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Abstract

The QCD evolution of transverse momentum dependent (TMD) distribution functions has recently been 
formulated in a parton branching (PB) formalism. In this approach, soft-gluon coherence effects are taken 
into account by introducing the soft-gluon resolution scale and exploiting the relation between transverse-
momentum recoils and branching scales. In this work we investigate the implications of dynamical, i.e., 
branching scale dependent, resolution scales. We present both analytical studies and numerical solution of 
PB evolution equations in the presence of dynamical resolution scales. We use this to compare PB results 
with other approaches in the literature, and to analyze predictions for transverse momentum distributions in 
Z-boson production at the Large Hadron Collider (LHC).
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Theoretical predictions for precision physics at high-energy hadron colliders require meth-
ods for QCD resummations [1] to all orders in the strong coupling. For observables sensitive to 
Sudakov resummation, transverse momentum dependent (TMD) parton distribution and decay 
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functions [2] provide a theoretical framework to both carry out resummed perturbative calcula-
tions and incorporate systematically nonperturbative dynamics.

In Refs. [3,4] a method has been proposed to treat TMDs in a parton branching (PB) for-
malism. The method is based on the unitarity picture of parton evolution [5,6], and takes into 
account color coherence of soft-gluon radiation [7–10] and transverse momentum recoils. It in-
troduces the soft-gluon resolution scale to separate resolvable and non-resolvable branchings, 
and Sudakov form factors to express partonic probabilities for no resolvable branchings in a 
given evolution interval.

An important point in obtaining TMD distributions from the PB method concerns the ordering 
variables used to perform the branching evolution. Because the transverse momentum generated 
radiatively in the branching is sensitive to the treatment of the non-resolvable region [11], a 
supplementary condition is needed to relate the transverse momentum recoil and the scale of the 
branching. This relation embodies the well-known property of angular ordering, and implies that 
the soft-gluon resolution scale can be dynamical, i.e., dependent on the branching scale.

In this paper we investigate the effects of dynamical resolution scales on TMD evolution and 
on collider observables. Using a mapping between branching scales and transverse momenta, we 
discuss the resolvable radiation regions and PB evolution equations. We solve these equations 
with dynamical resolution scale numerically by applying the Monte Carlo solution techniques 
developed in [3,12]. We compare the PB results with results from two other approaches: the 
coherent branching approach of [9,10] (CMW) and the single-emission approach of [13–16]
(KMRW). We present an application of our formalism to the Z-boson transverse momentum 
distribution in Drell-Yan (DY) production [17] at the LHC, and study its sensitivity to dynamical 
resolution scales at low transverse momenta.

The paper is organized as follows. In Sec. 2 we recall the basic elements of the PB ap-
proach, introduce the dynamical soft-gluon resolution scale, and describe the resolvable and 
non-resolvable emission regions. In Sec. 3 we map branching scales to transverse momenta, and 
give the corresponding form of PB equations. In Sec. 4 we use these results to perform ana-
lytic comparisons of multiple-emission and single-emission TMD approaches. We compare PB 
results with KMRW and CMW results. In Sec. 5 we solve the PB evolution equation with dynam-
ical resolution scale by numerical methods, and present predictions for the Z-boson transverse 
momentum spectrum at the LHC. We give conclusions in Sec. 6.

2. PB TMDs and soft-gluon angular ordering

In this section we summarize the main elements of TMD evolution in the PB formalism, 
stressing in particular the aspects associated with soft-gluon angular ordering.

In the PB approach [3,4] the TMD evolution equations can be written as
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Fig. 1. Solution of the branching equation by iteration.

where Ãa

(
x,k,μ2

) = xAa

(
x,k,μ2

)
is the momentum-weighted TMD distribution of flavor 

a, carrying the longitudinal momentum fraction x of the hadron’s momentum and transverse 
momentum k1 at the evolution scale μ; z and μ′ are the branching variables, with z being the 
longitudinal momentum transfer at the branching, and μ′ = √

μ′2 the momentum scale at which 
the branching occurs; P R

ab are the real-emission splitting kernels; �a is the Sudakov form factor, 
given by
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(2)

The initial evolution scale is denoted by μ0.
The functions a(z), b(z) and zM(μ′) in Eqs. (1) and (2) encode features associated with the 

ordering variables used to perform the branching evolution, and are specified below.
An iterative Monte Carlo solution of Eq. (1) is obtained in Ref. [4], and is represented pictori-

ally in Fig. 1. The distribution of flavor a at scale μ is written, as a function of x and k, as a sum 
of terms involving, iteratively, no branching between μ0 and μ, then one branching, then two 
branchings, and so forth. The transverse momentum k, in particular, arises from this solution by 
combining the intrinsic transverse momentum (in the first term on the right hand side of Eq. (1)) 
with the transverse momenta emitted at all branchings.

Let us examine a(z), b(z) and zM(μ′) in Eqs. (1) and (2). The function a(z) in the last factor 
on the right hand side of Eq. (1) gives the relation between the scale of the branching and the 
transverse momentum of the emitted parton. In the case of angular ordering one has [4]

a(z) = 1 − z , (3)

and the transverse momentum q⊥ of the emitted parton is related to the branching scale μ′ by [4]

q2⊥ = (1 − z)2μ′2 . (4)

The function b(z) specifies the momentum scale in the running coupling αs . For angular 
ordering one has [9,10,18]

1 We use the notation k = (k0, k1, k2, k3) = (Ek, k, k3), where k = (k1, k2), and k⊥ = |k|.
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b(z) = 1 − z , (5)

so that the coupling is evaluated at the transverse momentum scale,

αs

(
b(z)2μ′2) = αs

(
q2⊥

)
. (6)

The function zM(μ′) specifies the soft-gluon resolution scale [3] which separates the region 
of resolvable branchings (z < zM ) from the region of non-resolvable branchings (z > zM ), for 
any given μ′. Let us denote by q0 the minimum transverse momentum with which any emitted 
parton can be resolved, so that

q⊥ > q0 . (7)

By inserting the angular ordering relation (4) into Eq. (7), the condition for resolving soft gluons 
is given by z < zM(μ′) with [4–6]

zM(μ′) = 1 − q0/μ
′ , (8)

where the momentum scale q0 is understood to be q0 � �QCD.
The role of the functions a(z) in Eq. (3) and b(z) in Eq. (5) has been analyzed in Refs. [18–20]

for TMD applications to DY processes. In this work we concentrate on implications of the reso-
lution scale zM(μ′) in Eq. (8).

By integrating the TMD distributions in Eq. (1) over transverse momenta one obtains collinear 
initial-state distributions,

f̃a

(
x,μ2

)
=

∫
d2k

π
Ãa

(
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)
. (9)

It has been shown in [3,4] that for zM → 1 and αs → αs(μ
′2) these are collinear parton distribu-

tion functions satisfying DGLAP evolution equations [21–24].2 On the other hand, for general 
zM and αs of the form in Eq. (8) and Eq. (6) the evolution equation for f̃a is given by
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)
. (10)

The kernels of the evolution equations (1) and (10) have support in the resolvable emission 
region x < z < zM . We depict this region in the (μ′, z) plane in Fig. 2, with the dynamical 
resolution scale (8). Fig. 2(a) represents the case of contributions to the distribution function 
with x ≥ 1 − q0/μ0, while Fig. 2(b) represents the case of x < 1 − q0/μ0.

2 The convergence to DGLAP at leading order (LO) and next-to-leading order (NLO) has been verified numerically 
in [4] against the evolution program [25] at level of better than 1% over a range of five orders of magnitude both in x and 
in μ.
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Fig. 2. The angular ordering condition zM(μ′) = 1 − q0/μ′ with the resolvable and non-resolvable emission regions in 
the (μ′, z) plane: a) the case 1 > x ≥ 1 − q0/μ0; b) the case 1 − q0/μ0 > x > 0.

3. Mapping evolution scales to transverse momenta

We next recast the parton-branching evolution and separation between resolvable and non-
resolvable branchings in terms of longitudinal momentum fractions and transverse momenta. 
To this end, we exploit the angular ordering relation in Eq. (4) to map branching scales on to 
transverse momenta for the resolvable regions in Fig. 2.

Given the minimum transverse momentum q0 and the lowest scale μ0 of the branching, for 
any x it is useful to distinguish the two cases illustrated in Fig. 2, depending on whether a) 
μ0 ≤ q0/(1 −x) or b) μ0 > q0/(1 −x). For any z with x ≤ z ≤ 1, in case a) the emitted transverse 
momentum spans the interval q0 ≤ q⊥ ≤ μ(1 − z), while in case b) we have μ0(1 − z) ≤ q⊥ ≤
μ(1 − z). This results into different forms of the branching equations in the two cases, once they 
are expressed directly in terms of transverse momenta.

3.1. Case a) 1 > x ≥ 1 − q0/μ0

For x ≥ 1 −q0/μ0 the resolvable emission region is mapped to the domain in the (z, q⊥) plane 
pictured in Fig. 3(a). We change integration variable from μ′ to q⊥ in the branching equation 
(10) using the angular ordering relation (4). Then Eq. (10) can be recast in terms of transverse 
momenta as

f̃a(x,μ2) = �a(μ
2,μ2

0)f̃a(x,μ2
0) +

∑
b

∫
dq2⊥
q2⊥

1∫
dz �(q2⊥ − q2

0 ) �(μ2(1 − x)2 − q2⊥)
x
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Fig. 3. Resolvable and non-resolvable emission regions in the (z, q⊥) plane for evolution in the cases a) 1 > x ≥ 1 −
q0/μ0 and b) 1 − q0/μ0 > x > 0.
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3.2. Case b) 1 − q0/μ0 > x > 0

For x < 1 −q0/μ0 the resolvable emission region is mapped to the domain in the (z, q⊥) plane 
pictured in Fig. 3(b). Performing the same change of integration variable in Eq. (10) as in case 
a) of the previous subsection, we recognize that now a subtraction term arises from the low-q⊥
region, q0 < q⊥ < (1 − x)μ0, so that Eq. (10) is rewritten in terms of transverse momenta as
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We observe that the first term in the square bracket in Eq. (12) is a contribution analogous to that 
in Eq. (11), while the second term in the square bracket provides the low-q⊥ subtraction.

Alternatively, the branching kernel in the case x < 1 − q0/μ0 can be expressed as a sum of 
two contributions, corresponding respectively to the q⊥ < (1 − x)μ0 region and q⊥ > (1 − x)μ0

region, as follows
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f̃a(x,μ2) = �a(μ
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Here the two terms of the sum in the square bracket, given by products of � functions, describe 
the low-q⊥ and high-q⊥ contributions.

In the next section we will use the form for the branching equations derived above, along with 
the formulas of Sec. 2, to carry out a comparison of the PB method [3,4] with other existing 
approaches in the literature. We will analyze in particular different treatments of the QCD parton 
cascade, in which the transverse momentum is generated either through multiple emissions or 
through a single emission.

4. Multiple-emission versus single-emission approaches

As an approach based on the unitarity picture [5,6] of parton evolution and angular ordering, 
the PB method [3,4] can naturally be compared with the coherent branching approach [9,10] of 
Catani-Marchesini-Webber (CMW). Since Refs. [9,10] do not construct TMD distributions, we 
examine branching equations in the PB and CMW approaches at the level of integrated distribu-
tions. At this level, we observe that Eq. (10) agrees with the CMW result — see Eqs. (42), (49) 
and Sec. 3.4 of [9]. In Ref. [9] this branching equation is studied at LO with one-loop splitting 
kernels and running coupling, while in Ref. [3] (and in the present paper) it is studied at NLO 
with two-loop splitting kernels and running coupling.3

The Kimber-Martin-Ryskin-Watt (KMRW) approach [13–16], on the other hand, is designed 
to construct TMD unintegrated distributions. In contrast to the PB method, in which the trans-
verse momentum and the branching scale are calculated at each branching as illustrated in Fig. 1, 
KMRW is a one-step evolution approach: it performs evolution in one scale up to q2⊥, while the 
second scale is generated only in the last step of the evolution. The KMRW physical picture is 
thus quite different from that of PB and CMW. In particular, in KMRW the transverse momentum 
is produced as a result of a single emission, while in PB it is built from multiple emissions.

We next perform comparisons of KMRW and PB distributions. In the KMRW literature, the 
distinction between the values of the two momentum scales μ0 and q0 discussed in Sec. 3 is not 
made. For the purpose of this comparison, therefore, we set q0 ≈ μ0 in the formulation of Sec. 3, 
and we will thus be using the branching equation valid in case a) of Subsec. 3.1, Eq. (11).

4.1. Comparison with the KMRW approach

In the KMRW approach the TMD distribution is written as [13–16]

D̃a(x,μ2, q2⊥) = Ta(μ
2, q2⊥)

∑
b

1−C(q⊥,μ)∫
x

dzP R
ab

(
z,αs(q

2⊥)
)

f̃b

(
x

z
, q2⊥

)
, (14)

3 The treatment in Ref. [3] incorporates in particular the two-loop correction to the coupling which is shown in [10] to 
be required to obtain next-to-leading-logarithmic accuracy in the soft-gluon resummation.
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where the Sudakov form factor is given by

Ta(μ
2, q2⊥) = exp

⎡⎢⎢⎣−
μ2∫

q2⊥

dq ′2⊥
q ′2⊥

∑
b
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0

dzzP R
ba

(
z,αs

(
q ′2⊥

))⎤⎥⎥⎦ , (15)

and the collinear density f̃a(x, μ2) obeys the evolution equation

f̃a(x,μ2) = f̃a(x,μ2
0)Ta(μ

2,μ2
0)

+
q2⊥M∫
μ2

0

dq2⊥
q2⊥

⎛⎜⎝Ta(μ
2, q2⊥)

∑
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dzP R
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z,αs(q
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(
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z
, q2⊥

)⎞⎟⎠ . (16)

The phase space parameters C(q⊥, μ) and q⊥M in the above formulas are assigned according to 
two distinct prescriptions [13–16,26] in the KMRW approach:

C(q⊥,μ) = q⊥/μ , q⊥M = μ(1 − x) for KMRW strong ordering (17)

and

C(q⊥,μ) = q⊥/(q⊥ + μ) , q⊥M = μ(1 − x)/x for KMRW angular ordering. (18)

Having mapped the PB evolution onto transverse momenta in Sec. 3, we are in a position to 
directly compare the PB and KMRW results. By considering Eq. (11) and Eq. (16) with KMRW 
strong ordering conditions (17), we recognize that PB and KMRW differ in the momentum scales 
at which both the Sudakov form factor and the collinear density f̃b are evaluated, as KMRW uses 
transverse momenta whereas PB uses transverse momenta rescaled by 1/(1 − z). From Eq. (11)
and Eq. (16) with KMRW angular ordering conditions (18), we recognize that in this case PB 
and KMRW, besides differing in the arguments of Sudakov factor and collinear density, differ 
also in the phase space regions in longitudinal and transverse momenta that are populated by the 
radiative processes.

We thus see that, also taking into account the possible prescriptions in Eqs. (17) and (18), the 
one-step picture of KMRW leads to different results from the multiple-emission PB picture. In 
Sec. 5 we illustrate the implications of these differences by performing numerical calculations 
for the TMD distributions that result from evolution in the two approaches, and examining the 
corresponding predictions for the DY Z-boson transverse momentum spectra at the LHC.

4.2. Remark on Sudakov form factors

It is worth noting that the definition of the Sudakov form factor itself plays a different role in 
the context of the PB approach and the KMRW approach.

In the PB approach the Sudakov form factor �a(μ
2, μ2

0) has the interpretation of probability 
for no resolvable branching in a given evolution interval from μ0 to μ, and fulfills the property

�a(μ
2, μ̃2)�a(μ̃

2,μ2
0) = �a(μ

2,μ2
0) (19)

for any evolution scale μ̃.
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For example, for the Sudakov form factor in the angular-ordered evolution we use

�a(μ
2,μ2

0) = exp
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b
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dμ′2

μ′2
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dz z P R
ba

(
z,αs

(
(1 − z)2μ′2))⎞⎟⎟⎠ , (20)

for which Eq. (19) is fulfilled. Upon mapping to transverse momenta, this becomes

�a(μ
2,μ2

0)

= exp
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∑

b
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μ2∫

μ2
0

dq2⊥
q2⊥

1−q⊥/μ∫
0

dz +
μ2
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q2

0

dq2⊥
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⎞⎟⎟⎠ z P R
ba

(
z,αs

(
q2⊥

))⎤⎥⎥⎦ , (21)

for which Eq. (19) is still fulfilled.
On the other hand, using the KMRW expression in Eq. (15), Eq. (19) is not fulfilled. Rather, 

one has

Ta(μ
2, k2⊥)Ta(k

2⊥,μ2
0) = Ta(μ

2,μ2
0) exp

⎛⎜⎜⎝∑
b

k2⊥∫
μ2

0

dq2⊥
q2⊥

1−C(q⊥,μ)∫
1−C(q⊥,k⊥)

dz z P R
ba(z,αs(q

2⊥))

⎞⎟⎟⎠ .

(22)

This implies that, besides the different treatment of radiative processes noted in Subsec. 4.1, we 
observe differences between the single-emission and multiple-emission approaches also in the 
treatment of the non-resolvable processes. We may expect that the features noted in Subsec. 4.1
and in this subsection will lead to different behaviors in transverse momentum distributions both 
at high transverse momenta and at low transverse momenta.

5. Numerical results

We investigate next the numerical implications of the analysis in the previous sections on 
TMD distributions and DY spectra.

5.1. TMDs from PB and KMRW

In this section we present numerical results for TMD distribution functions from the PB ap-
proach with dynamical resolution scale. We perform numerical comparisons with KMRW TMDs. 
The results are shown as functions of flavor, longitudinal momentum fraction x, transverse mo-
mentum k⊥, evolution scale μ.

KMRW TMD distribution sets have been obtained in [27] according to the KMRW angular 
ordering prescription (18), using the CT10nlo PDF [28] set as a starting collinear distribution and 
a flat parameterization for k⊥ < 1 GeV as an intrinsic k⊥ distribution at starting scale μ0. These 
distributions have been included in the TMDlib library [29] under the name MRW-CT10nlo.4

4 Strictly speaking, the TMD set MRW-CT10nlo has been obtained using the differential definition of KMRW TMDs 
(see e.g. [26,27]). We have performed also studies with KMRW TMDs defined according to the integral definition (as in 
Eq. (14)) and we have verified that our conclusions remain valid.
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To evaluate PB TMDs, we solve numerically Eq. (1), with the angular ordering condition in 
Eq. (4), the dynamical resolution scale in Eq. (8) where we take q0 = 1 GeV, and the scale of 
αs in Eq. (6). We use the Monte Carlo solution method developed in [3,4] and implemented 
in the package uPDFevolv [12]. Following [18], we take intrinsic k⊥ distribution given by a 
simple gaussian at starting scale μ0 with (flavor-independent and x-independent) width σ =
k0/

√
2, k0 = 0.5 GeV. For the purpose of performing comparisons with the KMRW TMD set 

MRW-CT10nlo, we take the same starting collinear distribution CT10nlo [28]. We also note 
that the infrared region with the Landau pole of the coupling in Eq. (6) is avoided by using the 
dynamical resolution scale (8) with q0 = 1 GeV.

In addition, we introduce an approximation to the PB framework, which we refer to as “PB-
last-step”, which is obtained from PB by taking the same settings as the full PB calculation 
but restricting the transverse momentum k⊥ to the last emission only. We use the PB-last-step 
Monte Carlo simulation as a guidance to distinguish effects from single emission and multiple 
emissions.

In Fig. 4 we show results for the k⊥ dependence from PB, MRW-CT10nlo and PB-last-step 
calculations, at different values of x and μ.5 We may distinguish three regions of low k⊥, middle 
k⊥ and high k⊥, characterized by distinct behaviors. Significant numerical differences between 
PB and KMRW show up especially in the extreme regions k⊥ 	 μ and k⊥ 
 μ, while in an 
interval of middle values around k⊥ ∼ μ the two predictions tend to become closer.

In particular, we observe that at low k⊥ the smearing of the intrinsic k⊥ distribution due to 
evolution gives rise to different behaviors in the single-emission and multiple-emission cases. 
The kink at low k⊥ in MRW-CT10nlo is a consequence of the single-emission picture, and is 
not present in the full PB case, where multiple branchings are responsible for generating the 
transverse momentum.

We also observe that at high k⊥ the MRW-CT10nlo distribution is far harder than PB and 
PB-last-step. This reflects the different pattern of radiative contributions in KMRW from PB, 
illustrated in Sec. 4. As noted in [27], the treatment of the Sudakov form factor for k2⊥ > μ2

influences the MRW-CT10nlo high k⊥ tail.
On the other hand, notice that MRW-ct10nlo and PB are closer in the middle range of k⊥

comparable to the scale μ. In this range, the differences between KMRW and PB approaches 
in the parton-density and Sudakov-factor rescaling and phase space, discussed in the previous 
section, compensate for KMRW not taking into account all previous emissions compared to PB. 
The net effect is that the behaviors of KMRW and PB are not too dissimilar for mid k⊥.

Results for the x dependence from PB, MRW-CT10nlo and PB-last-step calculations are 
shown in Fig. 5, illustrating that the effects noted above persist over a broad range in x.

In Fig. 6 the results of integrating MRW-CT10nlo, PB and PB-last-step TMDs over the trans-
verse momentum k⊥ at a given evolution scale μ are shown as functions of x. Results are shown 
for integrating TMDs over k⊥ < μ (Fig. 6 (left)) and over all k⊥ (Fig. 6 (right)). For compari-
son, we also plot CT10nlo distributions at the same μ. In the lower parts of the figure the ratios 
of integrated TMDs to CT10nlo are plotted. As expected, we observe that none of the distri-
butions integrate to CT10nlo, given that the resolution scale zM is far from 1, and the scale of 
the running coupling αs is q⊥ — see remarks below Eq. (9). In the case of integrating over all 
k⊥ (Fig. 6 (right)) we note that MRW-CT10nlo gives rise to a much higher distribution than all 
other curves, implying that the MRW-CT10nlo high-k⊥ tail has a significant impact at integrated 

5 The plots in Figs. 4–6 are obtained using the TMDplotter tool [29,30].
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Fig. 4. TMDs from PB and KMRW as functions of transverse momentum for different parton species and different values 
of longitudinal momentum fraction x and evolution scale μ.
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Fig. 5. TMDs from PB and KMRW as functions of x.

level for most values of x. On the other hand, when integrating over k⊥ < μ (Fig. 6 (left)) the 
deviation of MRW-CT10nlo from collinear CT10nlo is smaller than that of PB, which is a fur-
ther manifestation of the differences between the KMRW and PB physical pictures illustrated in 
Sec. 4.

5.2. DY Z-boson p⊥ spectrum

Z-boson transverse momentum spectra in DY di-lepton production have been measured with 
high precision at the LHC [31–34]. In the region of transverse momenta p⊥ small compared to 
the di-lepton invariant mass, the spectrum is sensitive to Sudakov resummation. Reliable the-
oretical predictions require soft-gluon resummations and nonperturbative contributions, which 
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Fig. 6. The results of integrating TMDs over k⊥ < μ (left) and over all k⊥ (right) as functions of x.

can be included by using the TMD theoretical framework. We here follow the treatment [18]
to apply PB TMDs to the DY p⊥ spectrum. We obtain predictions for the Z-boson distribution 
based on PB TMDs that include effects of dynamical soft-gluon resolution scale. We compare 
them with KMRW results. We perform a comparison of theoretical results with the LHC mea-
surements [31].

Following [18], as we are interested mainly in the low p⊥ region of the DY spectrum we use 
on-shell LO matrix elements (in the format of Les Houches Event (LHE) file [35]) generated 
by PYTHIA Monte Carlo [36]. The transverse momentum of the initial state partons is calculated 
according to the TMDs and added to the event record in such a way that the mass of the produced 
DY pair is conserved, while the longitudinal momenta are changed accordingly. This procedure 
is common in standard parton shower approaches [37,38] and is implemented in the CASCADE

package [39]. Events in HEPMC [40] format are produced and analyzed with Rivet [41].
In Fig. 7 predictions for the Z boson p⊥ spectrum at the LHC with 

√
s = 8 TeV are shown 

using MRW-CT10nlo and PB TMDs, and compared to the ATLAS measurements [31]. For ref-
erence, we also plot PB results for fixed (non-dynamical) resolution scale zM using the PB TMD 
Set-2 of Ref. [18]. We see that the MRW-CT10nlo calculation and PB calculation with dynamical 
zM give rise to different shapes in the Z-boson p⊥ spectrum both in the region of low p⊥ around 
the peak and in the region of high p⊥ toward the upper end of the transverse momentum range 
shown. There is an interval of intermediate p⊥ in which they are less dissimilar. The agreement 
of the PB calculation with the measurements is good, while MRW-CT10nlo does not describe 
the high p⊥ region, and the slope at low p⊥.

Fig. 7 also illustrates the effect of the soft-gluon dynamical resolution scale by comparing PB 
predictions with fixed and dynamical zM . We see that the slope of the p⊥ spectrum is affected 
by dynamical zM particularly in the low p⊥ region. The results indicate that measurements of 
the Z boson p⊥ with high resolution in the region p⊥ � 5–10 GeV will allow one to probe 
quantitatively effects of soft-gluon angular ordering and dynamical resolution scales. This will 
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Fig. 7. Predictions for the Z-boson p⊥ spectrum obtained with PB and MRW-CT10nlo TMDs compared to the 8 TeV
ATLAS measurement [31].

also be relevant to investigate effects from transverse momentum dependence in the branching 
probabilities (see e.g. [42,43]).

We have limited ourselves to showing results for central values of the predictions, because 
TMD uncertainties in the case of dynamical zM are not yet available. The results obtained provide 
a strong motivation for extending the PB TMD fits and determination of TMD uncertainties [18]
to include dynamical resolution scales. We leave this to future work.

6. Conclusions

In this paper, using the PB method [3,4] for angular-ordered TMD evolution, we have studied 
physical implications of the dependence of the soft-gluon resolution parameter on the branching 
scale. Mapping the phase space of resolvable and non-resolvable emissions from (μ′, z) space 
to (z, q⊥) space, we have written down the corresponding form of the evolution kernel. We have 
established the comparison of the PB formulation with other existing formulations, notably the 
ones known as CMW [9,10] and KMRW [13–16].

On one hand, we find that the PB formula coincides with CMW at the level of integrated 
distributions. CMW was originally developed by evaluating splitting kernels at LO, while we 
evaluate the kernels at NLO. On the other hand, we find significant differences of PB with re-
spect to KMRW, which can be traced back to the fact that PB builds the initial-state transverse 
momentum from multiple emissions, while KMRW builds it from single emission — the last step 
in the initial-state evolution cascade. We examine these differences in detail both analytically and 
numerically. We find that the numerical effects are large in the extreme regions of low k⊥ and 
high k⊥, but small in the middle k⊥ region.
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We apply the results to the evaluation of the DY Z-boson p⊥ spectrum and comparison with 
LHC measurements. We compare PB versus KMRW, finding significantly different behaviors in 
the low-p⊥ and high-p⊥ regions. We study the sensitivity of the Z-boson spectrum to effects of 
the soft-gluon resolution scale, and observe that these could be accessed by detailed measure-
ments of the Z-boson transverse momentum with fine binning in the region p⊥ � 5–10 GeV.

Acknowledgements

We thank M. Bury for helpful correspondence on the MRW-CT10nlo implementation, and 
K. Golec-Biernat, H. Jung and S. Plätzer for useful discussions. We gratefully acknowledge 
the hospitality and support of the Erwin Schrödinger Institute at the University of Vienna and 
Nuclear Physics Institute of the Polish Academy of Sciences in Krakow while part of this work 
was being done. This work is supported in part by the joined FWO (Fonds Wetenschappelijk 
Onderzoek)–PAS (Polish Academy of Sciences) grant V03319N.

References

[1] G. Luisoni, S. Marzani, J. Phys. G 42 (2015) 103101, arXiv :1505 .04084.
[2] R. Angeles-Martinez, et al., Acta Phys. Pol. B 46 (2015) 2501, arXiv :1507 .05267.
[3] F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik, Phys. Lett. B 772 (2017) 446, arXiv :1704 .01757.
[4] F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik, J. High Energy Phys. 01 (2018) 070, arXiv :1708 .03279.
[5] B.R. Webber, Annu. Rev. Nucl. Part. Sci. 36 (1986) 253.
[6] R.K. Ellis, W.J. Stirling, B. Webber, QCD and Collider Physics, Cambridge University Press, 2003.
[7] A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100 (1983) 201.
[8] Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, A.H. Mueller, Rev. Mod. Phys. 60 (1988) 373.
[9] G. Marchesini, B.R. Webber, Nucl. Phys. B 310 (1988) 461.

[10] S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349 (1991) 635.
[11] F. Hautmann, Phys. Lett. B 655 (2007) 26, arXiv :hep -ph /0702196.
[12] F. Hautmann, H. Jung, S.T. Monfared, Eur. Phys. J. C 74 (2014) 3082, arXiv :1407 .5935.
[13] M.A. Kimber, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 12 (2000) 655, arXiv :hep -ph /9911379.
[14] M.A. Kimber, A.D. Martin, M.G. Ryskin, Phys. Rev. D 63 (2001) 114027, arXiv :hep -ph /0101348.
[15] G. Watt, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31 (2003) 73, arXiv :hep -ph /0306169.
[16] A.D. Martin, M.G. Ryskin, G. Watt, Eur. Phys. J. C 66 (2010) 163, arXiv :0909 .5529.
[17] S.D. Drell, T.-M. Yan, Phys. Rev. Lett. 25 (1970) 316; Erratum: Phys. Rev. Lett. 25 (1970) 902.
[18] A. Bermudez Martinez, P. Connor, H. Jung, A. Lelek, R. Zlebcik, F. Hautmann, V. Radescu, Phys. Rev. D 99 (2019) 

074008, arXiv :1804 .11152.
[19] A. Bermudez Martinez, et al., arXiv :1906 .00919, 2019.
[20] F. Hautmann, TMDs and Monte Carlo event generators, in: 23rd International Symposium on Spin Physics, SPIN 

2018, Ferrara, Italy, September 10–14, 2018, 2019, Also in preprint, arXiv :1907 .03353.
[21] V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438, Yad. Fiz. 15 (1972) 781.
[22] L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94, Yad. Fiz. 20 (1974) 181.
[23] G. Altarelli, G. Parisi, Nucl. Phys. B 126 (1977) 298.
[24] Y.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641, Zh. Eksp. Teor. Fiz. 73 (1977) 1216.
[25] M. Botje, Comput. Phys. Commun. 182 (2011) 490, arXiv :1005 .1481.
[26] K. Golec-Biernat, A.M. Stasto, Phys. Lett. B 781 (2018) 633, arXiv :1803 .06246.
[27] M. Bury, A. van Hameren, H. Jung, K. Kutak, S. Sapeta, M. Serino, Eur. Phys. J. C 78 (2018) 137, arXiv :1712 .

05932.
[28] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.P. Yuan, Phys. Rev. D 82 (2010) 074024, 

arXiv :1007 .2241.
[29] F. Hautmann, H. Jung, M. Krämer, P.J. Mulders, E.R. Nocera, T.C. Rogers, A. Signori, Eur. Phys. J. C 74 (2014) 

3220, arXiv :1408 .3015.
[30] P.L.S. Connor, H. Jung, F. Hautmann, J. Scheller, PoS DIS2016 (2016) 039.
[31] ATLAS Collaboration, G. Aad, et al., Eur. Phys. J. C 76 (2016) 291, arXiv :1512 .02192.

http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4C7569736F6E693A32303135786861s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib416E67656C65732D4D617274696E657A3A32303135736561s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A32303137787478s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A3230313766636As1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib5765626265723A313938366D63s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib522E4B2E456C6C697332303033s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib426173736574746F3A31393834696Bs1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib446F6B736869747A65723A313938376E6Ds1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4D617263686573696E693A313938376366s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib436174616E693A313939307272s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A323030377577s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A32303134757561s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4B696D6265723A313939397863s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4B696D6265723A323030317363s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib576174743A323030336D78s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4D617274696E3A323030396969s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4472656C6C3A313937307768s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4D617274696E657A3A323031386A7874s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4D617274696E657A3A323031386A7874s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4D617274696E657A3A323031396D7774s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A32303139727672s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A32303139727672s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib477269626F763A313937327269s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4C697061746F763A31393734716Ds1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib416C746172656C6C693A313937377A73s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib446F6B736869747A65723A313937377367s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib426F746A653A323031306179s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib476F6C65632D426965726E61743A3230313868716Fs1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib427572793A323031376A786Fs1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib427572793A323031376A786Fs1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4C61693A323031307676s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4C61693A323031307676s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A323031346B7A61s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A323031346B7A61s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib436F6E6E6F723A32303136626D74s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4161643A3230313561756As1


16 F. Hautmann et al. / Nuclear Physics B 949 (2019) 114795
[32] ATLAS Collaboration, G. Aad, et al., J. High Energy Phys. 09 (2014) 145, arXiv :1406 .3660.
[33] CMS Collaboration, V. Khachatryan, et al., J. High Energy Phys. 02 (2017) 096, arXiv :1606 .05864.
[34] CMS Collaboration, S. Chatrchyan, et al., Phys. Rev. D 85 (2012) 032002, arXiv :1110 .4973.
[35] J. Alwall, et al., Comput. Phys. Commun. 176 (2007) 300, arXiv :hep -ph /0609017.
[36] T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178 (2008) 852, arXiv :0710 .3820.
[37] T. Sjostrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. 

Skands, Comput. Phys. Commun. 191 (2015) 159, arXiv :1410 .3012.
[38] M. Bengtsson, T. Sjostrand, M. van Zijl, Z. Phys. C 32 (1986) 67.
[39] H. Jung, et al., Eur. Phys. J. C 70 (2010) 1237, arXiv :1008 .0152.
[40] M. Dobbs, J.B. Hansen, Comput. Phys. Commun. 134 (2001) 41.
[41] A. Buckley, J. Butterworth, L. Lonnblad, D. Grellscheid, H. Hoeth, J. Monk, H. Schulz, F. Siegert, Comput. Phys. 

Commun. 184 (2013) 2803, arXiv :1003 .0694.
[42] F. Hautmann, M. Hentschinski, H. Jung, Nucl. Phys. B 865 (2012) 54, arXiv :1205 .1759.
[43] F. Hautmann, M. Hentschinski, H. Jung, arXiv :1205 .6358, 2012.

http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4161643A32303134786161s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4B6861636861747279616E3A323031366E6265s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4368617472636879616E3A323031317774s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib416C77616C6C3A323030367970s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib536A6F737472616E643A323030376773s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib536A6F737472616E643A323031347A6561s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib536A6F737472616E643A323031347A6561s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib42656E677473736F6E3A31393836677As1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4A756E673A323031307369s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib446F6262733A32303031636Bs1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4275636B6C65793A323031306172s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib4275636B6C65793A323031306172s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A323031327368s1
http://refhub.elsevier.com/S0550-3213(19)30281-0/bib486175746D616E6E3A323031327066s1

	Dynamical resolution scale in transverse momentum distributions at the LHC
	1 Introduction
	2 PB TMDs and soft-gluon angular ordering
	3 Mapping evolution scales to transverse momenta
	3.1 Case a) 1 > x >=1-q0 / μ0
	3.2 Case b)  1- q0 / μ0 > x > 0 

	4 Multiple-emission versus single-emission approaches
	4.1 Comparison with the KMRW approach
	4.2 Remark on Sudakov form factors

	5 Numerical results
	5.1 TMDs from PB and KMRW
	5.2 DY Z-boson p spectrum

	6 Conclusions
	Acknowledgements
	References


