Top-quark pair production cross-section measurements with the ATLAS detector

Adam Bozson | Royal Holloway, University of London On behalf of the ATLAS Collaboration

ICNFP 2019 | Kolymbari, Crete | August 2019

Why study the top quark?

- Heaviest SM particle (172.5 GeV)
 - Role in EW symmetry breaking, vacuum stability
 - · Background to exotic searches, Higgs measurements
- Decays before hadronisation (τ < 10⁻²⁴ s)
 - We can study a 'bare' quark
 - Allows precision QCD measurements
- Window into new physics
 - Understanding tt production is crucial for BSM physics

00000

tt cross-sections — motivation

- Cross sections are measured inclusively and differentially
- Theoretical motivation: constraining EFTs, gluon PDF at high x, test predictions at highest precision
- Major background to ttH(bb), exotic, SUSY searches
- Top modelling / MC tuning
 - Top p_T has been poorly described by some generators
- A range of final states separate our analyses

Top Pair Branching Fractions

tt cross sections — analysis channels

Top quark decays t→Wb

Utilise both reconstruction techniques in same paper Unfold also in bins of N_{jets} (resolved only)

tt cross sections — analysis channels

Top quark decays t→Wb

tt inclusive cross-section

• ATLAS has performed measurements at $\sqrt{s} = 7$, 8, 13 TeV

tt inclusive cross-section

Combination of Tevatron, ATLAS, CMS measurements over 2–13 TeV

tt differential cross sections — overview

- All analyses share common unfolding strategy to fiducial volume at particle level
- $\frac{\mathrm{d}\sigma}{\mathrm{d}X_i} \equiv \frac{1}{L \cdot \Delta X_i \cdot \epsilon_i} \sum_{j} M_{ij}^{-1} f_j^{\mathrm{acc}} \left(N_j^{\mathrm{reco}} N_j^{\mathrm{bkg}} \right)$

All truth events

Fiducial particle

Reco Detector

- Some also unfold to parton level
- 2D unfolding increasingly possible
- Systematics dominate uncertainties: top modelling (matrix element, parton shower), jet energy scale/resolution

Adam Bozson <a dam.bozson@cern.ch>

ICNFP 2019

tt differentia

- All analyses
 strategy to
 - Some also
 - 2D unfoldir
- Systematics shower), jet

ent, parton

7

tt differential cross-sections from ATLAS at $\sqrt{s} = 13$ TeV

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
- · Aug '19: I+jets boosted differential cross-sections

Submitted to EPJC

Nov '18: tt+bb inclusive and differential cross-sections

JHEP 04 (2019) 046

• Feb '18: tt+n jets differential cross-sections

JHEP 10 (2018) 159

· Jan '18: tt all-hadronic boosted differential cross-sections

Phys. Rev. D (2018) 98

• Aug '17: tt I+jets differential cross-sections

JHEP 11 (2017) 191

• Dec '16: tt $e+\mu$ differential cross-sections

Eur. Phys. J. C77 (2017) 292

Boosted tt I+jets — strategy

- High p_T tops can probe regions of phase space useful for new physics
- Events with 1 hadronic, 1 leptonic top. Selection:

- R=1.0 reclustered from R=0.4 jets with anti-k_T algorithm
- Generally low background, dominated by W+jets and single top
- Unfold to particle and parton level

Boosted tt I+jets — results — mtt

Boosted tt I+jets — results — top pt

Parton + particle levels

- NNLO improves modelling
- Slope still present
- Resolved+boosted covers large pt range

Boosted tt I+jets — results — double differential cross-sections

- First double differential cross-sections for boosted tops
- Look at top p_T in bins of m_{tt}
- p_T modelled worse in highm_{tt} bin
- ~20% difference in MC predictions for low mass bin: data discriminates between the models

Boosted tt I+jets — results — double differential cross-sections

- First double differential cross-sections for boosted tops
- Look at top p_T in bins of m_{tt}
- p_T modelled worse in highm_{tt} bin
- ~20% difference in MC predictions for low mass bin: data discriminates between the models

Boosted tt I+jets — results — subjets

- A peek inside the boosted top
- Number of R=0.4 jets inside R=1.0 boosted top-tagged jet
- Even(ish) distribution of N=2/3 subjets
- N=1 from highly boosted events
- N ≥4 from radiation?

tt+b-jets — strategy

- tt+b-jets challenges QCD calculations with the heavy b quark
- tt+bb is a large background (and dominant systematic) for ttH(H→bb). MC can predict to NLO. Let's measure it.
- Analysis done with 36.1 fb⁻¹ @ 13 TeV, dilepton, lepton+jets channels
- Data-driven template fit to derive correction factors for flavour composition for tt+X
- Differential cross sections as functions of kinematic variables of b-jet pairs
 - Min ΔR(b,b): expected to be from gluon splitting
 - Highest p_T: dominated by top pair production

tt+b-jets — template fit method

- tt+{d,u,s,c} contribute backgrounds from mis-tagging b-jets
- Use templates from tt, ttH, ttV Monte Carlo predictions

Category	$e\mu$	lepton + jets
$t ar{t} b$	$\geq 3 b$ -jets	$\geq 3 b$ -jets
t ar t c	$<$ 3 b -jets and \geq 1 c -jet	$< 3 b$ -jets and $\ge 2 c$ -jets
$-t ar{t} l$	events that do not meet above criteria	events that do not meet above criteria

Perform binned maximum-likelihood fit to data

$$\mathcal{L}(\vec{\alpha}|x_1,\dots,x_n) = \prod_{k}^{n} \frac{e^{-\nu_k(\vec{\alpha})}\nu_k(\vec{\alpha})^{x_k}}{x_k!}, \qquad \nu_k(\alpha_b,\alpha_c,\alpha_l) = \alpha_b N_{t\bar{t}b}^k + \alpha_c N_{t\bar{t}c}^k + \alpha_l N_{t\bar{t}l}^k + N_{\text{non-}t\bar{t}}^k$$

tt+bb — template fit results

tt+bb — inclusive fiducial cross section results

Generally exceed NLO predictions, but compatible within uncertainties

tt+bb — differential cross section results

Systematic modelling uncertainties dominate experimental uncertainties

Summary

- The top quark is interesting and unique. The LHC is a top factory.
- Provides a laboratory for testing theory predictions and performing high-precision measurements
- Window into BSM physics, possible future directions
- A significant part of ATLAS research programme
- Lots of recent activity with interesting results (tt, tt+bb)
- First double differential boosted top measurements probe the details of top kinematics
- More data brings more results from 2017/18

Backup

tt all-hadronic differential cross sections

- Both large-R jets contain an associated small-R b-tagged jet
- Multijet background suppressed by top tagging algorithm: uses jet mass and τ₃₂ (prefers 3-pronged jets) (<u>Link to top tagging note</u>)
- Remaining background estimated using ABCD method with 16 regions

ABCD(EFGHIJKLMNOS) method

- Used in all-hadronic analysis
- Extends ABCD method to account for correlations in backgrounddominated regions

d large- R jet	1t1b	J (7.6%)	K (21%)	L~(42%)	S
	0t1b	B (2.2%)	D (5.8%)	H (13%)	N (47%)
	1t0b	E(0.7%)	F (2.4%)	G(6.4%)	M(30%)
	0t0b	A (0.2%)	C(0.8%)	I~(2.2%)	O (11%)
2nd		0 t 0 b	1 t 0 b	$0 \mathrm{t} 1 \mathrm{b}$	1t1b

Leading large-R jet

$$S = \frac{J \times O}{A} \cdot \frac{D \times A}{B \times C} \cdot \frac{G \times A}{E \times I} \cdot \frac{F \times A}{E \times C} \cdot \frac{H \times A}{B \times I}$$
$$= \frac{J \times O \times H \times F \times D \times G \times A^{3}}{(B \times E \times C \times I)^{2}},$$

tt all-hadronic differential cross sections — results

Unfolded cross-section in particle level leading top p_T and |rapidity|

tt all-hadronic differential cross sections — results

Unfolded cross-section in particle level tt system p_T and invariant mass

tt + additional jets (eµ+jets channel)

· Channel (2 b-tags) gives a pure sample of tt

Generally more jets in data than predicted by Powheg+Pythia6

tt + additional jets (/+jets channel)

• Differential cross-sections in n-jet regions. e.g. hadronic top pt

• Slope in p_T : top is softer than predicted (most evident in =4 jets)

Boosted tt I+jets — uncertainties

· Main sources: JES, tt modelling, b-tagging, backgrounds

Boosted tt I+jets — double differential cross-section

Double differential cross section in m_{tt} vs top p_T at parton level

PDF fits

- Goal: fit ATLAS W, Z/y* cross sections (7 TeV), tt p_T+m_{tt}+y_{tt} distributions (8 TeV), HERA e*p DIS data to produce new PDF set <u>ATLASepWZtop18</u>
- Use full correlation information to perform simultaneous fit — increases impact of tt data
- After including tt data gluon PDF is slightly harder, lower uncertainty at high x

Link to note

PDF fits

- Goal: fit ATLAS W, Z/γ* cross sections (7 TeV), tt p_T+m_{tt}+y_{tt} distributions (8 TeV), HERA e[±]p DIS data to produce new PDF set <u>ATLASepWZtop18</u>
- Use full correlation information to perform simultaneous fit — increases impact of tt data
- After including tt data gluon PDF is slightly harder, lower uncertainty at high x

