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Abstract We present the open-source package openQ*
D-1.0 (openQ*D. GitLab: https://gitlab.com/rcstar/open
QxD. CSIC: https://dx.doi.org/10.20350/digitalCSIC/8591.
https://hdl.handle.net/10261/173334, 2019), which has been
primarily, but not uniquely, designed to perform lattice simu-
lations of QCD+QED and QCD, with and without C∗ bound-
ary conditions, and O(a) improved Wilson fermions. The use
of C∗ boundary conditions in the spatial direction allows for
a local and gauge-invariant formulation of QCD+QED in
finite volume, and provides a theoretically clean setup to cal-
culate isospin-breaking and radiative corrections to hadronic
observables from first principles. The openQ*D code is
based on openQCD-1.6 (Simulation program for lattice
QCD (openQCD code). https://cern.ch/luscher/openQCD,
2016) and NSPT-1.4 (Numerical Stochastic Perturbation
Theory (NSPT code). https://cern.ch/luscher/NSPT, 2017).
In particular it inherits from openQCD-1.6 several core
features, e.g. the highly optimized Dirac operator, the locally
deflated solver, the frequency splitting for the RHMC, or the
4th order OMF integrator.
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1 Introduction

QED radiative corrections to hadronic observables are gen-
erally rather small but they become phenomenologically
relevant when the target precision is at the percent level.
For example, the leptonic and semileptonic decay rates of
light pseudoscalar mesons are measured with a very high
accuracy and, on the theoretical side, have been calculated
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with the required non-perturbative accuracy by many lattice
collaborations. Most of these calculations have been per-
formed by simulations of lattice QCD without taking into
account QED radiative corrections. A recent review [4] of
the results obtained by the different lattice groups shows that
leptonic and semileptonic decay rates of π and K mesons
are presently known at the sub-percent level of accuracy. At
the same time, QED radiative corrections to these quantities
are estimated to be of the order of a few percent, by means of
chiral perturbation theory [5]. These estimates have recently
been confirmed in the case of the leptonic decay rates of
π and K by a first-principle lattice calculation of the QED
radiative corrections at O(α) in Refs. [6,7].

Other remarkable examples of observables for which QED
radiative corrections are phenomenologically relevant are
the so-called lepton flavour universality ratios. For example
R(D(∗)) is defined as the branching ratio for B �→ D(∗)�ν̄�

with � = e, μ divided by the branching ratio for B �→
D(∗)τ ν̄τ . Most of the hadronic uncertainties cancel in these
ratios that are built in such a way that they are trivial in
the Standard Model, in the limit in which the two leptons
have the same mass. Presently, a combined analysis [8] of
the R(D) and R(D∗) ratios shows a deviation of the experi-
mental measurements from the theoretical predictions of the
order of 3 standard deviations. On the other hand, QED radia-
tive corrections are different for the two leptons because of
the different masses and an improved theoretical treatment
of these effects (see for example Refs. [9,10] for a discussion
of this point) can possibly enhance or reconcile the observed
discrepancy between the experimental measurements and the
theoretical expectations.

QED radiative corrections to hadronic observables can be
computed from first principles by performing lattice simula-
tions of QCD coupled to QED, treating the photon field on an
equal footing as the gluon field. Since these corrections are
expected to be at the percent level, in order to resolve them
against the statistical noise, one needs to simulate at various
values of the fine-structure constant and to interpolate to the
physical value. This approach, pioneered in Refs. [11–13],
is highly non-trivial from both the numerical and theoretical
point of view, because of the peculiarities of QED. Numeri-
cally, lattice calculations are unavoidably affected by statis-
tical and systematic uncertainties and it can be challenging
to resolve QED radiative corrections from the leading QCD
contributions within the errors of a simulation. Theoretically,
a big issue arises because lattice calculations have necessarily
to be done on a finite volume. QED is a long-range interaction
and, consequently, finite-volume effects are the key issue in
presence of electromagnetic interactions.

In fact, as a consequence of Gauss’ law, it is impossible
to have a net electric charge on a periodic torus. Because of
this strong theoretical constraint, it is particularly challeng-
ing to calculate from first principles physical observables

associated with electrically charged external states, such as
the phenomenologically relevant quantities discussed above.
Several approaches have been proposed over the years to cope
with this problem, see Ref. [14] for a recent review. The most
popular approaches to the problem of charged particles on
the torus solve the Gauss’ law constraint by introducing non-
local terms in the finite-volume action of the theory.1 The
effects induced by the non-locality of the action are expected
to disappear once the infinite-volume limit is properly taken
and, as far as O(α) QED radiative corrections are concerned,
it is generally possible to show that this is indeed the case.

On the one hand, the non-local formulations of the theory
are particularly appealing because of their formal simplicity.
On the other hand, it has been shown in Ref. [18] that it
is possible to probe electrically charged states on a finite
volume by starting from a local formulation of the theory and,
remarkably, in a fully gauge-invariant way. This is possible
by using C-parity (or C∗) boundary conditions for all the
fields and by using a certain class of interpolating operators
originally introduced by Dirac in a seminal work [19] on the
canonical quantization of QED.

The formulation of Ref. [18] has also been studied numer-
ically. The results for the meson masses extracted in a fully
gauge-invariant way from lattice simulations of QCD+QED
with C∗ boundary conditions obtained in Ref. [20] provide a
convincing numerical evidence that, beside being an attrac-
tive theoretical formulation, the proposal of Ref. [18] is also a
valid numerical alternative for the calculation of QED radia-
tive corrections on the lattice. This motivated the present
work.

In this paper we present the open-source package
openQ*D, which can be used to simulate QCD+QED, QCD,
the pure SU(3) and U(1) gauge theories.2 The code allows to
choose a wide variety of temporal and spatial boundary con-
ditions. In particular, it allows to perform dynamical simula-
tions of QCD+QED with C∗ but also with periodic bound-
ary conditions along the spatial directions. Simulations of
QCD with C∗ boundary conditions can be a valuable starting
point for the application of the RM123 method [21], in which
observables are calculated order-by-order in the electromag-
netic coupling. A fully tested and stable release of openQ*D
can be downloaded from [1].

The openQ*D package is based on the openQCD [2]
package from which it inherits the core features, most notably
the implementation of the Dirac operator, of the solvers and
the possibility of simulating open and Schrödinger func-

1 A different approach is based on the idea that one can write
QCD+QED observables at first order in α as QCD observables with
analytic (possibly infinite-volume) QED kernels, e.g. [15–17].
2 The code allows also for (inefficient) simulations of QED in isolation,
even though a main program for this purpose is not provided in the 1.0
version.
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Fig. 1 Summary of salient
features of openQ*D. Some
features inherited from
openQCD and NSPT are
highlighted

tional boundary conditions in the time direction. One of the
inherited solvers implements the inexact deflation algorithm
of Ref. [22]. An added value of the openQ*D package is
the possibility of using more deflation subspaces in a sin-
gle simulation. This is particularly important in the case
of QCD+QED simulations because different deflation sub-
spaces have to be generated for quarks having different elec-
tric charges.

Another important feature present in the openQ*D pack-
age is the possibility to use Fourier Acceleration [23,24] for
the molecular dynamics evolution of the U(1) field. The used
implementation of the Fast Fourier Transform (FFT) is an
adaptation of the corresponding module in the NSPT [3,25]
package.

The remaining of this paper is organised as follows. In
Sect. 2 we give an overview of the theoretical background
needed to understand the actions simulated by openQ*D,
and we describe some peculiar aspects of the simulation
algorithm. In particular, the specific implementation of C∗
boundary conditions and of the Fourier Acceleration for the
U(1) field are discussed. In Sect. 3 we provide instructions on
how to compile the code, construct a sample input file, and
run the program that generates QCD+QED configurations.

Section 4 is a collection of tests and performance studies.
In particular, we present scalability tests, and studies of the
performance of solvers for the Dirac equation for electrically
charged fields. We also illustrate the outcome of some sample
runs performed for testing purposes. In Fig. 1, we provide a
schematic view of the openQ*D functionalities.

2 Theoretical background

An overview of the main algorithmic choices made in the
code will be given in this section. The fundamental fields
are the SU(3) link variable Uμ(x) and the real photon field
Aμ(x). Since only the compact formulation of QED is imple-
mented at present, all observables are written in terms of the
U(1) link variable

zμ(x) = exp{i Aμ(x)}, (2.1)

which implies that the real photon field can be restricted to
−π ≤ Aμ(x) ≤ π with no loss of generality. Various bound-
ary conditions can be chosen for the gauge fields: periodic,
open [26], Schrödinger Functional (SF) [27,28] and open-
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SF boundary conditions [29] in the Euclidean time direction
μ = 0, periodic and C∗ boundary conditions [30–33] in the
spatial directions. The implementation of C∗ boundary con-
ditions is discussed in Sect. 2.1.

After integrating out the fermion fields in a usual way, the
target distribution of QCD+QED if no C∗ boundary condi-
tions are used is

ρtar(U, A) ∝ e−Sg,SU(3)(U )−Sg,U(1)(A)
∏

f

det D f , (2.2)

where the gauge actions Sg,SU(3)(U ) and Sg,U(1)(A) are
briefly discussed in Sect. 2.2, the product runs over the simu-
lated fermion flavours indicized by f , and the Dirac operator
D is introduced in Sect. 2.3. If C∗ boundary conditions are
used, the determinant is replaced by a Pfaffian, i.e.

ρtar(U, A) ∝ e−Sg,SU(3)(U )−Sg,U(1)(A)
∏

f

pf (CT D f ), (2.3)

where C is the charge conjugation matrix and T is a field-
independent matrix satisfying T 2 = 1, whose detailed defi-
nition can be found in Sect. 2.1. While in the continuum limit
the determinant and the Pfaffian are positive, this is not the
case with Wilson fermions. The absolute value is considered
in both cases, which amounts to replacing

det D f → ∣∣det D f
∣∣ ,

pf (CT D f ) → ∣∣pf (CT D f )
∣∣ = ∣∣det D f

∣∣1/2
.

(2.4)

The sign should be separately calculated and included in the
evaluation of observables as a reweighting factor [34,35]. It is
important to stress that this is a mild sign problem [18], which
becomes irrelevant sufficiently close to the continuum limit,
and which is also present in standard QCD simulations for the
strange quark. The presented strategy is in line with state-of-
the-art QCD and QCD+QED simulations, in which the sign
of the determinant is simply ignored. Future work will be
planned to investigate the importance of the sign especially
at lighter quark masses.

After introducing the standard even–odd preconditioned
operator D̂ [36], one rewrites the quark part of the distribution
as

∏

f

∣∣det D f
∣∣2α f =

∏

f

det(D†
f D f )

α f

= e−Ssdet(U,A)
∏

f

det(D̂†
f D̂ f )

α f , (2.5)

where α f is either 1/2 or 1/4. The definitions of D̂ f and Ssdet

can be found in Sect. 2.3. Instead of this target distribution,
the openQ*D code simulates a slightly different distribution

ρsim(U, A) ∝ e−Sg,SU(3)(U )−Sg,U(1)(A)e−Ssdet(U,A)
∏

f

det R−1
f .

(2.6)

written in terms of a rational approximation R f [37]

R f � (D̂†
f D̂ f + μ2

f )
−α f , (2.7)

where μ f is a tunable parameter introduced to suppress con-
figurations with exceptionally small eigenvalues of D̂†

f D̂ f

(twisted-mass reweighting [26,38]). If μ f is small enough
and the rational approximation is accurate enough, the sim-
ulated distribution ρsim(U, A) is very close to the target one
ρtar(U, A). The difference is corrected by means of reweight-
ing factors W f

ρtar(U, A)

ρsim(U, A)
∝

∏

f

W f , W f = det
[
(D̂†

f D̂ f )
α f R f

]
,

(2.8)

which have to be separately calculated and included in the
expectation values of observables as follows

〈O〉tar = 〈O ∏
f W f 〉

〈∏ f W f 〉 . (2.9)

The detailed discussion of the supported reweighting factors
can be found in Appendix A. The rational function R f can be
decomposed in a product of positive factors R f,� (frequency
splitting [26]). More details on frequency splitting are pro-
vided in Sect. A.2. The determinant of the rational functions
is finally represented by means of a pseudofermion quadratic
action as in

det R−1
f =

∏

�

det R−1
f,� =

∫
[d�] e−∑

�(� f,�,R f,�� f,�).

(2.10)

The distribution is generated by means of a Hybrid Monte
Carlo (HMC) algorithm with Fourier acceleration for the
U(1) field. The molecular dynamics (MD) Hamiltonian is
given by

H = 1

2
(π,	−1π)U(1) + 1

2
(
,
)SU(3) + S(U, A,�),

(2.11)

where 
μ(x) and πμ(x) denote the momentum fields associ-
ated to the SU(3) and U(1) fields, the operator (−	) is a dis-
cretization of the Laplace operator, and the action is given by

S(U, A,�) = Sg,SU(3)(U ) + Sg,U(1)(A) + Ssdet(U, A)

+
∑

f,�

(� f,�, R f,�� f,�). (2.12)
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Details on the implementation of the Fourier acceleration are
presented in Appendix B. The HMC consists of three steps.

1. The momentum and pseudofermion fields are randomly
generated with probability distribution given by e−H ;

2. The gauge fields are evolved with a discretized version
of the MD equations, i.e.

∂t Aμ(x) = 	−1πμ(x)

∂tUμ(x) = 
μ(x)Uμ(x)

∂tπμ(x) = −∂Aμ(x)S(U, A,�),

∂t
μ(x) = −∂Uμ(x)S(U, A,�), (2.13)

where ∂Uμ(x) is the left Lie derivative with respect to
Uμ(x) while ∂Aμ(x) is the elementary derivative with
respect to Aμ(x). In practice multiple time-scale [39]
symplectic integrators are used to solve the MD equa-
tion: leapfrog, 2nd and 4th order Omelyan–Mryglod–
Folk integrators [40] are available (LF, OMF2, OMF4).

3. The evolved gauge configuration is accepted or rejected
with a standard Metropolis test with probability distribu-
tion given by e−H .

2.1 C∗ boundary conditions

Other than the variety of boundary conditions in the tempo-
ral direction inherited from openQCD-1.6, the openQ*D
code allows for periodic or C∗ boundary conditions to be
chosen in the spatial directions. If the gauge fields sat-
isfy periodic boundary conditions in all spatial directions
k, the fermion fields ψ f (x) and ψ̄ f (x) satisfy general phase-
periodic boundary conditions ( f is the flavour index), i.e.

Uμ(x + Lkêk) = Uμ(x),

Aμ(x + Lkêk) = Aμ(x), (2.14)

ψ f (x + Lkêk) = eiθ f,kψ f (x),

ψ̄ f (x + Lkêk) = e−iθ f,k ψ̄ f (x). (2.15)

Phase-periodic boundary conditions are incompatible with
C∗ boundary conditions. If the gauge fields satisfy C∗ bound-
ary conditions in at least one direction, say k, then θ f, j = 0
for all f and j , and

Uμ(x + Lkêk) = U∗
μ(x),

Aμ(x + Lkêk) = −Aμ(x), (2.16)

ψ f (x + Lkêk) = C−1ψ̄T
f (x),

ψ̄ f (x + Lkêk) = −ψT
f (x)C. (2.17)

Fig. 2 Global geometry of extended lattice. The top diagram rep-
resents a section of the extended lattice along a (1, k) plane where
k = 2, 3 is a direction with C∗ boundary conditions. All fields are
periodic along the extended direction 1. C∗ boundary conditions in the
direction k = 2, 3 are replaced by shifted boundary conditions in the
extended lattice. Shifted boundary conditions are imposed by prop-
erly defining the nearest neighbours of boundary sites. Empty circles
in the red (resp. green, blue) rectangle have to be identified with the
corresponding solid circles in the red (resp. green, blue) rectangle. The
bottom diagram represents a section of the extended lattice along a
(1, k) plane where k = 2, 3 is a periodic direction. In both diagrams,
the black circles represent the sites of the physical lattice, and the grey
circles represent the sites of the mirror lattice

The charge-conjugation matrix C satisfies

CT = −C, C† = C−1, C−1γμC = −γ T
μ . (2.18)

C∗ boundary conditions are implemented by means of an
orbifold construction. Assume that k = 1 is a direction with
C∗ boundary conditions,3 in order to simulate a physical lat-
tice with size V = L0 × L1 × L2 × L3 the openQ*D code
allocates a lattice with size VC∗ = L0 × (2L1) × L2 × L3,
which we will refer to as the extended lattice. Points in the
physical lattice are assumed to have coordinates which sat-
isfy 0 ≤ xμ < Lμ. The extended lattice can be interpreted
as a double-covering of the physical lattice, with coordinates
satisfying 0 ≤ xμ < Lμ for μ 
= 1 and 0 ≤ x1 < 2L1. Points
outside the physical lattice constitute the mirror lattice. On

3 In the input file of a typical main program inopenQ*D (see Sect. 3.2),
one can choose the number of spatial directions with C∗ boundary con-
ditions. C∗ boundary conditions are turned on sequentially in directions
1, 2 and 3.
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the extended lattice, points x and x + Lkêk do not coincide,
so Eqs. (2.16) and (2.17) have to be interpreted as constraints
which define the admissible gauge and fermion fields. These
are referred to as the orbifold constraints. While the admis-
sible gauge fields in the mirror lattice are completely deter-
mined by the value of the gauge field in the physical lattice
via (2.16), the orbifold constraint has a different meaning for
fermion fields, providing a relation between ψ in the physi-
cal lattice and ψ̄ in the mirror lattice, and vice versa. Given
that the fermion fields ψ and ψ̄ are independent Grassmanian
variables on the physical lattice, then one can equivalently
choose the value of ψ in each point of the extended lattice as
a complete set of independent variables. The integration of
the Grassmanian variables yields the Pfaffian of the operator
CT D [18], where T is the translation operator defined by

Tψ(x) = ψ(x + L1ê1). (2.19)

One easily proves that

|pf (CT D)| = |det D|1/2 , (2.20)

which justifies the need for α f = 1/4 in Eq. (2.5). Since the
square of the charge-conjugation operation is the identity,
all fields must obey periodic boundary conditions along the
extended direction k = 1, i.e.

Uμ(x + 2L1ê1) = Uμ(x), Aμ(x + 2L1ê1) = Aμ(x),
(2.21)

ψ f (x + 2L1ê1) = ψ f (x), ψ̄ f (x + 2L1ê1) = ψ̄ f (x).
(2.22)

C∗ boundary conditions in directions k = 2, 3 are imple-
mented by modifying the global topology of the extended
lattice (see Fig. 2). In fact in these directions, C∗ bound-
ary conditions in the physical lattice imply shifted boundary
conditions in the extended lattice, i.e.

Uμ(x + Lkêk) = Uμ(x + L1ê1),

Aμ(x + Lkêk) = Aμ(x + L1ê1), (2.23)

ψ f (x + Lkêk) = ψ f (x + L1ê1),

ψ̄ f (x + Lkêk) = ψ̄ f (x + L1ê1). (2.24)

When the determinant of the Dirac operator is stochasti-
cally estimated by means of a pseudofermion action as in
Eq. (2.12), the pseudofermion field � f,� is natively defined
on the extended lattice, i.e. � f,�(x) are truly independent
variables for each x in the extended lattice. Moreover it sat-
isfies the same boundary conditions as ψ f in Eqs. (2.22)
and (2.24).

It is worth noticing that C∗ boundary conditions can be
implemented in different ways. For instance, the implemen-
tation proposed in Appendix D of Ref. [18] does not double
the lattice, but the number of pseudofermion fields. Roughly

speaking one needs to represent quarks and antiquarks by
means of independent pseudofermion fields which are mixed
by the boundary conditions. The openQ*D implementation
simply maps each pair of pseudofermion fields in the geom-
etry of the extended lattice. The cost of the application of
the Dirac operator implemented as in openQ*D and as in
[18] is exactly identical. Therefore, as far as the applica-
tion and inversion of the Dirac operator, the orbifold con-
struction does not introduce any overhead with respect to
more standard implementations of C∗ boundary conditions.
On the other hand, the gauge field is evolved twice. In prin-
ciple one could evolve the gauge field only on the physical
lattice and then copy its value to the mirror lattice. This strat-
egy will be considered in the future. However, simulations
close to the physical point are dominated by the inversion of
the Dirac operator and the overhead due to the evolution of
the gauge field is expected to be negligible. Evidence of this
fact has been presented in [41]. The orbifold construction
has been chosen essentially because it requires only minimal
modifications of the openQCD code. In fact the functions
that impose the orbifold constraint on gauge and momentum
fields are trivial, shifted boundary conditions (by half lattice)
are implemented by a simple redefinition of the map of near-
est neighbouring MPI processes, and finally gauge action and
forces need to be multiplied by a factor 1/2. On the other hand
the Dirac operators and the solvers are completely untouched
by the orbifold construction.

2.2 Gauge actions

The SU(3) and compact U(1) gauge actions that can be sim-
ulated with openQ*D are

Sg,SU(3) = ωC∗

g2
0

1∑

k=0

cSU(3)
k

∑

C∈Sk

tr [1 −U (C)], (2.25)

Sg,U(1) = ωC∗

2q2
ele

2
0

1∑

k=0

cU(1)
k

∑

C∈Sk

[1 − z(C)], (2.26)

where U (C) and z(C) denote the SU(3) and U(1) parallel
transports along a path C on the lattice. S0 and S1 are the
sets of all oriented plaquettes and all oriented 1 × 2 planar
loops respectively and the overall weight ωC∗ is 1 if no C∗
boundary conditions are used. With C∗ boundary conditions
ωC∗ = 1/2 corrects for the double counting introduced by
summing over all plaquette and double-plaquette loops in the
extended lattice instead of the physical lattice (c.f. Sect. 2.1).
The coefficients c0,1 satisfy the relation c0 + 8c1 = 1. For
SU(3), the Wilson action is obtained by choosing c0 = 1,
the tree-level improved Symanzik (or Lüscher–Weisz) action
is obtained by choosing c0 = 5

3 , and the Iwasaki action is
obtained by choosing c0 = 3.648. The parameters g0 and
e0 are the bare SU(3) and U(1) gauge couplings respec-
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tively, which are related to the β parameter and the bare
fine-structure constant α0 by

β = 6

g2
0

, α0 = e2
0

4π
. (2.27)

In the compact formulation of QED, all electric charges must
be integer multiples of some elementary charge qel which is
defined in units of the charge of the positron. As discussed
in Ref. [18], qel appears as an overall factor in the gauge
action and essentially sets the normalization of the U(1)
gauge field in the continuum limit. Even though in infinite
volume qel = 1/3 would be an appropriate choice in order
to simulate quarks, in finite volume with C∗ boundary con-
ditions one needs to choose qel = 1/6 in order to construct
gauge-invariant interpolating operators for charged hadrons
[18,20]. Note that by using a compact formulation of QED,
no gauge fixing is added to the action, and furthermore the
user is free to choose simulating (QCD+)QED without C∗
boundary conditions.

The actions in Eqs. (2.25) and (2.26) assume periodic
boundary conditions in time. In the more general case, the
actions are modified at the time boundary in order to allow for
O(a) improvement. The general form of the gauge actions
can be found in [42].

2.3 Dirac operator

The Dirac operator implemented in openQ*D is given by a
sum of terms

D = m0 + Dw + δDsw + δDb, (2.28)

where Dw is the (unimproved) Wilson–Dirac operator, δDsw

is the Sheikholeslami–Wohlert (SW) term, and δDb is the
time boundary O(a)-improvement term. For simplicity, peri-
odic boundary conditions in the time direction will be
assumed, which means δDb = 0. The definition of δDb for
other boundary conditions can be found in [43]. The Wilson–
Dirac operator of Eq. (2.28) can be written as

Dw =
3∑

μ=0

1

2

{
γμ(∇μ + ∇∗

μ) − ∇∗
μ∇μ

}
, (2.29)

where the covariant derivatives are defined as

∇μψ(x) = U (x, μ)z(x, μ)q̂ψ(x + μ̂) − ψ(x), (2.30)

∇∗
μψ(x) = ψ(x) −U (x − μ̂, μ)†z(x − μ̂, μ)−q̂ψ(x − μ̂).

(2.31)

The SW term is given by

δDsw = cSU(3)
sw

3∑

μ,ν=0

i
4σμν F̂μν + q cU(1)

sw

3∑

μ,ν=0

i
4σμν Âμν.

(2.32)

The SU(3) field tensor F̂μν(x) and the U(1) field tensor
Âμν(x) are constructed in terms of the clover plaquette.
The explicit expression of the SU(3) field tensor used in
openQ*D can be found in Ref. [44], while the U(1) field
tensor is given here,

Âμν(x) = i
4qel

Im
{
zμν(x) + zμν(x − μ̂) + zμν(x − ν̂)

+ zμν(x − μ̂ − ν̂)
}
, (2.33)

zμν(x) = z(x, μ)z(x + μ̂, ν)z(x + ν̂, μ)†z(x, ν)†. (2.34)

The normalization is chosen in such a way that −ie0 Âμν(x)
is the canonically-normalized field tensor in the naive con-
tinuum limit. Notice that the field tensors are anti-hermitian.

In presence of electromagnetism, the Dirac operator
depends on the electric charge of the quark field. Let q be
the physical electric charge in units of e (i.e. q = 2/3 for
the up quark, and q = −1/3 for the down quark). In the
compact formulation of QED, all electric charges must be
integer multiples of an elementary charge qel, which appears
as a parameter in the U(1) gauge action (2.26). The integer
parameter

q̂ = q

qel
∈ Z (2.35)

is the one appearing in the hopping term in Eqs. (2.30) and
(2.31). On the other hand, notice that the SW term (2.32) is
written in terms of the physical charge q. This normalization
corresponds to a definition of cU(1)

sw which is equal to 1 at tree
level. The definition of the even–odd preconditioned Dirac
operator D̂ is standard [36]

D̂ = Dee − DeoD
−1
oo Doe, D =

(
Dee Deo

Doe Doo

)
(2.36)

and so is the definition of the small-determinant action Ssdet

appearing in Eq. (2.5)

Ssdet = −
∑

f

α f tr log(1 + D f,oo). (2.37)

3 Simulating QCD+QED with openQ*D

3.1 Structure of the openQ*D program package

TheopenQ*D code includes several main programs, roughly
divided in three categories: programs to generate configura-
tions, programs to measure observables, and utility programs.
The following programs (in the main directory) can be used
to generate gauge configurations for various theories:

• iso1: SU(3)×U(1) gauge theory with dynamical
fermions;

• qcd1: SU(3) gauge theory with dynamical fermions;
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• ym1: SU(3) pure gauge theory;
• mxw1: U(1) pure gauge theory.

The following programs (in the main directory) can be used
to calculate simple observables:

• ms1: reweighting factors (see Sect. 3.2 and Appendix A);
• ms2: spectral range of (D̂† D̂)1/2 (D̂ is the even–odd

preconditioned Dirac operator);
• ms3: SU(3) Wilson-flow observables;
• ms4: quark propagators;
• ms5: U(1) Wilson-flow observables;
• ms6: neutral pseudoscalar–pseudoscalar and axial–

pseudoscalar correlators.

Finally, the following utility programs are also included:

• minmax/minmax: it generates the rational approxima-
tions needed for the RHMC algorithm;

• devel/nompi/read*: they can be used to read the
binary *.dat files generated by the other programs.

3.2 User guide for the dynamical QCD+QED simulation
program iso1

3.2.1 Compiling and running the main program

A complete guide to the usage of all programs listed in
Sect. 3.1 can be found in the headers of the source-code
files, and in the README files in the corresponding direc-
tories. Often the user will be referred to other sources of
documentation (e.g. README files in some of the modules
subdirectories, or the headers of other source-code files, and
some of the PDF files in the doc directory). This section is
intended to be neither a replacement nor a duplicate of these
sources of documentation, but rather an overview of the main
steps that are needed to use the iso1 program to generate
QCD+QED configurations.

1. Download the code and check the dependences. The
code is publicly available on GitLab at https://gitlab.com/
rcstar/openQxD. The simulation and measurement pro-
grams, i.e. all programs in the main directory, require
some MPI libraries compliant with the MPI 1.2 (or
later) standard. The minmax program requires the GMP
(https://gmplib.org) and GNU MPFR (http://www.mpfr.
org) libraries. Notice that the minmax program can be
run on a personal computer and does not need MPI, there-
fore one does not need to install the GMP and GNU
MPFR libraries on production machines.

2. Set the environment variables. The Makefile in the
main directory assumes that the C compiler can be
called by using $(GCC), the MPI header file is found at

$(MPI_INCLUDE)/mpi.h, the MPI compiled library
is found in the $(MPI_HOME)/lib/ directory, and the
mpicc command is available. The needed environment
variables can be defined in the appropriate shell initial-
ization files, e.g.

#!/bin/bash
# [Stuff]

export GCC="gcc"
export MPI_INCLUDE="/usr/local/

include/"
export MPI_HOME="/usr/local/"

3. Choose the intrinsics accelerationoptions.Some pieces
of code exist in several versions: plain C, inline-assembly
with SSE instructions, and inline-assembly with AVX
instructions. The default Makefile uses the C version of
the code. In order to use the inline-assembly version, one
needs to modify the CFLAGS variable defined in lines
122–124 of main/Makefile. For instance, on some
x86-64 machines one can use

122 CFLAGS = -std=c89 -pedantic\
123 -fstrict -aliasing \
124 -Wall -Wno -long -long\
125 -Wstrict -prototypes \
126 -Werror -O -mno -avx -DAVX\
127 -DFMA3 -DPM

which activates AVX and FMA3 instructions and assumes
that prefetch instructions fetch 64 bytes at a time. For a
full description of available options, refer to the README
file in the root directory.

4. Choose the lattice geometry. The lattice geometry is
chosen at compile time by modifying the macros defined
in the first part of the include/global.h file. A
full description of these macros can be found in the
main/README.global file. For instance the follow-
ing choice

18 #define NPROC0 8
19 #define NPROC1 8
20 #define NPROC2 4
21 #define NPROC3 4
22

23 #define L0 8
24 #define L1 8
25 #define L2 8
26 #define L3 8

corresponds to an 84 local lattice, replicated on an 82×42

MPI process grid (the code will need to be run with 1024
MPI processes), which yields a 642 × 322 global lat-
tice. As explained in Sect. 2.1, this choice of simulation
parameters corresponds to a 642 × 322 physical global
lattice if no C∗ boundary conditions are used, or to a
64 × 323 physical global lattice if C∗ boundary condi-
tions are used in at least one spatial direction. In our
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implementation, NPROCn has to be a multiple of 2 if C∗
boundary conditions are used in the directionn = 1, 2, 3.

5. Compile the iso1 program and prepare for running.
At this point, the code is ready to be compiled. Assuming
that the root directory of the code is $HOME/openQxD,
this is done by executing the following commands in a
bash shell.

cd ${HOME}/ openQxD/main
make iso1

One can set up the directories and files to run the code
by executing the following commands in a bash shell.

cd ${HOME}/ openQxD
mkdir test
cd test
mkdir cnfg dat log input
cp ../ main/iso1 iso1
> input/pedro01.in
> runtest.sh
chmod a+x runtest.sh

6. Edit the inputfile.The input fileinput/pedro01.in
must contain all adjustable parameters of the simulation
(except the few ones that have been set at compile time).
A rough guide on how to construct an input file for the
iso1 program is found in Sect. 3.2.2. Alternatively, a
sample input file can be cut and paste from Appendix C.

7. Start the simulation. Edit the runtest.sh script as
follows:

#!/bin/bash
./iso1 -i input/pedro01.in -noloc

-rmold

The runtest.sh script contains the command that
invokes the iso1 program. It can be launched via a stan-
dard mpirun command, or incorporated in a script for a
job scheduler. Recall that the number of needed MPI pro-
cesses has been decided at compile time, and it is equal to
1024 in this case. The iso1 program takes a number of
command-line options: the input file is specified with the
-i option, the -noloc option specifies that the config-
uration files must be saved by a single MPI process, the
-rmold specifies that only the most recent configuration
must be kept and all previous ones must be deleted. The
program will start the simulation from a randomly gener-
ated configuration. More details about the command-line
options can be found in the main/README.iso1 file.

8. Interrupt the simulation.Assuming that no error is pro-
duced, the simulation code will end naturally when all the
configurations requested in the input file are generated.
If the simulation needs to be interrupted earlier, one can
just execute the following commands in a bash shell.

cd ${HOME}/ openQxD/test
touch log/pedro01.end

The simulation code will stop gracefully right after the
next configuration is saved.

9. Resume the simulation. Assuming that the last gener-
ated configuration was pedro01n42, edit the input file
and set the nth variable in the [MD trajectories]
section to 0 (see below for a description of the input file),
and edit the runtest.sh script as follows:

#!/bin/bash
./iso1 -i input/pedro01.in -noloc

-rmold -c pedro01n42 -a

Once this is executed, the simulation will continue from
where it was interrupted.

3.2.2 Constructing the input file for iso1

Most of the parameters needed to generate configurations are
passed to the iso1 program by means of a human-readable
input file, in this case pedro01.in in the test/input
directory. For a full description of the various parameters,
the reader is referred to the main/README.iso1 and
doc/parms.pdf files (and references therein). A rough
guide to the various sections that compose the input file is
provided here, with no ambition of completeness.

1. Run name and output directories.

[Run name]

name pedro01

[Directories]

log_dir ./log # absolute path , or relative path

dat_dir ./dat # to the working directory of iso1

cnfg_dir ./cnfg

The program iso1 will produce several output files:

• ./log/pedro01.log, human-readable file, with
general information about the simulation;

• ./dat/pedro01.dat, binary file, with the his-
tory of simple diagnostic observables;

• ./dat/pedro01.ms3.dat and ./dat/
pedro01.ms5.dat, binary files, with the history
of SU(3) and U(1) Wilson flow observables;

• ./dat/pedro01.par, binary file, with all simu-
lation parameters;

• ./dat/pedro01.rng, binary file, with the state
of the random number generator at the time of the
most recent saved configuration;

• ./cnfg/pedro01n*, binary files, with the gauge
configuration.

For every file in the log and dat directories, a backup
file identified by a tilde at the end of its name is created
and updated every time a configuration is saved.
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2. Schedule management.

[M D trajectories]

nth 100 # multiple of dtr_cnfg

ntr 800 # multiple of dtr_cnfg

dtr_log 5

dtr_ms 10 # multiple of dtr_log

dtr_cnfg 50 # multiple of dtr_ms

The program iso1 will print one entry in the log file
every 5 MD trajectories, will measure and print Wilson
flow observables every 10 MD trajectories, will save a
configuration every 50 MD trajectories. The first 100
trajectories are considered of thermalization (no observ-
ables are measured), a total of 800 MD trajectories will
be generated and 15 configurations will be saved.

3. Ranlux [45] initialization.

[Random number generator]

level 0 # this should not be changed

seed 19521 # this can be any positive

integer

4. Boundary conditions.

[Boundary conditions]

type periodic # or SF , open , open -SF

cstar 3 # or 0, 1, 2

In this case periodic boundary conditions are chosen
in time, and C∗ boundary conditions in all 3 spatial
directions. The implementation of C∗ boundary condi-
tions in openQ*D is described in Sect. 2.1. If SF or
open-SF boundary conditions are chosen in time, the
number of parameters in this section increases, as one
needs to specify the value of the fields on the SF bound-
aries. For a full description of these parameters, refer to
doc/parms.pdf.

5. Gauge actions.

[ SU (3) a c t i o n ]

beta 5.3

c0 1.0 # 1 = Wilson , 5/3 = L ü scher - Weisz , 3 .6 48 = I w a s a k i

[ U (1) a c t i o n ]

type c o m p a c t # only o p t i o n c u r r e n t l y a v a i l a b l e

alpha 0.05 # bare fine - s t r u c t u r e c o n s t a n t

i n v q e l 6.0 # see " Qu ark f l a v o u r s " be low

c0 1.0 # W i l s o n a c t i o n

If different boundary conditions in time are chosen,
the number of parameters in these sections increases,
as one needs to specify the O(a)-improvement bound-
ary coefficients. Refer to doc/gauge_action.pdf,
doc/parms.pdf of all these parameters.

6. Quark flavours. In the terminology of the openQ*D
code, aquarkflavour is identified by all adjustable param-
eters that define the Dirac operator. For instance, in a
simulation in the isospin symmetric limit, the up and
down quark count as a single quark flavour. In the fol-
lowing example, two quark flavours are requested, and
the parameters of the corresponding Dirac operators are
initialized.

[Quark action]

nfl 2

[Flavour 0] # Down quark

qhat -2 # qhat must be integer

# el. charge = qhat/invqel = -2/6 = -1/3

kappa 0.136377 # hopping parameter

su3csw 1.909520 # u1csw = su3csw = 0 => no O(a) improv.

u1csw 1.0 # u1csw = su3csw = 1 => tree -level O(a)

improv.

[Flavour 1] # Up quark

qhat 4 # el. charge = qhat/invqel = 4/6 = 2/3

kappa 0.137312

su3csw 1.909520

u1csw 1.0

If different boundary conditions in time are chosen,
the number of parameters in these sections increases,
as one needs to specify the O(a)-improvement bound-
ary coefficients. Also, if no C∗ boundary conditions are
used, one can choose phase-periodic boundary condi-
tions for fermions in space. Refer to doc/dirac.pdf,
doc/parms.pdf for a detailed explanation of all these
parameters.

7. Rational approximation. With C∗ boundary condi-
tions, the Pfaffian of the even–odd preconditioned Dirac
operator D̂ is needed, whose absolute value can be
generated by a pseudofermion effective action of the
type ψ†(D̂† D̂)−1/4ψ . The fractional power of D̂† D̂
is replaced by a rational approximation, which must
be generated by means of the minmax program [46,
47]. We sketch here how to use this program, see
minmax/README for more details.

First, one needs to modify the GCC and MPLIBPATH
variables inminmax/Makefile. The Makefile assumes
that the C compiler can be called by using $(GCC),
the GMP and MPFR header files are found in the
$(MPLIBPATH)/include/ directory, and the com-
piled libraries are found in the $(MPLIBPATH)/lib/
directory.

22 GCC = gcc
23

24 MPLIBPATH = /usr/local

The minmax program is compiled and executed with the
following commands in a bash shell.

cd ${HOME}/ openQxD/minmax
make
./ minmax -p -1 -q 4 -ra 1.98e-03

-rb 7.62 -goal 6e-05

A rational approximation for (D̂† D̂)α is requested, with
α = (−1)/(4) (-p and -q options), assuming that the
eigenvalues of (D̂† D̂)1/2 are in the interval [1.98 ×
10−3, 7.62] (-ra and -rb options), with a target relative
precision of 6×10−5 (-goal option). The spectral range
of (D̂† D̂)1/2 must be guessed at first, but after some con-
figurations have been generated it can be calculated with
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the program main/ms2. The minmax program creates
a directory with a very long name, in this case

p-1q4mu0.00000000e+00ra1.98000000e

-03rb7.62000000e+00

which contains several files named n*.in. The integer
in the file name corresponds to the order of the generated
rational approximation. Only the highest order rational
approximation,n10.in in this case, meets the requested
precision. The full content of then10.inmust be pasted
in the input file in a section of the following type,

[Rational 0]

power -1 4

degree 10

range 1.98000000e-03 7.62000000e+00

mu 0.00000000e+00

delta 5.9691841082503071e-05

A 2.04978213590663732591e-01

nu[0] 1.22647978559899293316e+01

mu[0] 8.40737261524814627478e+00

# [...] the full content of n10.in must be pasted here

Notice that more than one rational approximation can be
used in the same input file (e.g. one may want to use
different rational approximations for the up, down and
strange quarks). Each rational approximation is identified
by the integer in the section title.

8. MD Hamiltonian and integrator.

[HMC parameters]

actions 0 1 2 3 # List of action IDs , see below

npf 2 # Number of pseudofermions to be allocated

nlv 2 # Number of levels of integrator for MD eqs

tau 2.0 # MD trajectory length

facc 1 # Fourier acceleration for U(1) MD

# (0 = not active , 1 = active)

[Level 0] # Innermost level

integrator OMF4 # Omelyan -Mryglod -Folk 4th order

nstep 2 # Number of times the elementary integrator

# is applied at this level

forces 0 1 # List of force IDs to be integrated at

# this level , see below

[Level 1] # Outermost level

integrator OMF4

nstep 1

forces 2 3

The MD Hamiltonian is given by the canonical kinetic
term of the SU(3) gauge field, the kinetic term of
the U(1) gauge field, and a sum of terms which do
not depend on the MD momenta and are referred to
as actions. The kinetic term of the U(1) gauge field
can be chosen to be of two types: the canonical one
(facc=0), or the Fourier-accelerated one (facc=1).
Refer to doc/fourier.pdf and Sect. 2 for details
on Fourier acceleration. The MD equations are solved by
means of an approximate symplectic multilevel integra-
tor, built in terms of standard elementary integrators. For
each level, one needs to specify how many times the ele-
mentary integrator needs to be applied and which forces

need to be integrated. Refer to doc/parms.pdf and
module/update/README.mdint for details on the
integrator.

The actions and forces are uniquely identified by an ID.
Obviously there is a one-to-one correspondence between
actions and forces. Corresponding actions and forces
must share the same ID. The gauge actions and forces
must be included, i.e.

[Action 0] # No adjustable parameters here!

action ACG_SU3

[Force 0]

force FRG_SU3

[Action 1]

action ACG_U1

[Force 1]

force FRG_U1

In this example, two pseudofermion actions are used
(notice that this number matches the number of pseud-
ofermion fields requested in the [HMC parameters]
section), one for up quark and one for the down quark.

[Action 2]

action ACF_RAT_SDET # Rational approximation effective action

ipf 0 # Pseudofermion ID (a number from 0 to 1)

ifl 0 # Flavour ID (down quark)

irat 0 0 9 # Use the rational approximation with ID =

0

# Include all rat. appr. factors , 0 -> 9,

# i.e. no frequency splitting

isp 0 # Solver ID , used to generate the p.f. at

# the beginning of the MD and to calculate

# the Hamiltonian at the end of the MD

[Force 2]

force FRF_RAT_SDET

isp 1 # Solver ID , used to calculate the force

[Action 3]

action ACF_RAT_SDET

ipf 1 # Different pseudofermion ID

ifl 1 # Different flavour ID (up quark)

irat 0 0 9

isp 0

[Force 3]

force FRF_RAT_SDET

isp 1

Notice that openQ*D allows for frequency splitting (not
used in this example): the poles and zeroes of the ratio-
nal approximations can be separated in different pseud-
ofermion actions. This is convenient because one may
want to integrate different poles and zeroes in differ-
ent levels of the integrator, and also one may want to
use different solvers for different poles. For details on
the pseudofermion actions and forces, and on the fre-
quency splitting, one should refer to doc/rhmc.pdf
and Sect. 2.
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9. Solvers. Two multi-shift CG solvers are used in this
example, with different residue for the actions and the
forces.

[Solver 0]

solver MSCG # or CGNE , SAP_GCR , DFL_SAP_GCR

nmx 2048 # Maximum number of iterations

res 1.0e-11 # Residue

[Solver 1]

solver MSCG

nmx 2048

res 1.0e-8

For details on the usage of other solvers, one should refer
to doc/parms.pdf. The deflated solver (DFL_SAP
_GCR) requires to set parameters for the generation
and update of the deflation subspaces, also described in
doc/parms.pdf. See also Sect. 4.4.

10. Wilson flow parameters. The iso1 program measures
on the fly a number of simple observables (actions, SU(3)
topological charge, electromagnetic fluxes) at positive
flow time.

[Wilson flow]

integrator RK3 # EULER: Euler , RK2: 2nd order

Runge -Kutta

# RK3: 3rd order Runge -Kutta

eps 2.0e-2 # Integration step size

nstep 700 # Total number of integration steps

dnms 5 # Number of steps between

measurements

4 Performance and testing

4.1 Code performance on parallel machines

For future reference and comparison, benchmark measure-
ments have been performed for the timing of the application
of the double precision Wilson–Dirac operator and the SAP
(Schwartz-Alternating-Procedure) preconditioner. The HPC
cluster at CERN has been used, which features 72 nodes, each
of them with two 8-core Intel® Xeon processors (E5-2630 v3,
Haswell) running at about 2.4 GHz base frequency (3.6 GHz
max.). Nodes are connected with Mellanox® Infiniband FDR
(56 Gb/s).

The timings are obtained with the time2 programs
located in the subdirectories devel/dirac and
devel/sap. All measured times have been normalised to
the smallest partition (one node or 16 cores). The results of
these scaling tests are shown in Fig. 3. A QCD+QED setup
with open boundary conditions in time and C∗ boundary con-
ditions in one spatial direction has been used.

The weak scaling test has been performed with a local
lattice size of 8 × 16 × 8 × 8, giving an extended lattice with
total volume VC∗ = 2Nproc84. Because of the C∗ boundary
conditions this corresponds to a physical lattice with volume
V = Nproc84, cf. Sect. 2.1. While for the Dirac operator,
parameters similar to theQuark flavours example (point 6) in

Sect. 3.2 have been used, the SAP preconditioner specifically
employs a block size of 44 with five SAP cycles (ncy 5)
and five iterations (nmr 5) of the even–odd preconditioned
Minimal Residue (MinRes) block solver. The setup is similar
for the strong scaling study but with a constant total volume
of VC∗ = 2·64×323 and varying local lattice sizes. In case of
the double precision Wilson–Dirac operator, a much larger
lattice volume with VC∗ = 2 · 644 total lattice points was
probed as well. As it can be seen in the left panel of Fig. 3
the larger lattice is performing even better than the smaller
one.

In summary, the overall scaling studied here is close to
optimal and small deviations may partly result from remain-
ing indigestions of the underlying network. Similar studies
have to be done on other machines but the overall behaviour is
expected to be similar to the originalopenQCD code. Indeed,
as already stressed, the openQ*D solvers are identical to
the openQCD one. The Dirac operator is almost identical
in the two codes, with the only difference that openQ*D
uses the precalculated U(3) gauge field Uzq̂ instead of the
SU(3) gauge field U . At fixed gauge background, the num-
ber of operations per lattice site performed by the Dirac
operator is identical in the two codes, and so is the num-
ber of operations per lattice site per cycle performed by the
solvers.

4.2 Low-level tests

The openQ*D code has been tested by means of an exten-
sive battery of check programs, which can be found in the
subdirectories of devel.4 These programs have been taken
over from openQCD-1.6 and NSPT-1.4, and extended
in order to test the specific feature of the openQ*D code.
Roughly speaking, the check programs in each devel sub-
directory test features of the corresponding module subdi-
rectory. Many check programs test also interactions between
different modules. These programs are meant to be used
by developers only and contain very limited documentation.
Providing a description of the check programs is outside of
the scope of this paper, and a short description can be found in
the INDEX files in each devel subdirectory. However, it is
worth to point out a few facts. All check programs have been
run with all possible combinations of boundary conditions
in the space and temporal directions. Whenever possible, all
check programs have been run in a pure QCD setup (i.e. only
the SU(3) gauge field is allocated), a pure QED setup (i.e.
only the U(1) gauge field is allocated), and a QCD+QED
setup (i.e. both gauge fields are allocated). All check pro-
grams have been run with various geometric configurations,

4 The devel directory contains 46,224 lines of code, against 60,203
lines of code in the module directory.
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Fig. 3 Results for strong (left) and weak (right) scaling of the appli-
cation of the Dirac operator and SAP preconditioner as explained in
the text. The speedup factors for the Dirac operator are multiplied by a

factor 10 for better visibility. The dashed lines indicate perfect scaling
behaviour accordingly

i.e. lattice size and processor grid. Besides a plethora of minor
details, specific check programs have been written to test:

• the implementation of C∗ boundary conditions for both
gauge fields and for the Dirac operator;

• general properties of the Dirac operator with generic elec-
tric charge (e.g. gauge convariance, translational covari-
ance, γ5-hermiticity, comparison to analytic expression
in case of zero gauge field);

• the rational approximation of generic powers, and the
associated reweighting factors;

• the forces for the U(1) field, the QED action, the U(1)
Wilson flow, the U(1) observables (e.g. clover field tensor,
electromagnetic fluxes);

• the MD with the U(1) field, with and without Fourier
acceleration.

4.3 Conservation of the Hamiltonian with Fourier
acceleration

The use of Fourier Acceleration in QCD+QED simulations
modifies the MD Hamiltonian and, consequently, the MD
equations. In order to test the consistency between the two,
one can look at the violation 	H of Hamiltonian conserva-
tion as a function of the MD integration step-size 	τ . The
violation should vanish as a positive power of the integration
step-size in the	τ → 0 limit. The power depends on the cho-
sen integrator. When the total trajectory length is kept con-
stant, the leap-frog integrator (LF) and 2nd order Omelyan–
Mryglod–Folk (OMF2) integrators yield 	H ∼ (	τ)2,

while the 4th order Omelyan–Mryglod–Folk (OMF4) inte-
grator yields 	H ∼ (	τ)4.

Figure 4 shows the violation 	H as a function of 	τ for
all integrators, with and without Fourier Acceleration. A two
parameter function 	H = a 	τ b has been fitted to the data
points. In all cases the obtained exponent is reasonably close
to the expected one. This test has been performed on a single
thermalized configuration taken from the Q*D1 ensemble
(Table 1). As expected there is a clear hierarchy among the
three integrators. More interestingly, Fourier Acceleration
has the effect of reducing significantly 	H . While no definite
conclusion can be drawn from a single-configuration experi-
ment in this regard, the same phenomenon has been observed
in the generation of ensembles with the same parameters as
the Q1 and Q2 runs described in [48], Table 2, with and
without Fourier Acceleration: when Fourier Acceleration is
turned on, if one wants to keep the acceptance rate the same,
larger values of 	τ can be typically chosen. Obviously this
does not mean that it is always convenient to use Fourier
Acceleration. In order to understand whether this is the case,
one should take into account the computational overhead
and the variation in autocorrelations. Fourier acceleration is
known to reduce significantly autocorrelations in the case of
the free scalar theory, but also in the case of non-compact pure
U(1) theory [11], which is a theory of free photons. However,
in the experiments with the Q1 and Q2 ensembles discussed
above, no significant difference could be detected in the auto-
correlation times after thermalization. This may indicate that
autocorrelations are unaffected by Fourier Acceleration in
the interacting case. Substantiating this statement certainly
requires a much more detailed study.

123



  195 Page 14 of 24 Eur. Phys. J. C           (2020) 80:195 

Fig. 4 Violations of MD
Hamiltonian conservation 	H
as a function of the MD
integration step-size 	τ , for all
available integrators (LF,
OMF2, OMF4), with and
without Fourier Acceleration
(FA). The lines represent the fit
functions provided in the legend

Table 1 Details of test runs employing C∗ boundary conditions in 3
spatial directions, and periodic boundary conditions in the temporal
direction. Note that due to the C∗ boundary conditions, the global (sim-
ulated) lattice VC∗ is two times larger than the physical lattice because of
the orbifold construction. Nf = 3 simulations of QCD+QED (Q*D1)
use the tree-level improved Symanzik gauge action (LW) for the SU(3)

gauge field with cSU(3)
sw taken from [49], and the Wilson plaquette action

(W) for the electromagnetic field with cU(1)
sw = 1. Furthermore, the elec-

tromagnetic coupling is set to α0 = 0.05 ≈ 7α
phys
0 with qel = 1/6, i.e.,

the doublet (d s)−1/3 and (u)+2/3 have been simulated. The Nf = 2 pure
QCD simulation (QCD1) uses the plaquette action with non-perturbative
cSU(3)

sw of Ref. [50], and the lattice spacing was determined in Ref. [51].
All runs have degenerate quarks with hopping parameter κ . Values for
the neutral pseudoscalar mass mPS are given, as well as the flow time
t0/a2 from which we naively derive the approximate lattice spacing
of Q*D1 using results of Ref. [52]. The number of simulated Molecu-
lar Dynamics Units (MDUs) after thermalization is reported in the last
column. In both cases a MD trajectory length τ = 2 has been used.

name Nf β VC∗/2 κ t0/a2 a (fm) mPS (MeV) MDUs

QCD1 2 5.3 64 × 323 0.136304 – 0.066 365 1300

Q*D1 2 + 1 3.55 32 × 163 0.137000 3.867(50) 0.074 660 1050

4.4 Performance of locally deflated solver in QCD+QED

The use of efficient solvers is a key factor in enabling sim-
ulations at quark masses close to the physical point. The
openQ*D code inherits all the solvers of theopenQCD-1.6
package: Conjugate Gradient (CG), Multi-Shift Conjugate
Gradient (MSCG), Generalized Conjugate Residual algo-
rithm with Schwartz-Alternating-Procedure as precondition-
ing (SAP+GCR), and a deflated version of it (DFL+SAP+
GCR). The deflated solver implements the idea of inexact
deflation introduced in [22,53] and an improvement involv-
ing inaccurate projection in the deflation preconditioner pro-
posed in [54].

As the Dirac operator is passed as an argument to these
solvers, their implementation is blind to the coupling to the
U(1) field and to C∗ boundary conditions. The efficiency
of these solvers may be affected in principle by the cou-
pling to the U(1) field, i.e. may depend on the electric charge

of the Dirac operator. However this turns out not to be the
case. The goal of this section is to describe two tests in sup-
port of this statement. These tests have been run on Altamira
HPC at IFCA-CSIC, which consists of 158 computing nodes,
each of them with two Intel® Xeon processors (E5-2670) at
2.6 GHz. Nodes are connected with Mellanox® Infiniband
FDR (56 Gb/s).

An electroquenched (QCD+qQED) setup has been con-
sidered for both tests, with SU(3) configurations from the
QCD1 ensemble (Table 1) and pure U(1) configurations gen-
erated with α0 = 0.05 and qel = 1/6. Two degenerate
valence quarks Q and Q′ have been considered, with electric
charge q and bare mass m0. The mass mPS of the Q̄′γ5Q
valence pseudoscalar neutral meson has been calculated as
a function of q and m0 and is shown in Fig. 5. Notice that
the critical bare mass depends very heavily on the electric
charge, as expected. For this reason it makes sense to compare
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Fig. 5 Mass of the Q̄′γ5Q valence pseudoscalar neutral meson has
been calculated as a function of q and am0 = 1/(2κ) − 4. QCD +
qQED setup: SU(3) configurations are taken from the QCD1 ensemble
(Table 1) and pure U(1) configurations are generated with α0 = 0.05
and qel = 1/6. The dashed curves are fits to the expected (leading

order) quark mass dependence, [mPS(q)]2 = B(q){m0 − mcr(q)}, and
are shown only to guide the eye. The gray dashed line indicates the
mass of the unitary point of the QCD simulation. In all cases, 50 gauge
configurations separated by 26 MDUs have been used

the solver performance for different electric charges keeping
fixed the value of mPS (rather than the bare mass).

In the first test, the time needed to invert the even–
odd preconditioned Dirac operator (with a representative
QCD+qQED configuration) on 15 random sources has been
measured, using the CG, SAP+GCR, and DFL+SAP+GCR
solvers. The shortest time has been plotted in Fig. 6 for elec-
tric charges q = 0,−1/3, 2/3 and a range of values of mPS.
It is evident that the performance of all solvers is insensitive
to the electric charge.

One important caveat needs to be pointed out for the
DFL+SAP+GCR solver. Before applying this solver, one
needs to generate the deflation subspace, which is constructed
from approximate eigenvectors of the Dirac operator. The
code allows the possibility to choose different parameters
for the Dirac operator used in the solver and the one used to
generate the deflation subspace. This is very useful in practice
since having a slightly heavier bare mass or even a twisted
mass for the generation of the deflation subspace generally
speeds up the calculation without affecting the performance
of the solver. On the other hand, it is crucial to generate the
deflation subspace with the same electric charge of the Dirac
operator that needs to be inverted. If this is not done, the
DFL+SAP+GCR solver loses efficiency dramatically. For
this reason, in contrast to openQCD-1.6, the openQ*D
code can handle simultaneously several deflation subspaces.
These deflation subspaces can be generated with different

parameters and will all be updated during the MD evolution.
The user can specify in the input file which deflation sub-
space should be used for each DFL+SAP+GCR solver inde-
pendently. In practice, in a realistic QCD+QED simulation,
one would need to generate only two deflation subspaces, one
for up-type quarks and one for down-type quarks. It has been
checked also that the time needed to generate the deflation
subspace is insensitive to the electric charge as long as mPS

is kept fixed.
In the second test, a single value of mPS � 354 MeV

has been chosen, and the time needed to invert (D̂† D̂ + μ2)

has been measured for various values of the twisted mass μ,
using the CG and DFL+SAP+GCR solvers. One representa-
tive QCD+qQED configuration and 48 random sources have
been used. The shortest time has been plotted in Fig. 7 for
electric charges q = 0,−1/3, 2/3 and a range of values of
μ. The inversion of (D̂† D̂ + μ2) is relevant to calculate the
rational approximation of non-integer powers of D̂† D̂ (see
Sect. 2). Also in this case, the performance of the two solvers
is seen to be insensitive to the electric charge as long as mPS

is kept fixed.

4.5 Key observables for HMC simulations of QCD+QED

Beside the electroquenched tests in the previous section, a
new set of tests is done using dynamical QCD+QED simu-
lations with Wilson fermions and C∗ boundary conditions.
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Fig. 6 Comparison of performance of various solvers and various
electric charges as a function of the mass mPS of the valence neutral
pion. In all cases, the inverse of the even–odd preconditioned Dirac
operator has been calculated on random sources. One representative
QCD+qQED configuration has been used (SU(3) configuration from

the QCD1 ensemble, Table 1, and pure U(1) configuration generated
with α0 = 0.05 and qel = 1/6). The same residue of 10−10 has been
chosen for the three solvers. The solver performance is insensitive to
the electric charge

The dynamical degrees of freedom of the U(1) gauge field are
included in the simulation labeled Q*D1 in Table 1. Q*D1
takes over the parameters from the H200 ensemble of the
Nf = 2 + 1 CLS [55] effort, except that the lattice extent is
halved in each of the space-time directions. As the dynamical
U(1) degrees of freedom contribute to the renormalization of
the bare parameters, the estimate for the lattice spacing and
pion mass cannot be taken over from the CLS ensembles,5 but
rather need to be estimated independently. Such an endeavour
is beyond the scope of this paper. However, an estimate for
t0/a2 is given in Table 1 for future reference. The reference
flow time t0 is implicitly given by [t2

0 〈E(t0)〉] = 0.3 using
the Wilson flow and clover discretisation of the SU(3) field
strength tensor in the definition of the energy density E(t)
[56]. A rough estimate of a is given after naively matching
t0/a2 to the data provided in Table III of Ref. [52].

AlthoughopenQ*D allows for twisted-mass reweighting,
that option is not required for Q*D1 (μ = 0.0). All three
bare sea quark masses, am0,i = 1/(2κi ) − 4, are taken to
be degenerate. As demonstrated in the previous section and
shown in Fig. 5, this necessarily leads to a large difference

5 Had the U(1) d.o.f. been switched off (α0 = 0), the chosen parameter
set would correspond to a ≈ 0.064 fm and mPS ≈ 420 MeV.

in the neutral pseudoscalar masses due to the differences in
quark charges. One thus ends up with a degenerate pair of
down-type quarks (q = −1/3), and a single but significantly
heavier up-type quark (q = 2/3). Hence, the simulations
are essentially probing a somewhat unphysical version of
the Nf = 2 + 1 theory, but are sufficient to probe standard
observables and performance of the code.

In Fig. 8 a summary of selected observables is given for
simulation Q*D1. The run was stable and did not show
any particular issue during the course of the simulation.
Most of the observables presented in the following include
the thermalisation part. Starting from a random configura-
tion, the HMC energy violations, measured every trajectory
(τ = 0.7 MDU), drop after a few iterations and stably fluc-
tuate in the range [− 0.5,+ 0.5]. The simulation employs
the OMF4 integrator without Fourier acceleration and the
spectral ranges of the individual quark flavours have been
properly set. Next the average plaquette for the SU(3) and
U(1) gauge fields are presented. The former is shifted by a
constant amount for better comparison. The SU(3) plaquette
has much larger statistical fluctuations and requires longer
thermalisation times than the U(1) plaquette even without
Fourier acceleration. The next two plots show the two avail-
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Fig. 7 Comparison of performance of various solvers and various elec-
tric charges as a function of the twisted mass μ. In all cases, the inverse
of (D̂† D̂ + μ2) has been calculated on random sources. The mass of
the valence neutral pion (calculated at μ = 0) has been chosen to be
mPS � 329 MeV. One representative QCD+qQED configuration has
been used (SU(3) configuration from the QCD1 ensemble, Table 1, and

pure U(1) configuration generated with α0 = 0.05 and qel = 1/6).
The same residue of 10−8 has been chosen for the three solvers. The
solver performance is insensitive to the electric charge. As expected,
the deflated solver loses efficiency at large values of μ and eventually
fails to converge for the three highest value

able definitions of the (renormalized) energy density E(t) at
a flow time t = 3.2 for the SU(3) and U(1) part, respectively.
The topological charge Q (measured at the same flow time)
fluctuates well after rapid changes during the thermalisation
phase of the run. The smallest eigenvalues of |γ5 D̂u| and
|γ5 D̂d/s| follow, confirming that the lower end of the spec-
tral ranges of the rational approximations have been chosen
correctly. No exceptionally small values are present, which
is not surprising considering the heavy pseudoscalar mass
simulated here.

The Q*D1 run has been produced with a rational approx-
imation with relative precision δ = O(10−11). A second
run has been performed with the same parameters as Q*D1
except for the rational approximation, which has been cho-
sen with relative precision δ = O(10−9). The logarithms of
the reweighing factors for both runs are shown in the last two
panes of Fig. 8. As expected, the reweighting factor for the
run with a better rational approximation is closer to 1 (and
its logarithm is closer to 0).

5 Summary and outlook

We presented openQ*D [1], the first open source pack-
age which allows to perform full lattice simulations of
QCD+QED, QCD or QED. The code implements the pro-

posal of Ref. [18] and allows to choose C∗ boundary con-
ditions along the spatial directions but also periodic bound-
ary conditions can be simulated efficiently. Moreover, the
chosen theory can be simulated by choosing either periodic,
Schrödinger Functional or open boundary conditions along
the time direction.

The new code is based on the openQCD [2] package from
which it inherits the highly optimized implementation of the
Dirac operator, of the solvers, of the HMC and of the RHMC
algorithms. The openQ*D package extends the algorithmic
functionalities of the openQCD code by giving the possibil-
ity of using multiple deflation subspaces in a single simu-
lation, of implementing rational approximations of generic
powers of the Dirac operator (with and without twisted-mass
preconditioning) and by implementing Fourier Acceleration
for the evolution of the U(1) field.

We presented the main functionalities of the code and
discussed the theoretical motivations behind the algorith-
mic choices and their specific implementations. We also pre-
sented a guide to instruct the user to run a full QCD+QED
simulation with openQ*D and discussed the results of some
tests. These include low-level tests aiming at assessing the
correctness of the implementation of the different algorithms
but also some benchmarks to measure the performance of the
code.
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Fig. 8 Selected observables for simulation Q*D1 including thermali-
sation part. Left–right/top–bottom: HMC energy violations 	H , aver-
age plaquette for SU(3) and U(1) gauge fields, energy density E(t) for
SU(3), energy density for U(1), topological charge Q(t), lowest eigen-

value λ̂min in the spectrum of |γ5 D̂|, and reweighting factors Wq for two
different numerical accuracies, δ = O(10−11) (left) and δ = O(10−9)

(right)

123



Eur. Phys. J. C           (2020) 80:195 Page 19 of 24   195 

In future releases we plan to add a number of features.
Concerning the configuration generation, we will include the
possibility to use a gauge-fixed non-compact formulation of
QED. We will also provide programs to calculate a number
of observables, in particular charged-meson two-point func-
tions with QED dressing-factors along the lines of [18], and
quark gradient flow observables [57]. Finally we will con-
sider incorporating some of the algorithmic developments
discussed in [58], in particular stabilized Wilson fermions.

Given the good performance and high scalability on mod-
ern supercomputing cluster architectures, openQ*D can
profitably be used to generate QCD+QED gauge configura-
tions with C∗ boundary conditions (but not only) in a realistic
setup with the aim of computing QED radiative corrections
to phenomenologically relevant observables.
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A Implementation of the RHMC

A.1 Rational approximation

It is convenient to introduce the hermitian operator Q̂ = γ5 D̂,
in terms of which D̂† D̂ = Q̂2. Assume that the spectrum of
|Q̂| is contained in the interval [ra, rb], and choose an integer
n. A rational function of order [n, n] in q2 has the form

ρ(q2) = A
n∏

j=1

q2 + ν2
j

q2 + μ2
j

. (A.1)

Without loss of generality one can assume

ν1 > ν2 > · · · > νn, μ1 > μ2 > · · · > μn . (A.2)

ρ(q2) is chosen to be the optimal rational approximation
of order [n, n] of the function (q2 + μ̂2)−α in the domain
q ∈ [ra, rb], i.e. the rational function of the form (A.1) which
minimizes the uniform relative error

δ = max
q∈[ra ,rb]

|1 − (q2 + μ̂2)αρ(q2)|. (A.3)

As explained in Sect. 3.2.2, the optimal rational approxima-
tion can be calculated with the minmax code which imple-
ments the minmax approximation algorithm in multiple pre-
cision.

If ρ(q2) is the desired optimal rational approximation, the
operator R which appears in Eq. (2.6) is defined simply as

R = ρ(Q̂2) = ρ(D̂† D̂) = A
n∏

j=1

D̂† D̂ + ν2
j

D̂† D̂ + μ2
j

. (A.4)

Equation (A.3) implies the following norm bound

‖1 − (D̂† D̂ + μ̂2)αR‖ ≤ δ. (A.5)

A.2 Frequency splitting and pseudofermion action

openQ*D inherits from openQCD the frequency splitting of
the rational approximation: the factors of the rational approx-
imation can be split in different pseudofermion actions; the
corresponding forces can be included in different levels of
the MD integrator, providing a useful handle to optimize
the algorithm. This procedure is similar to the Hasenbusch
decomposition for the HMC algorithm [59].

The rational approximation constructed in Sect. A.1 is
broken up in factors of the form

Pk,l =
l∏

j=k

D̂† D̂ + ν2
j

D̂† D̂ + μ2
j

. (A.6)

For example, if n = 12 a possible factorization is

R = AP1,5P6,9P10,12. (A.7)

The contribution of R to the quark determinant is

det R−1 = constant × det P−1
1,5 det P−1

6,9 det P−1
10,12. (A.8)

Each P−1
k,l determinant is simulated as usual by adding a

pseudofermion action of the form

Spf,k,l = (φk,l
e , Pk,lφ

k,l
e ), (A.9)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  195 Page 20 of 24 Eur. Phys. J. C           (2020) 80:195 

where the fields φ
k,l
e are independent pseudofermions that

live on the even sites of the lattice. By using a partial fraction
decomposition

Pk,l = 1 +
l∑

j=k

σ j

D̂† D̂ + μ2
j

, (A.10)

σ j = (ν2
j − μ2

j )
∏

m=l,...,k
m 
= j

ν2
m − μ2

j

μ2
m − μ2

j

, (A.11)

the pseudofermion action in Eq. (A.9) is cast into a sum of
terms of the type

Spf,k,l = (φk,l
e , φk,l

e ) +
l∑

j=k

σ j (φk,l
e , (D̂† D̂ + μ2

j )
−1φk,l

e ).

(A.12)

A.3 Reweighting factors

Let R̃ and R be the optimal rational approximations of order
[n, n] for (D̂† D̂)−α and (D̂† D̂ + μ̂2)−α respectively. It is
assumed that the relative errors of the two rational approxi-
mations are not greater than δ in the common spectral range
[ra, rb].

The reweighting factor W defined in Eq. (2.8) is decom-
posed in two factors which are calculated separately, i.e.

W = WratWrtm, (A.13)

Wrat = det[(D̂† D̂)α R̃], (A.14)

Wrtm = det[R̃−1R]. (A.15)

A.3.1 Reweighting factor Wrat

In the calculation of the reweighting factorWrat in Eq. (A.14),
it is assumed that the exponent α is a positive rational number
of the form

α = u

v
, (A.16)

where u and v are natural numbers. The reweighting factor
can be represented as

Wrat = det[Q̂2u R̃v] 1
v = det(1 + Z)

1
v , (A.17)

where the operator Z is defined as

Z = Q̂2u R̃v − 1. (A.18)

The determinant in Eq. (A.17) is estimated stochastically

Wrat = lim
N→∞

1

N

N∑

j=1

exp{−(η j
e , [(1 + Z)−

1
v − 1]η j

e )},

(A.19)

where the fields η
j
e are N independent normally-distributed

pseudofermions that live on the even sites of the lattice. From
the norm bound in Eq. (A.5) for μ̂ = 0, and the positivity of
R̃ (which is guaranteed if the relative error δ is small enough),
it follows that

0 ≤ 1 + Z = Q̂2u R̃v = [Q̂2α R̃]v ≤ (1 + δ)v, (A.20)

which yields the norm bound

‖Z‖ ≤ 	 = (1 + δ)v − 1 = vδ + O(δ2). (A.21)

Therefore the Taylor series

(1 + Z)−
1
v = 1 +

∞∑

n=1

cv,n Z
n,

cv,n = (−1)n
1
v

( 1
v

+ 1
) · · · ( 1

v
+ n − 1

)

n! , (A.22)

converges rapidly in operator norm. The exponent in Eq.
(A.19) can be estimated from the first few terms of

(η j
e , [(1 + Z)−

1
v − 1]η j

e ) =
∞∑

n=1

cv,n (η j
e , Znη j

e ). (A.23)

It is possible to estimate the size of these terms by noting
that ‖η j

e ‖2 is very nearly equal to 12 times the number Ne

of even lattice points. Taking the bound (A.21) into account,
the following estimate is obtained

|(η j
e , Znη j

e )| ≤ ‖Z‖n ‖η j
e ‖2 ≤ 	n‖η j

e ‖2 � 12(vδ)nNe.

(A.24)

The statistical fluctuations of the exponents in Eq. (A.19)
derive from those of the gauge field and those of the ran-
dom sources η

j
e . For a given gauge field, the variance of the

exponent is equal to

tr {[(1 + Z)−
1
v − 1]2} = 1

v2 tr Z2 + O(δ3)

≤ 12Neδ
2 + O(δ3). (A.25)

These fluctuations are guaranteed to be small if, for instance,
12Neδ

2 ≤ 10−4. One can then just as well set N = 1 in
Eq. (A.19), i.e. a sufficiently accurate stochastic estimate of
Wrat is obtained in this case with a single random source.

When the stronger constraint 12Neδ ≤ 10−2 is satis-
fied, the reweighting factor Wrat deviates from 1 by at most
1%. Larger approximation errors can however be tolerated
in practice as long as the fluctuations of Wrat remain small.
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A.3.2 Reweighting factor Wrtm

Let us choose a rational approximation R of order [n, n] for
(D̂† D̂ + μ̂2)−α of the form

R = A
n∏

j=1

D̂† D̂ + ν2
j

D̂† D̂ + μ2
j

, (A.26)

ν1 > ν2 > · · · > νn, μ1 > μ2 > · · · > μn, (A.27)

and a rational approximation R̃ of order [n, n] for (D̂† D̂)−α

of the form

R̃ = Ã
n∏

j=1

D̂† D̂ + ν̃2
j

D̂† D̂ + μ̃2
j

, (A.28)

ν̃1 > ν̃2 > · · · > ν̃n, μ̃1 > μ̃2 > · · · > μ̃n . (A.29)

Let us rewrite Eq. (A.15) as

Wrtm = det[R−1 R̃]−1. (A.30)

Notice that the operator R−1 R̃ is also a rational function of
Q̂2 = D̂† D̂. It is convenient to break up this rational function
in factors of the type

P̃k,l =
l∏

j=k

(D̂† D̂ + μ2
j )(D̂

† D̂ + ν̃2
j )

(D̂† D̂ + ν2
j )(D̂

† D̂ + μ̃2
j )

. (A.31)

If n = 12, for example, the reweighting factor Wrtm can be
factorized as

Wrtm = constant × det P̃−1
1,5 det P̃−1

6,9 det P̃−1
10,12. (A.32)

Each of the above determinants is estimated stochastically

det P̃−1
k,l = lim

N→∞
1

N

N∑

j=1

exp{−(η j
e , [P̃k,l − 1]η j

e )}, (A.33)

where the fields η
j
e are N independent normally-distributed

pseudofermions that live on the even sites of the lattice. It is
useful to consider the partial fraction decomposition

P̃k,l = 1 +
l∑

j=k

(
σ j

D̂† D̂ + ν2
j

+ σ̃ j

D̂† D̂ + μ̃2
j

)
, (A.34)

σ j = (ν̃2
j − ν2

j )(μ
2
j − ν2

j )

μ̃2
j − ν2

j

∏

m=l,...,k
m 
= j

(ν̃2
m − ν2

j )(μ
2
m − ν2

j )

(μ̃2
m − ν2

j )(ν
2
m − ν2

j )
,

(A.35)

σ̃ j = (ν̃2
j − μ̃2

j )(μ
2
j − μ̃2

j )

ν2
j − μ̃2

j

∏

m=l,...,k
m 
= j

(ν̃2
m − μ̃2

j )(μ
2
m − μ̃2

j )

(μ̃2
m − μ̃2

j )(ν
2
m − μ̃2

j )
.

(A.36)

Typically σ j and σ̃ j are found to have opposite signs. Also,
for small values of j , |σ j | and |σ̃ j | are of the same order of

magnitude, therefore it is convenient for numerical stability
to use the following representation

P̃k,l = 1 +
l∑

j=k

(σ j + σ̃ j )(D̂† D̂) + σ j μ̃
2
j + σ̃ jν

2
j

(D̂† D̂ + ν2
j )(D̂

† D̂ + μ̃2
j )

. (A.37)

B Laplacian for the Fourier accelerated molecular
dynamics

The U(1) momentum is generally represented in momentum
space as

π(x, μ) = 1

L3

∑

p0∈Eμ

∑

p∈P
eμ(p0, x0)e

ipxπ̃(p, μ). (B.1)

The basis functions eμ(p0, x0) (for fixed μ) are orthogonal
with respect to a weighted scalar product

∑

x0

wμ(x0)e
∗
μ(p0, x0)eμ(q0, x0) = δp0,q0 , (B.2)

where the weight wμ(x) is taken to be 1/2 if x belongs to
an open boundary (i.e. x0 = 0 for open and open-SF b.c.s,
and x0 = T − 1 for open b.c.s) and μ = 1, 2, 3. In all other
cases wμ(x) is taken to be 1. The relation between π and π̃

is easily inverted

π̃(p, μ) =
∑

x

wμ(x0)e
∗
μ(p0, x0)e

−ipxπ(x, μ). (B.3)

The set P is given by all spatial momenta p = (p1, p2, p3)

of the form

pk = π
Lk

(2nk + ck) with nk = 0, . . . , Lk − 1, (B.4)

where ck = 0 if k is a periodic direction and ck = 1 if k is a
C∗ direction. The sets Eμ and the eigenfunctions eμ(p0, x0)

depend on the boundary conditions in time. In the following
k = 1, 2, 3.

• Open boundary conditions:

E0 = π

N0 − 1
{1, . . . , N0 − 1},

Ek = π

N0 − 1
{0, . . . , N0 − 1}, (B.5)

e0(p0, x0) = i

(1 + δp0,π )(N0 − 1)
sin

[
p0

(
x0 + 1

2

)]
,

(B.6)

ek(p0, x0) = 1

(1 + δp0,0 + δp0,π )(N0 − 1)
cos(p0x0).

(B.7)
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• SF boundary conditions:

E0 = π

N0
{0, . . . , N0 − 1},

Ek = π

N0
{1, . . . , N0 − 1}, (B.8)

e0(p0, x0) = 1

(1 + δp0,π )N0
cos

[
p0

(
x0 + 1

2

)]
,

(B.9)

ek(p0, x0) = i

N0
sin(p0x0). (B.10)

• Open-SF boundary conditions:

E0 = Ek = π

N0

(
{0, . . . , N0 − 1} + 1

2

)
,

(B.11)

e0(p0, x0) = i

N0
sin

[
p0

(
x0 + 1

2

)]
, (B.12)

ek(p0, x0) = 1

N0
cos

[
p0

(
x0 + 1

2

)]
. (B.13)

• Periodic boundary conditions:

E0 = Ek = 2π

N0
{0, . . . , N0 − 1}, (B.14)

e0(p0, x0) = ek(p0, x0) = 1

N0
exp(i p0x0). (B.15)

We use the Fourier decomposition to define the intermediate
operator DN

[DNπ](x, μ) = 1

L3

∑

p0∈Eμ

∑

p∈P
eμ(p0, x0)e

ipx D̃N(p)π̃(p, μ),

(B.16)

D̃N(p) =
{

1 if p = 0

4
∑

μ sin2 pμ

2 otherwise.
(B.17)

Explicity

DN(x, μ; y, ν) = 1

L3

∑

p0∈Eμ

∑

p∈P
D̃N(p)δμνe

ip(x−y)

eμ(p0, x0)e
∗
ν(p0, y0)wν(y0). (B.18)

With respect to the scalar product defined by

(φ, φ)G = (φ,Gφ), (B.19)

[Gφ](x, μ) = wμ(x0)φ(x, μ). (B.20)

the operator DN is symmetric and strictly positive, i.e.

(φ′, DNφ)G = (DNφ′, φ)G , (B.21)

(φ, DNφ)G ≥ 0, (B.22)

(φ, DNφ)G = 0 ⇔ φ = 0. (B.23)

The desired operator is defined as

	 = G1/2DNG
−1/2. (B.24)

Symmetry and strict positivity of 	 with respect to the canon-
ical scalar product of 	 follow from the corresponding prop-
erties of DN. Notice that

Dα = G1/2Dα
NG

−1/2. (B.25)

The openQ*D code uses the Fast Fourier Transform
(FFT) algorithm to construct π̃(p, μ) from π(x, μ) and vice
versa. The FFT is implemented in the module dft which is
an adaptation of the corresponding module in theNSPT-1.4
code written by Mattia Dalla Brida and Martin Lüscher [25].

C Sample input file

[Run name]

name pedro01

[Directories]

log_dir ./log # absolute path , or relative path

dat_dir ./dat # to the working directory of iso1

cnfg_dir ./cnfg

[MD trajectories]

nth 100 # multiple of dtr_cnfg

ntr 800 # multiple of dtr_cnfg

dtr_log 5

dtr_ms 10 # multiple of dtr_log

dtr_cnfg 50 # multiple of dtr_ms

[Random number generator]

level 0 # this should not be changed

seed 19521 # this can be any positive integer

[Boundary conditions]

type periodic # or SF, open , open -SF

cstar 3 # or 0, 1, 2

[SU(3) action]

beta 5.3

c0 1.0 # 1=Wilson , 5/3=Lüscher -Weisz , 3.648= Iwasaki

[U(1) action]

type compact # only option currently available

alpha 0.05 # bare fine -structure constant

invqel 6.0 # see "Dirac operators parameters"

c0 1.0 # Wilson action

[Quark action]

nfl 2

[Flavour 0] # Down quark

qhat -2 # qhat must be integer

# el. charge = qhat/invqel = -2/6 = -1/3

kappa 0.136377 # hopping parameter

su3csw 1.909520 # u1csw=su3csw=0 => no O(a) improv.

u1csw 1.0 # u1csw=su3csw=1 => tree -level O(a) improv.

[Flavour 1] # Up quark

qhat 4 # el. charge = qhat/invqel = 4/6 = 2/3

kappa 0.137312

su3csw 1.909520

u1csw 1.0

[Rational 0]

power -1 4

degree 10

range 1.98000000e-03 7.62000000e+00

mu 0.00000000e+00

delta 5.9691841082503071e-05

A 2.04978213590663732591e-01

nu[0] 1.22647978559899293316e+01

mu[0] 8.40737261524814627478e+00

nu[1] 3.58475041480018230544e+00

mu[1] 2.79734086059047637463e+00

nu[2] 1.37354614313178191587e+00

mu[2] 1.08904089757432842589e+00

nu[3] 5.45534380719472244969e-01

mu[3] 4.33597479995857904012e-01

nu[4] 2.17882243098165673256e-01
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mu[4] 1.73241240349149644429e-01

nu[5] 8.70901176278380123597e-02

mu[5] 6.92465791863651897176e-02

nu[6] 3.47963276911667715452e-02

mu[6] 2.76565520583723425951e-02

nu[7] 1.38540251643490298916e-02

mu[7] 1.09844143754786495448e-02

nu[8] 5.39355078694815723989e-03

mu[8] 4.20882858056409459024e-03

nu[9] 1.79456777883689466702e-03

mu[9] 1.23015480378516474207e-03

x[0] 3.92039999999999976796e-06

x[1] 4.81832134522929173714e-06

x[2] 8.31937464355889515232e-06

x[3] 1.75765908325188680071e-05

x[4] 4.09284748868167719878e-05

x[5] 9.94161232736990132294e-05

x[6] 2.45725878382011789398e-04

x[7] 6.11688882726808629518e-04

x[8] 1.52696110343796594838e-03

x[9] 3.81619175022324466640e-03

x[10] 9.54119167823534904127e-03

x[11] 2.38582015157776800018e-02

x[12] 5.96499569883204849852e-02

x[13] 1.49077585046584693007e-01

x[14] 3.72142898437580804671e-01

x[15] 9.26380547538878773572e-01

x[16] 2.28972591430973704263e+00

x[17] 5.56179223363444652506e+00

x[18] 1.29510708833971612819e+01

x[19] 2.73621135618227562247e+01

x[20] 4.72437717308978761821e+01

x[21] 5.80643999999999991246e+01

[HMC parameters]

actions 0 1 2 3 # List of action IDs , see below

npf 2 # Number of pseudofermions to be allocated

nlv 2 # Number of levels of integrator for MD eqs

tau 2.0 # MD trajectory length

facc 1 # Fourier acceleration for U(1) MD

# (0=not active , 1= active)

[Level 0] # Innermost level

integrator OMF4 # Omelyan -Mryglod -Folk 4th order

nstep 2 # Number of times the elementary integrator

# is applied at this level

forces 0 1 # List of force IDs to be integrated at

# this level , see below

[Level 1] # Outermost level

integrator OMF4

nstep 1

forces 2 3

[Action 0] # No adjustable parameters here!

action ACG_SU3

[Force 0]

force FRG_SU3

[Action 1]

action ACG_U1

[Force 1]

force FRG_U1

[Action 2]

action ACF_RAT_SDET # Rational approximation effective action

ipf 0 # Pseudofermion ID (a number from 0 to 1)

ifl 0 # Flavour ID (down quark)

irat 0 0 9 # Use the rational approximation with ID=0

# Include all rat. appr. factors , 0 -> 9,

# i.e. no frequency splitting

isp 0 # Solver ID, used to generate the p.f. at

# the beginning of the MD and to calculate

# the Hamiltonian at the end of the MD

[Force 2]

force FRF_RAT_SDET

isp 1 # Solver ID, used to calculate the force

[Action 3]

action ACF_RAT_SDET

ipf 1 # Different pseudofermion ID

ifl 1 # Different flavour ID (up quark)

irat 0 0 9

isp 0

[Force 3]

force FRF_RAT_SDET

isp 1

[Solver 0]

solver MSCG # or CGNE , SAP_GCR , DFL_SAP_GCR

nmx 2048 # Maximum number of iterations

res 1.0e-11 # Residue

[Solver 1]

solver MSCG

nmx 2048

res 1.0e-8

[Wilson flow]

integrator RK3 # EULER: Euler , RK2: 2nd order Runge -Kutta

# RK3: 3rd order Runge -Kutta

eps 2.0e-2 # Integration step size

nstep 700 # Total number of integration steps

dnms 5 # Number of steps between measurements
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