compared
to H1 data [23].

order perturbative expansion. In Figure 1, the onset of

these effects is visible in particular in the Bγ distri-

bution, while its onset takes place only at lower val-

ues of F in all other distributions. A description of

the event shape distributions over the full kinematical

range, and extending towards lower values of F than

probed by currently available measurements [23,24] will

need to include the resummation of these logF terms,

which is currently known to next-to-leading logarithmic

level [19–22] for all distributions.

3.2 Mean values

The mean values of the different event shapes variables

are computed using NNLOJET by weighting each event

with the reconstructed value of the event shape vari-

able under consideration. The phase space integrations

are performed by imposing only a very low technical

cut-off of Fmin = 0.001 on the event shape variables,

since the weighting with the shape variable regulates

the divergent behaviour of the integrals for F → 0, ren-
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Fig. 3 Fixed-order predictions for the mean value of the event
shapes at LO (green), NLO (blue) and NNLO (red) compared
to ZEUS data [24].

dering the mean value integrals finite. The mean values

are also normalized to the inclusive hadronic cross sec-

tions.

The fixed-order predictions for the mean values are

displayed in Figures 2–3, for the H1 [23]and ZEUS [24]

kinematics. With the exception of the broadenings 〈Bγ〉
and 〈BT 〉, the NNLO corrections to the mean values are

positive for all event shapes, and decrease in magnitude

with increasing Q2. The NNLO predictions are often

at the upper boundary of the NLO theory uncertainty

band, for the lowest Q2 bins they are even outside the

NLO band. For the broadenings, the NNLO corrections

to 〈Bγ〉 are positive at low Q2, and become negative at

large Q2, to 〈BT 〉 they display the opposite behaviour,

and are smaller in absolute magnitude. For all mean

values, inclusion of the NNLO corrections leads to a

reduction of the scale uncertainty compared to NLO,

which is most pronounced for the broadenings, whereas

being more modest for the other shape variables. For

large values of Q2 > 2500 GeV2, the NNLO theory

uncertainty is limited to below 5%.
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Comparing the fixed-order predictions to the mea-

surements of the mean values from H1 and ZEUS, we

observe that the data are considerably above the the-

ory predictions throughout all shape variables and for

all values of Q2, although the discrepancy is most pro-

nounced at low Q2. This behaviour indicates the rele-

vance of power corrections from hadronization effects,

which can have large effects on the mean values [28–30].

4 Hadronization effects

In the previous section, we computed higher-order cor-

rections to the DIS event shape distributions and mean

values at parton level. To compare these predictions

with hadron-level data requires accounting for the im-

pact of the parton-hadron transition, which is a non-

perturbative process. Consequently, these hadroniza-

tion effects cannot be computed in perturbation theory,

but require a non-perturbative model description. The

hadronization corrections are expected to be suppressed

by positive powers of Λ/Q, such that their relative nu-

merical impact is decreasing with increasing Q. In the

following, we employ the dispersive model [28] to esti-

mate the leading power corrections at order (Λ/Q) to

event shape distributions. This model has been worked

out in detail for the DIS event shapes in Ref. [29], and

its implications are briefly summarized in the following.

In the dispersive model, an effective coupling αeff

is introduced at low scales, which is matched to the

running QCD coupling αs(µ) at a scale µI = 2 GeV.

This gives a constant α0 which is defined as the first

moment of the effective coupling below the scale µI ,

α0(µI) =
1

µI

∫ µI

0

dµαeff(µ) . (14)

The power corrections are suppressed by powers of 1/Q,

and result in a shift of the perturbative differential dis-

tribution

dσhadron(F )

dF
=

dσparton(F − aFP )

dF
, (15)

where the power correction P is universal for all the

event shape variables. The perturbative ingredients to

the dispersive model are the running of the coupling

constant and the relation between the MS-coupling and

the effective coupling, whose definition [54] absorbs uni-

versal correction terms from the cusp anomalous dimen-

sion. It can be expanded in αs(Q), and its expression

up to NNLO is given by [55,56]:

P =
8CF
π2
MµI

Q

{
α0(µI)− αs(Q)

−β0

2π

(
log

Q

µI
+
K

β0
+ 1

)
α2
s(Q)

−
[
β1

2

(
log

Q

µI
+

2L

β1
+ 1

)
+2β2

0

(
log

Q

µI
+
K

β0
+ 1

)
+β2

0 log
Q

µI

(
log

Q

µI
+

2K

β0

)]
α3
s(Q)

4π2

}
, (16)

with M = 1.49 a constant normalization factor (Mi-

lan factor [30, 57]) accounting for higher-order contri-

butions. In our numerical results, we use α0(µI) = 0.5

at µI = 2 GeV, which has been estimated from fits to

event shape moments in DIS [23, 24, 58] and e+e− an-

nihilation [56]. The beta-function coefficient and cusp

anomalous dimension [59] in the above expression are:

β0 =
11

3
CA −

4

3
TFNF ,

β1 =
34

3
C2
A −

20

3
CATFNF − 4CFTFNF ,

K =

(
67

18
− π2

6

)
CA −

10TFNF
9

,

L = C2
A

(
245

24
− 67

9

π2

6
+

11

6
ζ3 +

11

5

(
π2

6

)2
)

+ CANF

(
−209

108
+

10

9

π2

6
− 7

3
ζ3

)
+ CFNF

(
−55

24
+ 2ζ3

)
+N2

F

(
− 1

27

)
, (17)

with CA = 3, CF = 4/3, TF = 1/2. The coefficients

aF depend on the event shape variable, they were com-

puted in [29] and are tabulated in [58]. Their values are

repeated here:

aτγ = 1 , aτT = 1 , aρ =
1

2
,

aBγ =
1

2
a′B , aBT =

1

2
a′B , aC =

3

2
π , (18)

where the shift of the jet broadening has an additional

enhancement [60] given by

a′B =
π

2
√

2CFαs(1 + K
2παs)

+
3

4
− β0

12CF
+ η0, (19)

with αs evaluated at the scale µ = e−
3
4µR and η0 =

−0.614. For this analysis a′B varies from 1.6− 2.3.

The dispersive model is based on an analytic treat-

ment of hadronization effects on a two-parton correla-

tor [28], which corresponds to the mean value integral
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Fig. 4 Event shape distribution for thrust with respect to
boson axis: τγ fixed-order predictions at NLO (dashed cyan),
NNLO (dashed brown), and corrected for hadronization ef-
fects at NLO (blue) and NNLO (red), compared to H1
data [23]. The lower frames display the ratio to the NLO
prediction for the central scale µ2 = Q2.

of each event shape. The effect of the dispersive power

correction on the mean values is additive:

〈F 〉 = 〈F 〉pert. + aF P, (20)

where 〈F 〉pert. is the mean value obtained in fixed-order

perturbation theory, described in Section 3.2 above.

When applied to differential event shape distribu-

tions, the power correction P in the shift (15) can in

principle depend on the numerical value of F . Using a

constant shift P for the full distribution amounts to an

approximation, which may be overcome by an improved

treatment of the non-perturbative corrections.

In combining the fixed-order predictions derived in

the previous section with the power corrections, we

truncate the factor P in (16) to α2
s(Q) for NLO, and to

α3
s(Q) for NNLO. Inclusion of the α3

s(Q) terms leads to

a substantial reduction of P , with PNNLO ≈ 0.60PNLO
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Fig. 5 Event shape distribution for thrust with respect to
boson axis: τγ fixed-order predictions at NLO (dashed cyan)
and NNLO (dashed brown), and corrected for hadronization
effects at NLO (blue) and NNLO (red), compared to ZEUS
data [24]. The lower frames display the ratio to the NLO
prediction for the central scale µ2 = Q2.

at Q = 15 GeV and PNNLO ≈ 0.75PNLO at Q =

100 GeV.

5 Results

With the inclusion of power corrections, the fixed-order

parton-level predictions can now be compared to hadron-

level data from the HERA experiments on event shape

distributions and mean values.

5.1 Event shape distributions

Figures 4–13 display the theory predictions obtained

by combining the fixed-order predictions up to NNLO

with power corrections computed using the dispersive



8

10 1

100

101

102

1 H
d d

Q: 14 16 GeV

s = 319 GeV, H1
NNPDF 3.1 

= Q

NNLOJET

H1

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

10 1

100

101

102

Q: 16 20 GeV

NLO
NNLO

NLO+PC
NNLO+PC

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

10 1

100

101

102

1 H
d d

Q: 20 30 GeV

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

10 1

100

101

102

Q: 30 50 GeV

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

10 2

100

102

1 H
d d

Q: 50 70 GeV

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

10 2

100

102

Q: 70 100 GeV

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

10 2

100

102

1 H
d d

Q: 100 200 GeV

0.00 0.05 0.10 0.15 0.20 0.25
0.5

1.0

1.5

Ra
tio

 to
 

 N
LO

Fig. 6 Event shape distribution for jet mass: ρ fixed-order
predictions at NLO (dashed cyan), NNLO (dashed brown),
and corrected for hadronization effects at NLO (blue) and
NNLO (red), compared to H1 data [23]. The lower frames
display the ratio to the NLO prediction for the central scale
µ2 = Q2.

model as described in the previous section to the exper-

imental data from H1 [23] and ZEUS [24]. To illustrate

the magnitude of the power corrections, the uncorrected

fixed-order predictions for central scales µ = Q are in-

dicated by blue lines at NLO and brown lines at NNLO.

The shift (15) is applied on the high-resolution histo-

grams (12) which were computed with a lower cut-off

affecting their first bin (where all-order resummation

of large logarithmic corrections [19–22] is required to

obtain a finite prediction). The shifted high-resolution

histograms are then combined to the number of bins
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Fig. 7 Event shape distribution for jet mass: ρ fixed-order
predictions at NLO (dashed cyan) and NNLO (dashed
brown), and corrected for hadronization effects at NLO (blue)
and NNLO (red), compared to ZEUS data [24]. The lower
frames display the ratio to the NLO prediction for the cen-
tral scale µ2 = Q2.

used in the experimental measurements:

τγ : [0, 1], 10 ,

τT : [0, 0.5], 10 ,

ρ : [0, 0.25], 8(H1)/10(ZEUS) ,

Bγ : [0, 0.5], 10 ,

C : [0, 1], 10 . (21)

Owing to the interplay of the lower cut-off on the

distributions and the power correction shift, the predic-

tion for the left-most non-vanishing bin of each distribu-

tion is unreliable, and should not be taken into account

when comparing the experimental data with the the-

ory predictions. A prediction for F → 0 will have to

include resummation in order to become meaningful.

This limitation should be kept in mind in the following

comparisons.
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Fig. 8 Event shape distribution for C-parameter: C fixed-
order predictions at NLO (dashed cyan), NNLO (dashed
brown), and corrected for hadronization effects at NLO (blue)
and NNLO (red), compared to H1 data [23]. The lower frames
display the ratio to the NLO prediction for the central scale
µ2 = Q2.

For the thrust distribution τγ , Figures 4 and 5, we

observe that the NNLO corrections at low and mod-

erate values of Q2 are leading to an increase of the

distribution in the bulk, and a slight decrease at high

and low τγ . At the highest values of Q2, the NNLO

corrections become very small and negative even in the

bulk. Overall, the NNLO corrections improve the de-

scription of the data. Compared to NLO, inclusion of

the NNLO correction leads to a reduction of the scale

uncertainty. This reduction is only moderate at the low-

est values of Q2, where the NNLO scale uncertainty re-

mains at the 6% level. At higher Q2, the reduction of

scale uncertainty at NNLO is more pronounced, lead-

ing to predictions with residual uncertainty below 4%.

These uncertainties should be compared to the exper-

imental errors. The ZEUS data [24] are slightly more

precise than the H1 data [23], and also reach to lower
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Fig. 9 Event shape distribution for C-parameter: C fixed-
order predictions at NLO (dashed cyan) and NNLO (dashed
brown), and corrected for hadronization effects at NLO (blue)
and NNLO (red), compared to ZEUS data [24]. The lower
frames display the ratio to the NLO prediction for the central
scale µ2 = Q2.

values of Q2. In the low-Q2 bins, the NNLO scale un-

certainty remains larger than the experimental errors,

as was also observed [61] for jet production in DIS at

low Q2. For moderate and high values of Q2, the scale

uncertainty is now well below the experimental errors,

thereby allowing for the use of the event shape distri-

butions in precision QCD studies.

A similar pattern is also observed in the jet mass

distribution, Figures 6 and 7: positive NNLO correc-

tions in the bulk at moderate Q2, which turn negative

when going to large values of ρ or to large Q2. At the

lowest values of Q2, the NNLO corrections are nega-

tive throughout the distribution (despite positive cor-

rections at parton-level) due to the reduced size of the

power correction at NNLO. The NNLO corrections lead

to an improved description of the shape of the experi-

mental data. This improvement is particularly visible at
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Fig. 10 Event shape distribution for thrust with respect
to thrust axis: τT fixed-order predictions at NLO (dashed
cyan), NNLO (dashed brown), and corrected for hadroniza-
tion effects at NLO (blue) and NNLO (red), compared to
H1 data [23]. The lower frames display the ratio to the NLO
prediction for the central scale µ2 = Q2.

large ρ for all values of Q2, where negative NNLO con-

tributions lead to a considerably better description of

the kinematical shape of the data. Overall, the agree-

ment between data and theory is however somewhat

worse for ρ than it was for τγ . The NNLO scale uncer-

tainties also follow a similar pattern as for τγ : compared

to NLO only a modest reduction at low Q2 and a sub-

stantial reduction to the level of a few per cent at high

Q2. Again, the experimental errors are larger than the

scale uncertainty for moderate and high Q2, thus en-

abling precision QCD studies.

In the C-parameter, Figures 8 and 9, we must dis-

tinguish the region below and above the Sudakov shoul-

der, which is located at C = 0.75 in the perturbative

parton-level expression. The dispersive power correc-

tions shift the location of this shoulder to higher values

of C. This shift is largest at low Q2, and decreases in
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Fig. 11 Event shape distribution for thrust with respect to
thrust axis: τT fixed-order predictions at NLO (dashed cyan)
and NNLO (dashed brown), and corrected for hadronization
effects at NLO (blue) and NNLO (red), compared to ZEUS
data [24]. The lower frames display the ratio to the NLO
prediction for the central scale µ2 = Q2.

magnitude towards higher Q2. The region above the Su-

dakov shoulder is kinematically forbidden at LO, and

receives contributions only from NLO onwards. Already

for values of C below the Sudakov shoulder, the pattern

of NNLO corrections is more intricate than what was

observed in τγ and ρ. The observed structure is due to

presence of a kinematical ridge [21] in the perturbative

expressions at C ≈ 0.515, which destabilizes the per-

turbative convergence of the distribution in its vicinity,

clearly visible in the high-resolution C-parameter dis-

tribution, Figure 1. The perturbative predictions for

the C-parameter distributions become quite precise at

NNLO, with scale uncertainties of typically less than

8% below the Sudakov shoulder and away from the

kinematical ridge. They are however affected by large

hadronization corrections, which shift the whole distri-

bution by more than two bins in C at lowQ2. Compared
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Fig. 12 Event shape distribution for jet broadening with
respect to thrust axis: Bγ fixed-order predictions at NLO
(dashed cyan), NNLO (dashed brown), and corrected for
hadronization effects at NLO (blue) and NNLO (red), com-
pared to H1 data [23]. The lower frames display the ratio to
the NLO prediction for the central scale µ2 = Q2.

to all other event shape distributions, these power cor-

rections are particularly large in the C-parameter dis-

tributions, see (18). For the lower values of Q2, we also

observe that the shape of the distribution is poorly de-

scribed. For medium and large values of Q2, the power

corrections are much smaller, NNLO corrections are rel-

atively small and uniform, and a satisfactory descrip-

tion of the experimental data is observed.

The thrust distribution with respect to the thrust

axis τT , Figures 10 and 11, displays a similar pattern,

with non-trivial structures in its perturbative expres-

sions around the Sudakov shoulder at τT = 0.293 and

the kinematical ridge around τT ≈ 0.13, which are both

nicely visible in the τT -distribution at high resolution,

Figure 1. These exceptional points are shifted to larger

values of τT by the power corrections. The NNLO cor-

rections are negative and small throughout almost the
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whole distribution for all values of Q2, except in the bin

with the highest τT , which is already well above the Su-

dakov shoulder, and where the cross section is already

very small. As for τγ , we note that the smallness of

the NNLO effect is mainly due to a cancellation be-

tween positive parton-level corrections and a decrease

in the power corrections. The corrections are typically

within the NLO scale uncertainty band. The overall

agreement between experimental data and theory pre-

dictions is satisfactory only at higher Q2. Substantial

discrepancies at low Q2 are observed especially in the

vicinity of the kinematical ridge, where the theory pre-

dictions are systematically and considerably below the

data. This behaviour may be indicative of the need of

an re-consideration of the perturbative expansion and

of the hadronization corrections in regions around the

kinematical ridges.
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Finally, for the jet broadening with respect to the

boson axis Bγ , Figures 12 and 13, the NNLO correc-

tions assume a non-trivial shape, changing from nega-

tive at small Bγ to positive at large Bγ , thereby lead-

ing to a considerably better description of the data. In

these distributions, the onset of large logarithmic terms

at low Bγ is well visible, indicating the need for their

resummation. The NNLO corrections lead to a consid-

erable reduction of the scale uncertainty in the bulk

of the distributions, which is more pronounced at low

Q2 than in most other event shape distributions. The

NNLO scale uncertainty ranges from 8% at low Q2 to

3% at high Q2, which is comparable to or below the

experimental uncertainties throughout.

Across the different event shape distributions, sev-

eral common features are observed. The NNLO correc-

tions are typically moderate, and fall usually within

the NLO scale uncertainty bands. This is particularly

remarkable since the NLO corrections were typically

large (often comparable in size to the LO predictions),

and well outside the LO scale uncertainty bands. The

numerical smallness of the NNLO effect is often due to

a partial cancellation between the parton-level correc-

tion and modification of the power corrections at this

order. Except in the low-F region, where large logarith-

mic corrections require an all-order resummation, and

in the vicinity of Sudakov shoulders and kinematical

ridges, we observe the onset of a good convergence of

the perturbative fixed-order expansion. The corrections

at low values of Q2 are inevitably larger (due to the

larger expansion parameter), which also translates in a

sizeable scale uncertainty remaining at NNLO of about

10%. At larger values of Q2, this scale uncertainty im-

proves considerably to the typically 4% or below, clearly

highlighting the potential of precision QCD studies with

event shapes based on existing HERA data [23, 24], or

with much larger data sets for hadronic final states that

could be obtained at a future electron-ion collider [52]

or at the LHeC [53]. The non-perturbative power cor-

rections that we obtained in the dispersive model in-

duce large shifts in some of the distributions, especially

at low Q2, where the statistical quality of the data is

largest. Moreover, their application to the distributions

in the form of a constant shift is only an approximation,

which should be revisited carefully as soon as more pre-

cise data are becoming available.

5.2 Mean values

The power corrections to the mean values result in an

additive shift of the perturbative predictions, see (20).

As for the event shape distributions, we truncate P in

(16) to order α2
s(Q) for the power corrections to the

NLO fixed order predictions and to α3
s(Q) for power

corrections applied to the NNLO predictions. Apply-

ing this shift to the perturbative results of Section 3.2,

we obtain hadron-level predictions for the mean val-

ues, which are compared to the data from H1 [23] and

ZEUS [24] in Figures 14 and 15. The fixed-order pre-

dictions for central scales µ = Q are indicated by blue

lines at NLO and brown lines at NNLO, showing that

the power corrections are sizeable for all mean val-

ues. Their inclusion eliminates the tension between data

and purely perturbative results seen in Figures 2 and 3

above.

Comparing the mean values with and without power

corrections, we observe that the large positive NNLO

corrections at low Q2 that are seen in Figures 2 and

3 are more than compensated by the decrease in the

numerical magnitude of the power correction in going

from NLO to NNLO in P . The combined effect of the

NNLO contributions to the fixed order predictions and

the power corrections is typically a small reduction of

the mean values at low Q2, thereby leading to an im-

proved description of the H1 and ZEUS data. At larger

Q2, this combined effect results in a very small change

of the predictions from NLO to NNLO, which comes

with a substantial reduction of the perturbative scale

uncertainty, which is almost halved.

Both the H1 [23] and ZEUS [24] studies used their

measurements of event shape distributions for a simul-

taneous fit of the QCD coupling constant αs(MZ) and

the effective coupling α0 that appears in the power

correction, performed using NLO fixed-order results.

While ZEUS lists only the results obtained for the in-

dividual event shape variables (displaying a substan-

tial scatter), H1 also performed a combined fit, result-

ing in αs(MZ) = 0.1198 ± 0.0012(exp)+0.0056
−0.0043 (th) and

α0 = 0.476 ± 0.008(exp)+0.018
−0.059 (th). Especially the the-

ory error on αs(MZ) is largely dominated by the NLO

scale uncertainty.

A similar NNLO study has been performed previ-

ously on event shape moments in e+e− annihilation [56],

resulting in decreased scatter between different shape

variables, and in lower theory uncertainties. Also, a

slight increase in the fitted central value of α0 from

NLO to NNLO was observed in e+e−, resulting in an

NNLO value of α0 = 0.5132±0.0115(exp)±0.0381(th).

Our predictions in Figures 14 and 15 use α0 = 0.5

throughout. They result in a very good description of

the data at NNLO, and we notice that the NLO curves

could be brought into better agreement with the data

by a slight lowering of α0, towards its H1 fit value.

With the newly derived NNLO corrections, the com-

bined fit of αs(MZ) and α0 to event shape distributions

and their mean values can now be repeated fully consis-
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and NNLO (red) including power corrections, compared to
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tently to NNLO accuracy. It can be anticipated that the

main effect of the NNLO corrections will be in a reduc-

tion of the theory-induced uncertainty on the extracted

value of αs(MZ), which was found to be about 5% in

the NLO-based study by H1 [23]. This reanalysis of the

experimental data will require our fixed-order results to

be re-cast into convolution grids [47] that enable an ef-

ficient re-evaluation for multiple parameter values and

parton distributions, which is beyond the scope of the

present paper.

6 Conclusions

In this paper, we computed the NNLO QCD correc-

tions to event shape distributions and their mean values

in deep inelastic lepton-proton scattering. Our calcula-

tion was performed in the NNLOJET framework, and is

largely based on the NNLO corrections [26, 27] to di-

jet production in DIS. The NNLO corrections to the

distributions are not uniform, although some general
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ZEUS data [24]. The fixed-order NLO and NNLO predictions
(dashed cyan and brown lines) are included to illustrate the
magnitude of the power corrections.

trends are observed: positive corrections in the bulk

of the distributions at low and medium Q2, negative

corrections in the bulk at high Q2 and at the upper

kinematical boundaries of the shape variables for all

Q2. Several perturbative instabilities due to Sudakov

shoulders [51] or kinematical ridges [21] were observed

in C and τT . Predictions in the kinematic vicinity of

these exceptional points will require novel resumma-

tion approaches to overcome the associated instabilities

of the fixed-order predictions. Moreover, at low values

of the event shape variables, we observed the onset of

large logarithmic corrections at each order in pertur-

bation theory. These were particularly pronounced in

Bγ . Resummation of these corrections is currently un-

derstood to next-to-leading logarithmic accuracy [22].

Aiming for a matching between fixed order and resum-

mation in a form where the fixed-order expansion of the

resummation formula reproduces all logarithmically en-

hanced terms up to NNLO (as was done for e+e− event
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shapes [10, 12, 15]) will require two more logarithmic

orders in the resummation.

To compare our parton-level predictions with hadron-

level data, we used the dispersive model [28] to estimate

the leading power correction effects from hadronization.

The model is based on the study two-point correlators

which relate to the mean values of the event shape dis-

tributions. On the event shape distributions, additional

assumptions must be made concerning the kinemat-

ical dependence of the power corrections. The power

correction factors receive higher order contributions in

the strong coupling constant, which we truncate to the

same level as used in the fixed-order parton-level pre-

dictions.

Our resulting hadron-level predictions were com-

pared to data from the H1 [23] and ZEUS [24] exper-

iments. On the event shape distributions, we observe

that inclusion of the NNLO corrections leads in general

to an improved description of their kinematical shapes.

Especially at medium and high Q2, the NNLO correc-

tions result in a substantial reduction of the scale uncer-

tainties of the predictions, to the level of a few per cent.

A similar reduction of scale uncertainty is also observed

on the mean values. On these mean values, we observe

a compensation between the positive NNLO corrections

to the fixed-order parton-level predictions and the neg-

ative NNLO contributions to the power corrections, re-

sulting in a relatively small net effect at NNLO. Our

newly derived NNLO results yield predictions with scale

uncertainties that are typically below the experimental

errors of the available HERA data on event shape distri-

butions. They motivate a full NNLO-based reanalysis of

event shape distributions and mean values. This should

be leading to an improved determination of αs(MZ) and

α0, which was previously limited by the uncertainty on

the NLO theory.

With high-resolution measurements of event shape

distributions in deep inelastic scattering at a future

electron-ion collider [52] or at the LHeC [53], our re-

sults will enable a broad spectrum of precision QCD

studies, aiming for an improved understanding of its

perturbative and non-perturbative aspects.
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