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Abstract

We present the open–source package openQ*D-1.0 [1], which has been primarily, but
not uniquely, designed to perform lattice simulations of QCD+QED and QCD, with and
without C∗ boundary conditions, and O(a) improved Wilson fermions. The use of C∗
boundary conditions in the spatial direction allows for a local and gauge–invariant formu-
lation of QCD+QED in finite volume, and provides a theoretically clean setup to calculate
isospin–breaking and radiative corrections to hadronic observables from first principles.
The openQ*D code is based on openQCD-1.6 [2] and NSPT-1.4 [3]. In particular it inherits
from openQCD-1.6 several core features, e.g. the highly optimized Dirac operator, the
locally deflated solver, the frequency splitting for the RHMC, or the 4th order OMF inte-
grator.
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1 Introduction

QED radiative corrections to hadronic observables are generally rather small but they
become phenomenologically relevant when the target precision is at the percent level.
For example, the leptonic and semileptonic decay rates of light pseudoscalar mesons are
measured with a very high accuracy and, on the theoretical side, have been calculated
with the required non–perturbative accuracy by many lattice collaborations. Most of
these calculations have been performed by simulations of lattice QCD without taking
into account QED radiative corrections. A recent review [4] of the results obtained by
the different lattice groups shows that leptonic and semileptonic decay rates of π and K
mesons are presently known at the sub–percent level of accuracy. At the same time, QED
radiative corrections to these quantities are estimated to be of the order of a few percent,
by means of chiral perturbation theory [5]. These estimates have recently been confirmed
in the case of the leptonic decay rates of π and K by a first–principle lattice calculation
of the QED radiative corrections at O(α) in refs. [6, 7].

Other remarkable examples of observables for which QED radiative corrections are
phenomenologically relevant are the so–called lepton flavour universality ratios. For ex-
ample R(D(∗)) is defined as the branching ratio for B 7→ D(∗)`ν̄` with ` = e, µ divided by
the branching ratio for B 7→ D(∗)τ ν̄τ . Most of the hadronic uncertainties cancel in these
ratios that are built in such a way that they are trivial in the Standard Model, in the
limit in which the two leptons have the same mass. Presently, a combined analysis [8] of
the R(D) and R(D∗) ratios shows a deviation of the experimental measurements from the
theoretical predictions of the order of 3 standard deviations. On the other hand, QED
radiative corrections are different for the two leptons because of the different masses and
an improved theoretical treatment of these effects (see for example refs. [9, 10] for a dis-
cussion of this point) can possibly enhance or reconcile the observed discrepancy between
the experimental measurements and the theoretical expectations.

QED radiative corrections to hadronic observables can be computed from first princi-
ples by performing lattice simulations of QCD coupled to QED, treating the photon field
on an equal footing as the gluon field. This approach, pioneered in refs. [11–13], is highly
non–trivial from both the numerical and theoretical point of view, because of the peculiar-
ities of QED. Numerically, lattice calculations are unavoidably affected by statistical and
systematic uncertainties and it can be challenging to resolve QED radiative corrections
from the leading QCD contributions within the errors of a simulation. Theoretically, a
big issue arises because lattice calculations have necessarily to be done on a finite volume.
QED is a long–range interaction and, consequently, finite–volume effects are the key issue
in presence of electromagnetic interactions.

In fact, as a consequence of Gauss’ law, it is impossible to have a net electric charge on
a periodic torus. Because of this strong theoretical constraint, it is particularly challenging
to calculate from first principles physical observables associated with electrically charged
external states, such as the phenomenologically relevant quantities discussed above. Sev-
eral approaches have been proposed over the years to cope with this problem, see ref. [14]
for a recent review. The most popular approaches to the problem of charged particles on
the torus solve the Gauss’ law constraint by introducing non–local terms in the finite–
volume action of the theory.1 The effects induced by the non–locality of the action are

1 A different approach is based on the idea that one can write QCD+QED observables at first order in
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expected to disappear once the infinite–volume limit is properly taken and, as far as O(α)
QED radiative corrections are concerned, it is generally possible to show that this is indeed
the case.

On the one hand, the non–local formulations of the theory are particularly appealing
because of their formal simplicity. On the other hand, it has been shown in ref. [18] that it
is possible to probe electrically charged states on a finite volume by starting from a local
formulation of the theory and, remarkably, in a fully gauge–invariant way. This is possible
by using C–parity (or C∗) boundary conditions for all the fields and by using a certain
class of interpolating operators originally introduced by Dirac in a seminal work [19] on
the canonical quantization of QED.

The formulation of ref. [18] has also been studied numerically. The results for the me-
son masses extracted in a fully gauge–invariant way from lattice simulations of QCD+QED
with C∗ boundary conditions obtained in ref. [20] provide a convincing numerical evidence
that, beside being an attractive theoretical formulation, the proposal of ref. [18] is also a
valid numerical alternative for the calculation of QED radiative corrections on the lattice.
This motivated the present work.

In this paper we present the open–source package openQ*D, which can be used to
simulate QCD+QED, QCD, the pure SU(3) and U(1) gauge theories.2 The code allows to
choose a wide variety of temporal and spatial boundary conditions. In particular, it allows
to perform dynamical simulations of QCD+QED with C∗ but also with periodic boundary
conditions along the spatial directions. Simulations of QCD with C∗ boundary conditions
can be a valuable starting point for the application of the RM123 method [21], in which
observables are calculated order–by–order in the electromagnetic coupling. A fully tested
and stable relase of openQ*D can be downloaded from [1].

The openQ*D package is based on the openQCD [2] package from which it inherits the
core features, most notably the implementation of the Dirac operator, of the solvers and
the possibility of simulating open and Schrödinger functional boundary conditions in the
time direction. One of the inherited solvers implements the inexact deflation algorithm of
ref. [22]. An added value of the openQ*D package is the possibility of using more deflation
subspaces in a single simulation. This is particularly important in the case of QCD+QED
simulations because different deflation subspaces have to be generated for quarks having
different electric charges.

Another important feature present in the openQ*D package is the possibility to use
Fourier Acceleration [23, 24] for the molecular dynamics evolution of the U(1) field. The
used implementation of the Fast Fourier Transform (FFT) is an adaptation of the corre-
sponding module in the NSPT [3, 25] package.

The remaining of this paper is organised as follows. In section 2 we give an overview
of the theoretical background needed to understand the actions simulated by openQ*D,
and we describe some peculiar aspects of the simulation algorithm. In particular, the
specific implementation of C∗ boundary conditions and of the Fourier Acceleration for the
U(1) field are discussed. In section 3 we provide instructions on how to compile the code,
construct a sample input file, and run the program that generates QCD+QED configura-
tions. Section 4 is a collection of tests and performance studies. In particular, we present

α as QCD observables with analytic (possibly infinite–volume) QED kernels, e.g. [15–17].
2 The code allows also for (inefficient) simulations of QED in isolation, even though a main program for

this purpose is not provided in the 1.0 version.
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Figure 1: Summary of salient features of openQ*D. Some features inherited from openQCD and
NSPT are highlighted.

scalability tests, and studies of the performance of solvers for the Dirac equation for elec-
trically charged fields. We also illustrate the outcome of some sample runs performed for
testing purposes. In figure 1, we provide a schematic view of the openQ*D functionalities.

2 Theoretical background

An overview of the main algorithmic choices made in the code will be given in this section.
The fundamental fields are the SU(3) link variable Uµ(x) and the real photon field Aµ(x).
Since only the compact formulation of QED is implemented at present, all observables are
written in terms of the U(1) link variable

zµ(x) = exp{iAµ(x)} , (2.1)

which implies that the real photon field can be restricted to −π ≤ Aµ(x) ≤ π with no loss
of generality. Various boundary conditions can be chosen for the gauge fields: periodic,
open [26], Schrödinger Functional (SF) [27, 28] and open–SF boundary conditions [29]
in the Euclidean time direction µ = 0, periodic and C∗ boundary conditions [30–33] in
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the spatial directions. The implementation of C∗ boundary conditions is discussed in
section 2.1.

After integrating out the fermion fields in a usual way, the target distribution of
QCD+QED if no C∗ boundary conditions are used is

ρtar(U,A) ∝ e−Sg,SU(3)(U)−Sg,U(1)(A)∏
f

detDf , (2.2)

where the gauge actions Sg,SU(3)(U) and Sg,U(1)(A) are briefly discussed in section 2.2, the
product runs over the simulated fermion flavours indicized by f , and the Dirac operator
D is introduced in section 2.3. If C∗ boundary conditions are used, the determinant is
replaced by a Pfaffian, i.e.

ρtar(U,A) ∝ e−Sg,SU(3)(U)−Sg,U(1)(A)∏
f

pf (CTDf ) , (2.3)

where C is the charge conjugation matrix and T is a field–independent matrix satisfying
T 2 = 1, whose detailed definition can be found in section 2.1. While in the continuum limit
the determinant and the Pfaffian are positive, this is not the case with Wilson fermions.
The absolute value is considered in both cases, which amounts to replacing

detDf → |detDf | , pf (CTDf )→ |pf (CTDf )| = |detDf |1/2 . (2.4)

The sign should be separately calculated and included in the evaluation of observables as
a reweighting factor [34,35]. It is important to stress that this is a mild sign problem [18],
which becomes irrelevant sufficiently close to the continuum limit, and which is also present
in standard QCD simulations for the strange quark. The presented strategy is in line with
state–of–the–art QCD and QCD+QED simulations, in which the sign of the determinant
is simply ignored. Future work will be planned to investigate the importance of the sign
especially at lighter quark masses.

After introducing the standard even–odd preconditioned operator D̂ [36], one rewrites
the quark part of the distribution as∏

f

|detDf |2αf =
∏
f

det(D†fDf )αf = e−Ssdet(U,A)∏
f

det(D̂†f D̂f )αf , (2.5)

where αf is either 1/2 or 1/4. The definitions of D̂f and Ssdet can be found in section 2.3.
Instead of this target distribution, the openQ*D code simulates a slightly different distri-
bution

ρsim(U,A) ∝ e−Sg,SU(3)(U)−Sg,U(1)(A)e−Ssdet(U,A)∏
f

detR−1
f . (2.6)

written in terms of a rational approximation Rf [37]

Rf ' (D̂†f D̂f + µ2
f )−αf , (2.7)

where µf is a tunable parameter introduced to suppress configurations with exceptionally
small eigenvalues of D̂†f D̂f (twisted–mass reweighting [38, 39]). If µf is small enough and
the rational approximation is accurate enough, the simulated distribution ρsim(U,A) is

6



very close to the target one ρtar(U,A). The difference is corrected by means of reweighting
factors Wf

ρtar(U,A)
ρsim(U,A) ∝

∏
f

Wf , Wf = det
[
(D̂†f D̂f )αfRf

]
, (2.8)

which have to be separately calculated and included in the expectation values of observ-
ables as follows

〈O〉tar =
〈O∏f Wf 〉
〈∏f Wf 〉

. (2.9)

The detailed discussion of the supported reweighting factors can be found in appendix A.
The rational function Rf can be decomposed in a product of positive factors Rf,` (frequency
splitting [39]). More details on frequency splitting are provided in section A.2. The
determinant of the rational functions is finally represented by means of a pseudofermion
quadratic action as in

detR−1
f =

∏
`

detR−1
f,` =

∫
[dΦ] e−

∑
`
(Φf,`,Rf,`Φf,`) . (2.10)

The distribution is generated by means of a Hybrid Monte Carlo (HMC) algorithm with
Fourier acceleration for the U(1) field. The molecular dynamics (MD) Hamiltonian is
given by

H = 1
2(π,∆−1π)U(1) + 1

2(Π,Π)SU(3) + S(U,A,Φ) , (2.11)

where Πµ(x) and πµ(x) denote the momentum fields associated to the SU(3) and U(1)
fields, the operator (−∆) is a discretization of the Laplace operator, and the action is
given by

S(U,A,Φ) = Sg,SU(3)(U) + Sg,U(1)(A) + Ssdet(U,A) +
∑
f,`

(Φf,`, Rf,`Φf,`) . (2.12)

Details on the implementation of the Fourier acceleration are presented in appendix B.
The HMC consists of three steps.

1. The momentum and pseudofermion fields are randomly generated with probability
distribution given by e−H ;

2. The gauge fields are evolved with a discretized version of the MD equations, i.e.

∂tAµ(x) = ∆−1πµ(x) ∂tπµ(x) = −∂Aµ(x)S(U,A,Φ) ,
∂tUµ(x) = Πµ(x)Uµ(x) ∂tΠµ(x) = −∂Uµ(x)S(U,A,Φ) , (2.13)

where ∂Uµ(x) is the left Lie derivative with respect to Uµ(x) while ∂Aµ(x) is the
elementary derivative with respect to Aµ(x). In practice multiple time–scale [40]
symplectic integrators are used to solve the MD equation: leapfrog, 2nd and 4th
order Omelyan–Mryglod–Folk integrators [41] are available (LF, OMF2, OMF4).

3. The evolved gauge configutation is accepted or rejected with a standard Metropolis
test with probability distribution given by e−H .
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1

C∗ dir.
k 6= 1

1

P dir.
k 6= 1

Figure 2: Global geometry of extended lattice. The top diagram represents a section of the
extended lattice along a (1, k) plane where k = 2, 3 is a direction with C∗ boundary conditions. All
fields are periodic along the extended direction 1. C∗ boundary conditions in the direction k = 2, 3
are replaced by shifted boundary conditions in the extended lattice. Shifted boundary conditions
are imposed by properly defining the nearest neighbours of boundary sites. Empty circles in the
red (resp. green, blue) rectangle have to be identified with the corresponding solid circles in the
red (resp. green, blue) rectangle. The bottom diagram represents a section of the extended lattice
along a (1, k) plane where k = 2, 3 is a periodic direction. In both diagrams, the black circles
represent the sites of the physical lattice, and the grey circles represent the sites of the mirror
lattice.

2.1 C∗ boundary conditions

Other than the variety of boundary conditions in the temporal direction inherited from
openQCD-1.6, the openQ*D code allows for periodic or C∗ boundary conditions to be
chosen in the spatial directions. If the gauge fields satisfy periodic boundary conditions in
all spatial directions k, the fermion fields ψf (x) and ψ̄f (x) satisfy general phase–periodic
boundary conditions (f is the flavour index), i.e.

Uµ(x+ Lkêk) = Uµ(x) , Aµ(x+ Lkêk) = Aµ(x) , (2.14)
ψf (x+ Lkêk) = eiθf,kψf (x) , ψ̄f (x+ Lkêk) = e−iθf,k ψ̄f (x) . (2.15)

Phase–periodic boundary conditions are incompatible with C∗ boundary conditions. If the
gauge fields satisfy C∗ boundary conditions in at least one direction, say k, then θf,j = 0
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for all f and j, and

Uµ(x+ Lkêk) = U∗µ(x) , Aµ(x+ Lkêk) = −Aµ(x) , (2.16)
ψf (x+ Lkêk) = C−1ψ̄Tf (x) , ψ̄f (x+ Lkêk) = −ψTf (x)C . (2.17)

The charge–conjugation matrix C satisfies

CT = −C , C† = C−1 , C−1γµC = −γTµ . (2.18)

C∗ boundary conditions are implemented by means of an orbifold construction. As-
sume that k = 1 is a direction with C∗ boundary conditions,3 in order to simulate a
physical lattice with size V = L0×L1×L2×L3 the openQ*D code allocates a lattice with
size VC∗ = L0 × (2L1) × L2 × L3, which we will refer to as the extended lattice. Points
in the physical lattice are assumed to have coordinates which satisfy 0 ≤ xµ < Lµ. The
extended lattice can be interpreted as a double–covering of the physical lattice, with co-
ordinates satisfying 0 ≤ xµ < Lµ for µ 6= 1 and 0 ≤ x1 < 2L1. Points outside the physical
lattice constitute the mirror lattice. On the extended lattice, points x and x + Lkêk do
not coincide, so eqs. (2.16) and (2.17) have to be interpreted as constraints which define
the admissible gauge and fermion fields. These are referred to as the orbifold constraints.
While the admissible gauge fields in the mirror lattice are completely determined by the
value of the gauge field in the physical lattice via (2.16), the orbifold constraint has a
different meaning for fermion fields, providing a relation between ψ in the physical lat-
tice and ψ̄ in the mirror lattice, and vice versa. Given that the fermion fields ψ and ψ̄

are independent Grassmanian variables on the physical lattice, then one can equivalently
choose the value of ψ in each point of the extended lattice as a complete set of independent
variables. The integration of the Grassmanian variables yields the Pfaffian of the operator
CTD [18], where T is the translation operator defined by

Tψ(x) = ψ(x+ L1ê1) . (2.19)

One easily proves that

|pf (CTD)| = |detD|1/2 , (2.20)

which justifies the need for αf = 1/4 in eq. (2.5). Since the square of the charge–conjugation
operation is the identity, all fields must obey periodic boundary conditions along the ex-
tended direction k = 1, i.e.

Uµ(x+ 2L1ê1) = Uµ(x) , Aµ(x+ 2L1ê1) = Aµ(x) , (2.21)
ψf (x+ 2L1ê1) = ψf (x) , ψ̄f (x+ 2L1ê1) = ψ̄f (x) . (2.22)

C∗ boundary conditions in directions k = 2, 3 are implemented by modifying the global
topology of the extended lattice (see fig. 2). In fact in these directions, C∗ boundary
conditions in the physical lattice imply shifted boundary conditions in the extended lattice,
i.e.

Uµ(x+ Lkêk) = Uµ(x+ L1ê1) , Aµ(x+ Lkêk) = Aµ(x+ L1ê1) , (2.23)
ψf (x+ Lkêk) = ψf (x+ L1ê1) , ψ̄f (x+ Lkêk) = ψ̄f (x+ L1ê1) . (2.24)

3 In the input file of a typical main program in openQ*D (see section 3.2), one can choose the number
of spatial directions with C∗ boundary conditions. C∗ boundary conditions are turned on sequentially in
directions 1, 2 and 3.
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When the determinant of the Dirac operator is stochastically estimated by means of a
pseudofermion action as in eq. (2.12), the pseudofermion field Φf,` is natively defined on
the extended lattice, i.e. Φf,`(x) are truly independent variables for each x in the extended
lattice. Moreover it satisfies the same boundary conditions as ψf in eqs. (2.22) and (2.24).

It is worth noticing that C∗ boundary conditions can be implemented in different
ways. For instance, the implementation proposed in appendix D of ref. [18] does not
double the lattice, but the number of pseudofermion fields. Roughly speaking one needs to
represent quarks and antiquarks by means of independent pseudofermion fields which are
mixed by the boundary conditions. The openQ*D implementation simply maps each pair of
pseudofermion fields in the geometry of the extended lattice. The cost of the application of
the Dirac operator implemented as in openQ*D and as in [18] is exactly identical. Therefore,
as far as the application and inversion of the Dirac operator, the orbifold contruction does
not introduce any overhead with respect to more standard implementations of C∗ boundary
conditions. On the other hand, the gauge field is evolved twice. In principle one could
evolve the gauge field only on the physical lattice and then copy its value to the mirror
lattice. This strategy will be considered in the future. However, simulations close to the
physical point are dominated by the inversion of the Dirac operator and the overhead due
to the evolution of the gauge field is expected to be negligible. Evidence of this fact has
been presented in [42].

2.2 Gauge actions

The SU(3) and compact U(1) gauge actions that can be simulated with openQ*D are

Sg,SU(3) = ωC∗

g2
0

1∑
k=0

c
SU(3)
k

∑
C∈Sk

tr [1− U(C)] , (2.25)

Sg,U(1) = ωC∗

2q2
ele

2
0

1∑
k=0

c
U(1)
k

∑
C∈Sk

[1− z(C)] , (2.26)

where U(C) and z(C) denote the SU(3) and U(1) parallel transports along a path C on
the lattice. S0 and S1 are the sets of all oriented plaquettes and all oriented 1× 2 planar
loops respectively and the overall weight ωC∗ is 1 if no C∗ boundary conditions are used.
With C∗ boundary conditions ωC∗ = 1/2 corrects for the double counting introduced by
summing over all plaquette and double–plaquette loops in the extended lattice instead of
the physical lattice (c.f. section 2.1). The coefficients c0,1 satisfy the relation c0 + 8c1 = 1.
For SU(3), the Wilson action is obtained by choosing c0 = 1, the tree–level improved
Symanzik (or Lüscher–Weisz) action is obtained by choosing c0 = 5

3 , and the Iwasaki
action is obtained by choosing c0 = 3.648. The parameters g0 and e0 are the bare SU(3)
and U(1) gauge couplings respectively, which are related to the β parameter and the bare
fine–structure constant α0 by

β = 6
g2

0
, α0 = e2

0
4π . (2.27)

In the compact formulation of QED, all electric charges must be integer multiples of some
elementary charge qel which is defined in units of the charge of the positron. As discussed
in ref. [18], qel appears as an overall factor in the gauge action and essentially sets the
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normalization of the U(1) gauge field in the continuum limit. Even though in infinite
volume qel = 1/3 would be an appropriate choice in order to simulate quarks, in finite
volume with C∗ boundary conditions one needs to choose qel = 1/6 in order to construct
gauge–invariant interpolating operators for charged hadrons [18, 20]. Note that by using
a compact formulation of QED, no gauge fixing is added to the action, and furthermore
the user is free to choose simulating (QCD+)QED without C∗ boundary conditions.

The actions in eqs. (2.25) and (2.26) assume periodic boundary conditions in time.
In the more general case, the actions are modified at the time boundary in order to allow
for O(a) improvement. The general form of the gauge actions can be found in [43].

2.3 Dirac operator

The Dirac operator implemented in openQ*D is given by a sum of terms

D = m0 +Dw + δDsw + δDb , (2.28)

whereDw is the (unimproved) Wilson–Dirac operator, δDsw is the Sheikholeslami–Wohlert
(SW) term, and δDb is the time boundary O(a)–improvement term. For simplicity, peri-
odic boundary conditions in the time direction will be assumed, which means δDb = 0.
The definition of δDb for other boundary conditions can be found in [44]. The Wilson–
Dirac operator of eq. (2.28) can be written as

Dw =
3∑

µ=0

1
2
{
γµ(∇µ +∇∗µ)−∇∗µ∇µ

}
, (2.29)

where the covariant derivatives are defined as

∇µψ(x) = U(x, µ)z(x, µ)q̂ψ(x+ µ̂)− ψ(x) , (2.30)
∇∗µψ(x) = ψ(x)− U(x− µ̂, µ)†z(x− µ̂, µ)−q̂ψ(x− µ̂) . (2.31)

The SW term is given by

δDsw = cSU(3)
sw

3∑
µ,ν=0

i
4σµνF̂µν + q cU(1)

sw

3∑
µ,ν=0

i
4σµνÂµν . (2.32)

The SU(3) field tensor F̂µν(x) and the U(1) field tensor Âµν(x) are constructed in terms
of the clover plaquette. The explicit expression of the SU(3) field tensor used in openQ*D
can be found in ref. [45], while the U(1) field tensor is given here,

Âµν(x) = i
4qel

Im {zµν(x) + zµν(x− µ̂) + zµν(x− ν̂) + zµν(x− µ̂− ν̂)} , (2.33)

zµν(x) = z(x, µ)z(x+ µ̂, ν)z(x+ ν̂, µ)†z(x, ν)† . (2.34)

The normalization is chosen in such a way that −ie0Âµν(x) is the canonically–normalized
field tensor in the naive continuum limit. Notice that the field tensors are anti–hermitian.

In presence of electromagnetism, the Dirac operator depends on the electric charge
of the quark field. Let q be the physical electric charge in units of e (i.e. q = 2/3 for the
up quark, and q = −1/3 for the down quark). In the compact formulation of QED, all
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electric charges must be integer multiples of an elementary charge qel, which appears as a
parameter in the U(1) gauge action (2.26). The integer parameter

q̂ = q

qel
∈ Z (2.35)

is the one appearing in the hopping term in eqs. (2.30) and (2.31). On the other hand,
notice that the SW term (2.32) is written in terms of the physical charge q. This normal-
ization corresponds to a definition of cU(1)

sw which is equal to 1 at tree level. The definition
of the even–odd preconditioned Dirac operator D̂ is standard [36]

D̂ = Dee −DeoD
−1
oo Doe , D =

(
Dee Deo
Doe Doo

)
, (2.36)

and so is the definition of the small-determinant action Ssdet appearing in eq. (2.5)

Ssdet = −
∑
f

αf tr log(1 +Df,oo) . (2.37)

3 Simulating QCD+QED with openQ*D

3.1 Structure of the openQ*D program package

The openQ*D code includes several main programs, roughly divided in three categories:
programs to generate configurations, programs to measure observables, and utility pro-
grams. The following programs (in the main directory) can be used to generate gauge
configurations for various theories:

• iso1: SU(3)×U(1) gauge theory with dynamical fermions;
• qcd1: SU(3) gauge theory with dynamical fermions;
• ym1: SU(3) pure gauge theory;
• mxw1: U(1) pure gauge theory.

The following programs (in the main directory) can be used to calculate simple observables:

• ms1: reweighting factors (see section 3.2 and appendix A);
• ms2: spectral range of (D̂†D̂)1/2 (D̂ is the even–odd preconditioned Dirac operator);
• ms3: SU(3) Wilson–flow observables;
• ms4: quark propagators;
• ms5: U(1) Wilson–flow observables;
• ms6: neutral pseudoscalar–pseudoscalar and axial–pseudoscalar correlators.

Finally, the following utility programs are also included:

• minmax/minmax: it generates the rational approximations needed for the RHMC
algorithm;
• devel/nompi/read*: they can be used to read the binary *.dat files generated by

the other programs.
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3.2 User guide for the dynamical QCD+QED simulation program iso1

3.2.1 Compiling and running the main program

A complete guide to the usage of all programs listed in section 3.1 can be found in the
headers of the source–code files, and in the README files in the corresponding directories.
Often the user will be referred to other sources of documentation (e.g. README files in
some of the modules subdirectories, or the headers of other source–code files, and some of
the PDF files in the doc directory). This section is intended to be neither a replacement
nor a duplicate of these sources of documentation, but rather an overview of the main
steps that are needed to use the iso1 program to generate QCD+QED configurations.

1. Download the code and check the dependences. The code is publicly available
on GitLab at https://gitlab.com/rcstar/openQxD. The simulation and measure-
ment programs, i.e. all programs in the main directory, require some MPI libraries
compliant with the MPI 1.2 (or later) standard. The minmax program requires the
GMP (https://gmplib.org) and GNU MPFR (http://www.mpfr.org) libraries.
Notice that the minmax program can be run on a personal computer and does not
need MPI, therefore one does not need to install the GMP and GNU MPFR libraries
on production machines.

2. Set the environment variables. The Makefile in the main directory assumes
that the C compiler can be called by using $(GCC), the MPI header file is found at
$(MPI_INCLUDE)/mpi.h, the MPI compiled library is found in the $(MPI_HOME)/lib/
directory, and the mpicc command is available. The needed environment variables
can be defined in the appropriate shell initialization files, e.g.
#!/ bin/bash
# [Stuff]

export GCC="gcc"
export MPI_INCLUDE ="/usr/local/ include /"
export MPI_HOME ="/usr/local/"

3. Choose the intrinsics acceleration options. Some pieces of code exist in several
versions: plain C, inline–assembly with SSE instructions, and inline–assembly with
AVX instructions. The default Makefile uses the C version of the code. In order to
use the inline–assembly version, one needs to modify the CFLAGS variable defined in
lines 122–124 of main/Makefile. For instance, on some x86-64 machines one can
use

122 CFLAGS = -std=c89 -pedantic -fstrict - aliasing \
123 -Wall -Wno -long -long -Wstrict - prototypes \
124 -Werror -O -mno -avx -DAVX -DFMA3 -DPM

which activates AVX and FMA3 instructions and assumes that prefetch instructions
fetch 64 bytes at a time. For a full description of available options, refer to the
README file in the root directory.

4. Choose the lattice geometry. The lattice geometry is chosen at compile time
by modifying the macros defined in the first part of the include/global.h file. A
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full description of these macros can be found in the main/README.global file. For
instance the following choice

18 #define NPROC0 8
19 #define NPROC1 8
20 #define NPROC2 4
21 #define NPROC3 4
22

23 #define L0 8
24 #define L1 8
25 #define L2 8
26 #define L3 8

corresponds to an 84 local lattice, replicated on an 82 × 42 MPI process grid (the
code will need to be run with 1024 MPI processes), which yields a 642 × 322 global
lattice. As explained in section 2.1, this choice of simulation parameters corresponds
to a 642 × 322 physical global lattice if no C∗ boundary conditions are used, or to
a 64× 323 physical global lattice if C∗ boundary conditions are used in at least one
spatial direction. In our implementation, NPROCn has to be a multiple of 2 if C∗
boundary conditions are used in the direction n = 1, 2, 3.

5. Compile the iso1 program and prepare for running. At this point, the
code is ready to be compiled. Assuming that the root directory of the code is
$HOME/openQxD, this is done by executing the following commands in a bash shell.
cd ${HOME }/ openQxD /main
make iso1

One can set up the directories and files to run the code by executing the following
commands in a bash shell.
cd ${HOME }/ openQxD
mkdir test
cd test
mkdir cnfg dat log input
cp ../ main/iso1 iso1
> input/ pedro01 .in
> runtest .sh
chmod a+x runtest .sh

6. Edit the input file. The input file input/pedro01.in must contain all adjustable
parameters of the simulation (except the few ones that have been set at compile
time). A rough guide on how to construct an input file for the iso1 program is
found in section 3.2.2. Alternatively, a sample input file can be cut and paste from
appendix C.

7. Start the simulation. Edit the runtest.sh script as follows:
#!/ bin/bash
./ iso1 -i input/ pedro01 .in -noloc -rmold

The runtest.sh script contains the command that invokes the iso1 program. It
can be launched via a standard mpirun command, or incorporated in a script for a
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job scheduler. Recall that the number of needed MPI processes has been decided
at compile time, and it is equal to 1024 in this case. The iso1 program takes a
number of command–line options: the input file is specified with the -i option, the
-noloc option specifies that the configuration files must be saved by a single MPI
process, the -rmold specifies that only the most recent configuration must be kept
and all previous ones must be deleted. The program will start the simulation from
a randomly generated configuration. More details about the command–line options
can be found in the main/README.iso1 file.

8. Interrupt the simulation. Assuming that no error is produced, the simulation
code will end naturally when all the configurations requested in the input file are
generated. If the simulation needs to be interrupted earlier, one can just execute the
following commands in a bash shell.
cd ${HOME }/ openQxD /test
touch log/ pedro01 .end

The simulation code will stop gracefully right after the next configuration is saved.

9. Resume the simulation. Assuming that the last generated configuration was
pedro01n42, edit the input file and set the nth variable in the [MD trajectories]
section to 0 (see below for a description of the input file), and edit the runtest.sh
script as follows:
#!/ bin/bash
./ iso1 -i input/ pedro01 .in -noloc -rmold -c pedro01n42 -a

Once this is executed, the simulation will continue from where it was interrupted.

3.2.2 Constructing the input file for iso1

Most of the parameters needed to generate configurations are passed to the iso1 program
by means of a human–readable input file, in this case pedro01.in in the test/input
directory. For a full description of the various parameters, the reader is referred to the
main/README.iso1 and doc/parms.pdf files (and references therein). A rough guide to
the various sections that compose the input file is provided here, with no ambition of
completeness.

1. Run name and output directories.
[Run name]
name pedro01

[ Directories ]
log_dir ./ log # absolute path , or relative path
dat_dir ./ dat # to the working directory of iso1
cnfg_dir ./ cnfg

The program iso1 will produce several output files:

• ./log/pedro01.log, human–readable file, with general information about the
simulation;
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• ./dat/pedro01.dat, binary file, with the history of simple diagnostic observ-
ables;
• ./dat/pedro01.ms3.dat and ./dat/pedro01.ms5.dat, binary files, with the

history of SU(3) and U(1) Wilson flow observables;
• ./dat/pedro01.par, binary file, with all simulation parameters;
• ./dat/pedro01.rng, binary file, with the state of the random number generator
at the time of the most recent saved configuration;
• ./cnfg/pedro01n*, binary files, with the gauge configuration.

For every file in the log and dat directories, a backup file identified by a tilde at the
end of its name is created and updated every time a configuration is saved.

2. Schedule management.
[MD trajectories ]
nth 100 # multiple of dtr_cnfg
ntr 800 # multiple of dtr_cnfg
dtr_log 5
dtr_ms 10 # multiple of dtr_log
dtr_cnfg 50 # multiple of dtr_ms

The program iso1 will print one entry in the log file every 5 MD trajectories, will
measure and print Wilson flow observables every 10 MD trajectories, will save a
configuration every 50 MD trajectories. The first 100 trajectories are considered of
thermalization (no observables are measured), a total of 800 MD trajectories will be
generated and 15 configurations will be saved.

3. Ranlux [46] initialization.
[ Random number generator ]
level 0 # this should not be changed
seed 19521 # this can be any positive integer

4. Boundary conditions.
[ Boundary conditions ]
type periodic # or SF , open , open -SF
cstar 3 # or 0, 1, 2

In this case periodic boundary conditions are chosen in time, and C∗ boundary
conditions in all 3 spatial directions. The implementation of C∗ boundary conditions
in openQ*D is described in section 2.1. If SF or open–SF boundary conditions are
chosen in time, the number of parameters in this section increases, as one needs to
specify the value of the fields on the SF boundaries. For a full description of these
parameters, refer to doc/parms.pdf.

5. Gauge actions.
[SU (3) action ]
beta 5.3
c0 1.0 # 1= Wilson , 5/3=Lüscher -Weisz , 3.648= Iwasaki
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[U(1) action ]
type compact # only option currently available
alpha 0.05 # bare fine - structure constant
invqel 6.0 # see "Quark flavours " below
c0 1.0 # Wilson action

If different boundary conditions in time are chosen, the number of parameters in
these sections increases, as one needs to specify the O(a)–improvement boundary
coefficients. Refer to doc/gauge_action.pdf, doc/parms.pdf of all these parame-
ters.

6. Quark flavours. In the terminology of the openQ*D code, a quark flavour is iden-
tified by all adjustable parameters that define the Dirac operator. For instance, in a
simulation in the isospin symmetric limit, the up and down quark count as a single
quark flavour. In the following example, two quark flavours are requested, and the
parameters of the corresponding Dirac operators are initialized.
[Quark action ]
nfl 2

[ Flavour 0] # Down quark
qhat -2 # qhat must be integer

# el. charge = qhat/ invqel = -2/6 = -1/3
kappa 0.136377 # hopping parameter
su3csw 1.909520 # u1csw= su3csw =0 => no O(a) improv .
u1csw 1.0 # u1csw= su3csw =1 => tree -level O(a) improv .

[ Flavour 1] # Up quark
qhat 4 # el. charge = qhat/ invqel = 4/6 = 2/3
kappa 0.137312
su3csw 1.909520
u1csw 1.0

If different boundary conditions in time are chosen, the number of parameters in
these sections increases, as one needs to specify the O(a)–improvement boundary co-
efficients. Also, if no C∗ boundary conditions are used, one can choose phase–periodic
boundary conditions for fermions in space. Refer to doc/dirac.pdf, doc/parms.pdf
for a detailed explanation of all these parameters.

7. Rational approximation. With C∗ boundary conditions, the Pfaffian of the even–
odd preconditioned Dirac operator D̂ is needed, whose absolute value can be gener-
ated by a pseudofermion effective action of the type ψ†(D̂†D̂)−1/4ψ. The fractional
power of D̂†D̂ is replaced by a rational approximation, which must be generated by
means of the minmax program [47,48]. We sketch here how to use this program, see
minmax/README for more details.
First, one needs to modify the GCC and MPLIBPATH variables in minmax/Makefile.
The Makefile assumes that the C compiler can be called by using $(GCC), the GMP
and MPFR header files are found in the $(MPLIBPATH)/include/ directory, and the
compiled libraries are found in the $(MPLIBPATH)/lib/ directory.

22 GCC = gcc
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23

24 MPLIBPATH = /usr/local

The minmax program is compiled and executed with the following commands in a
bash shell.
cd ${HOME }/ openQxD / minmax
make
./ minmax -p -1 -q 4 -ra 1.98e -03 -rb 7.62 -goal 6e -05

A rational approximation for (D̂†D̂)α is requested, with α = (−1)/(4) (-p and
-q options), assuming that the eigenvalues of (D̂†D̂)1/2 are in the interval [1.98 ×
10−3, 7.62] (-ra and -rb options), with a target relative precision of 6×10−5 (-goal
option). The spectral range of (D̂†D̂)1/2 must be guessed at first, but after some
configurations have been generated it can be calculated with the program main/ms2.
The minmax program creates a directory with a very long name, in this case

p-1q4mu0.00000000e+00ra1.98000000e-03rb7.62000000e+00
which contains several files named n*.in. The integer in the file name corresponds
to the order of the generated rational approximation. Only the highest order rational
approximation, n10.in in this case, meets the requested precision. The full content
of the n10.in must be pasted in the input file in a section of the following type,
[ Rational 0]
power -1 4
degree 10
range 1.98000000e -03 7.62000000 e+00
mu 0.00000000 e+00
delta 5.9691841082503071e -05
A 2.04978213590663732591e -01
nu[0] 1.22647978559899293316 e+01
mu[0] 8.40737261524814627478 e+00
# [...] the full content of n10.in must be pasted here

Notice that more than one rational approximation can be used in the same input
file (e.g. one may want to use different rational approximations for the up, down
and strange quarks). Each rational approximation is identified by the integer in the
section title.

8. MD Hamiltonian and integrator.
[HMC parameters ]
actions 0 1 2 3 # List of action IDs , see below
npf 2 # Number of pseudofermions to be allocated
nlv 2 # Number of levels of integrator for MD eqs
tau 2.0 # MD trajectory length
facc 1 # Fourier acceleration for U(1) MD

# (0= not active , 1= active )

[Level 0] # Innermost level
integrator OMF4 # Omelyan -Mryglod -Folk 4th order
nstep 2 # Number of times the elementary integrator

# is applied at this level
forces 0 1 # List of force IDs to be integrated at
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# this level , see below

[Level 1] # Outermost level
integrator OMF4
nstep 1
forces 2 3

The MD Hamiltonian is given by the canonical kinetic term of the SU(3) gauge field,
the kinetic term of the U(1) gauge field, and a sum of terms which do not depend on
the MD momenta and are referred to as actions. The kinetic term of the U(1) gauge
field can be chosen to be of two types: the canonical one (facc=0), or the Fourier–
accelerated one (facc=1). Refer to doc/fourier.pdf and section 2 for details on
Fourier acceleration. The MD equations are solved by means of an approximate
symplectic multilevel integrator, built in terms of standard elementary integrators.
For each level, one needs to specify how many times the elementary integrator needs
to be applied and which forces need to be integrated. Refer to doc/parms.pdf and
module/update/README.mdint for details on the integrator.
The actions and forces are uniquely identified by an ID. Obviously there is a one–to–
one correspondence between actions and forces. Corresponding actions and forces
must share the same ID. The gauge actions and forces must be included, i.e.
[ Action 0] # No adjustable parameters here!
action ACG_SU3

[Force 0]
force FRG_SU3

[ Action 1]
action ACG_U1

[Force 1]
force FRG_U1

In this example, two pseudofermion actions are used (notice that this number matches
the number of pseudofermion fields requested in the [HMC parameters] section), one
for up quark and one for the down quark.
[ Action 2]
action ACF_RAT_SDET # Rational approximation effective action
ipf 0 # Pseudofermion ID (a number from 0 to 1)
ifl 0 # Flavour ID (down quark)
irat 0 0 9 # Use the rational approximation with ID=0

# Include all rat. appr. factors , 0 -> 9,
# i.e. no frequency splitting

isp 0 # Solver ID , used to generate the p.f. at
# the beginning of the MD and to calculate
# the Hamiltonian at the end of the MD

[Force 2]
force FRF_RAT_SDET
isp 1 # Solver ID , used to calculate the force

[ Action 3]
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action ACF_RAT_SDET
ipf 1 # Different pseudofermion ID
ifl 1 # Different flavour ID (up quark)
irat 0 0 9
isp 0

[Force 3]
force FRF_RAT_SDET
isp 1

Notice that openQ*D allows for frequency splitting (not used in this example): the
poles and zeroes of the rational approximations can be separated in different pseud-
ofermion actions. This is convenient because one may want to integrate different
poles and zeroes in different levels of the integrator, and also one may want to use
different solvers for different poles. For details on the pseudofermion actions and
forces, and on the frequency splitting, one should refer to doc/rhmc.pdf and sec-
tion 2.

9. Solvers. Two multi–shift CG solvers are used in this example, with different residue
for the actions and the forces.
[ Solver 0]
solver MSCG # or CGNE , SAP_GCR , DFL_SAP_GCR
nmx 2048 # Maximum number of iterations
res 1.0e -11 # Residue

[ Solver 1]
solver MSCG
nmx 2048
res 1.0e-8

For details on the usage of other solvers, one should refer to doc/parms.pdf. The de-
flated solver (DFL_SAP_GCR) requires to set parameters for the generation and update
of the deflation subspaces, also described in doc/parms.pdf. See also section 4.4.

10. Wilson flow parameters. The iso1 program measures on the fly a number of
simple observables (actions, SU(3) topological charge, electromagnetic fluxes) at
positive flow time.
[ Wilson flow]
integrator RK3 # EULER: Euler , RK2: 2nd order Runge -Kutta

# RK3: 3rd order Runge -Kutta
eps 2.0e-2 # Integration step size
nstep 700 # Total number of integration steps
dnms 5 # Number of steps between measurements
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Figure 3: Results for strong (left) and weak (right) scaling of the application of the Dirac operator
and SAP preconditioner as explained in the text. The speedup factors for the Dirac operator are
multiplied by a factor 10 for better visibility. The dashed lines indicate perfect scaling behaviour
accordingly.

4 Performance and testing

4.1 Code performance on parallel machines

For future reference and comparison, benchmark measurements have been performed for
the timing of the application of the double precision Wilson–Dirac operator and the SAP
(Schwartz–Alternating–Procedure) preconditioner. The HPC cluster at CERN has been
used, which features 72 nodes, each of them with two 8-core Intel R© Xeon processors (E5-
2630 v3, Haswell) running at about 2.4GHz base frequency (3.6GHz max.). Nodes are
connected with Mellanox R© Infiniband FDR (56Gb/s).

The timings are obtained with the time2 programs located in the subdirectories
devel/dirac and devel/sap. All measured times have been normalised to the smallest
partition (one node or 16 cores). The results of these scaling tests are shown in fig. 3. A
QCD+QED setup with open boundary conditions in time and C∗ boundary conditions in
one spatial direction has been used.

The weak scaling test has been performed with a local lattice size of 8× 16× 8× 8,
giving an extended lattice with total volume VC∗ = 2Nproc84. Because of the C∗ boundary
conditions this corresponds to a physical lattice with volume V = Nproc84, cf. section 2.1.
While for the Dirac operator, parameters similar to the Quark flavours example (point 6)
in section 3.2 have been used, the SAP preconditioner specifically employs a block size of
44 with five SAP cycles (ncy 5) and five iterations (nmr 5) of the even–odd preconditioned
Minimal Residue (MinRes) block solver. The setup is similar for the strong scaling study
but with a constant total volume of VC∗ = 2 · 64 × 323 and varying local lattice sizes.
In case of the double precision Wilson–Dirac operator, a much larger lattice volume with
VC∗ = 2 · 644 total lattice points was probed as well. As it can be seen in the left panel of
fig. 3 the larger lattice is performing even better than the smaller one.
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In summary, the overall scaling studied here is close to optimal and small deviations
may partly result from remaining indigestions of the underlying network. Similar studies
have to be done on other machines but the overall behaviour is expected to be similar to
the original openQCD code.

4.2 Low-level tests

The openQ*D code has been tested by means of an extensive battery of check programs,
which can be found in the subdirectories of devel.4 These programs have been taken
over from openQCD-1.6 and NSPT-1.4, and extended in order to test the specific feature
of the openQ*D code. Roughly speaking, the check programs in each devel subdirectory
test features of the corresponding module subdirectory. Many check programs test also
interactions between different modules. These programs are meant to be used by devel-
opers only and contain very limited documentation. Providing a description of the check
programs is outside of the scope of this paper, and a short description can be found in the
INDEX files in each devel subdirectory. However, it is worth to point out a few facts. All
check programs have been run with all possible combinations of boundary conditions in
the space and temporal directions. Whenever possible, all check programs have been run
in a pure QCD setup (i.e. only the SU(3) gauge field is allocated), a pure QED setup (i.e.
only the U(1) gauge field is allocated), and a QCD+QED setup (i.e. both gauge fields are
allocated). All check programs have been run with various geometric configurations, i.e.
lattice size and processor grid. Besides a plethora of minor details, specific check programs
have been written to test:

• the implementation of C∗ boundary conditions for both gauge fields and for the
Dirac operator;

• general properties of the Dirac operator with generic electric charge (e.g. gauge con-
variance, translational covariance, γ5–hermiticity, comparison to analytic expression
in case of zero gauge field);

• the rational approximation of generic powers, and the associated reweighting factors;

• the forces for the U(1) field, the QED action, the U(1) Wilson flow, the U(1) ob-
servables (e.g. clover field tensor, electromagnetic fluxes);

• the MD with the U(1) field, with and without Fourier acceleration.

4.3 Conservation of the Hamiltonian with Fourier Acceleration

The use of Fourier Acceleration in QCD+QED simulations modifies the MD Hamiltonian
and, consequently, the MD equations. In order to test the consistency between the two,
one can look at the violation ∆H of Hamiltonian conservation as a function of the MD
integration step–size ∆τ . The violation should vanish as a positive power of the integra-
tion step–size in the ∆τ → 0 limit. The power depends on the chosen integrator. When
the total trajectory length is kept constant, the leap–frog integrator (LF) and 2nd or-
der Omelyan–Mryglod–Folk (OMF2) integrators yield ∆H ∼ (∆τ)2, while the 4th order
Omelyan–Mryglod–Folk (OMF4) integrator yields ∆H ∼ (∆τ)4.

4 The devel directory contains 46’224 lines of code, against 60’203 lines of code in the module directory.
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Figure 4: Violations of MD Hamiltonian conservation ∆H as a function of the MD integration
step–size ∆τ , for all available integrators (LF, OMF2, OMF4), with and without Fourier Acceler-
ation (FA). The lines represent the fit functions provided in the legend.

Figure 4 shows the violation ∆H as a function of ∆τ for all integrators, with and
without Fourier Acceleration. A two parameter function ∆H = a∆τ b has been fitted to
the data points. In all cases the obtained exponent is reasonably close to the expected
one. This test has been performed on a single thermalized configuration taken from the
Q*D1 ensemble (table 1).

As expected there is a clear hierarchy among the three integrators. More interestingly,
Fourier Acceleration has the effect of reducing significantly ∆H. While no definite conclu-
sion can be drawn from a single–configuration experiment in this regard, the experience
collected so far suggests that this is quite generally the case: when Fourier Acceleration is
turned on, if one wants to keep the acceptance rate the same, larger values of ∆τ can be
typically chosen. Obviously this does not mean that it is always convenient to use Fourier
Acceleration. In order to understand whether this is the case, one should take into account
the computational overhead and the variation in autocorrelations. Fourier acceleration is
known to reduce significantly autocorrelations in the case of the free scalar theory, but
also in the case of non–compact pure U(1) theory [11], which is a theory of free photons.
Nevertheless, as soon as a full QCD+QED simulation is done, our experience suggests
that autocorrelation times are quite insensitive to the use of Fourier acceleration for the
U(1) fields. These findings need further investigations.

4.4 Performance of locally deflated solver in QCD+QED

The use of efficient solvers is a key factor in enabling simulations at quark masses close to
the physical point. The openQ*D code inherits all the solvers of the openQCD-1.6 pack-
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name Nf β time bc VC∗/2 κ t0/a
2 a [fm] mPS [MeV]

QCD1 2 5.3 periodic 64× 323 0.136304 — 0.066 365
Q*D1 2+1 3.55 periodic 32× 163 0.137000 3.867(50) 0.074 660

Table 1: Details of test runs employing C∗ boundary conditions in 3 spatial directions. Note that
due to the C∗ boundary conditions, the global (simulated) lattice VC∗ is two times larger than
the physical lattice because of the orbifold contruction. Nf = 3 simulations of QCD+QED (Q*D1)
use the tree–level improved Symanzik gauge action (LW) for the SU(3) gauge field with c

SU(3)
sw

taken from [49], and the Wilson plaquette action (W) for the electromagnetic field with cU(1)
sw = 1.

Furthermore, the electromagnetic coupling is set to α0 = 0.05 ≈ 7αphys
0 with qel = 1/6, i.e., the

doublet (d s)−1/3 and (u)+2/3 have been simulated. The Nf = 2 pure QCD simulation (QCD1)
uses the plaquette action with non–perturbative cSU(3)

sw of ref. [50], and the lattice spacing was
determined in ref. [51]. All runs have degenerate quarks with hopping parameter κ. Values for the
neutral pseudoscalar mass mPS are given, as well as the flow time t0/a2 from which we naively
derive the approximate lattice spacing of Q*D1 using results of ref. [52].

age: Conjugate Gradient (CG), Multi–Shift Conjugate Gradient (MSCG), Generalized
Conjugate Residual algorithm with Schwartz–Alternating–Procedure as preconditioning
(SAP+GCR), and a deflated version of it (DFL+SAP+GCR). The deflated solver imple-
ments the idea of inexact deflation introduced in [22, 53] and an improvement involving
inaccurate projection in the deflation preconditioner proposed in [54].

As the Dirac operator is passed as an argument to these solvers, their implementation
is blind to the coupling to the U(1) field and to C∗ boundary conditions. The efficiency
of these solvers may be affected in principle by the coupling to the U(1) field, i.e. may
depend on the electric charge of the Dirac operator. However this turns out not to be the
case. The goal of this section is to describe two tests in support of this statement. These
tests have been run on Altamira HPC at IFCA-CSIC, which consists of 158 computing
nodes, each of them with two Intel R© Xeon processors (E5-2670) at 2.6GHz. Nodes are
connected with Mellanox R© Infiniband FDR (56Gb/s).

An electroquenched (QCD+qQED) setup has been considered for both tests, with
SU(3) configurations from the QCD1 ensemble (table 1) and pure U(1) configurations gen-
erated with α0 = 0.05 and qel = 1/6. Two degenerate valence quarks Q and Q′ have been
considered, with electric charge q and bare mass m0. The mass mPS of the Q̄′γ5Q valence
pseudoscalar neutral meson has been calculated as a function of q and m0 and is shown
in fig. 5. Notice that the critical bare mass depends very heavily on the electric charge, as
expected. For this reason it makes sense to compare the solver performance for different
electric charges keeping fixed the value of mPS (rather than the bare mass).

In the first test, the time needed to invert the even–odd preconditioned Dirac oper-
ator (with a representative QCD+qQED configuration) on 15 random sources has been
measured, using the CG, SAP+GCR, and DFL+SAP+GCR solvers. The shortest time
has been plotted in fig. 6 for electric charges q = 0,−1/3, 2/3 and a range of values of
mPS. It is evident that the performance of all solvers is insensitive to the electric charge.

One important caveat needs to be pointed out for the DFL+SAP+GCR solver. Before
applying this solver, one needs to generate the deflation subspace, which is constructed
from approximate eigenvectors of the Dirac operator. The code allows the possibility to
choose different parameters for the Dirac operator used in the solver and the one used to
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Figure 5: Mass of the Q̄′γ5Q valence pseudoscalar neutral meson has been calculated as a function
of q and am0 = 1/(2κ) − 4. QCD+qQED setup: SU(3) configurations are taken from the QCD1
ensemble (table 1) and pure U(1) configurations are generated with α0 = 0.05 and qel = 1/6.
The dashed curves are fits to the expected (leading order) quark mass dependence, [mPS(q)]2 =
B(q){m0−mcr(q)}, and are shown only to guide the eye. The gray dashed line indicates the mass
of the unitary point of the QCD simulation.

generate the deflation subspace. This is very useful in practice since having a slightly heav-
ier bare mass or even a twisted mass for the generation of the deflation subspace generally
speeds up the calculation without affecting the performance of the solver. On the other
hand, it is crucial to generate the deflation subspace with the same electric charge of the
Dirac operator that needs to be inverted. If this is not done, the DFL+SAP+GCR solver
loses efficiency dramatically. For this reason, in contrast to openQCD-1.6, the openQ*D
code can handle simultaneously several deflation subspaces. These deflation subspaces can
be generated with different parameters and will all be updated during the MD evolution.
The user can specify in the input file which deflation subspace should be used for each
DFL+SAP+GCR solver independently. In practice, in a realistic QCD+QED simulation,
one would need to generate only two deflation subspaces, one for up–type quarks and one
for down–type quarks. It has been checked also that the time needed to generate the
deflation subspace is insensitive to the electric charge as long as mPS is kept fixed.

In the second test, a single value of mPS ' 354 MeV has been chosen, and the time
needed to invert (D̂†D̂ + µ2) has been measured for various values of the twisted mass
µ, using the CG and DFL+SAP+GCR solvers. One representative QCD+qQED config-
uration and 48 random sources have been used. The shortest time has been plotted in
fig. 7 for electric charges q = 0,−1/3, 2/3 and a range of values of µ. The inversion of
(D̂†D̂ + µ2) is relevant to calulate the rational approximation of non–integer powers of
D̂†D̂ (see section 2). Also in this case, the performance of the two solvers is seen to be
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Figure 6: Comparison of performance of various solvers and various electric charges as a function
of the mass mPS of the valence neutral pion. In all cases, the inverse of the even–odd precondi-
tioned Dirac operator has been calculated on random sources. One representative QCD+qQED
configuration has been used (SU(3) configuration from the QCD1 ensemble, table 1, and pure U(1)
configuration generated with α0 = 0.05 and qel = 1/6). The same residue of 10−10 has been chosen
for the three solvers. The solver performance is insensitive to the electric charge.

insensitive to the electric charge as long as mPS is kept fixed.

4.5 Key observables for HMC simulations of QCD+QED

Beside the electroquenched tests in the previous section, a new set of tests is done using
dynamical QCD+QED simulations with Wilson fermions and C∗ boundary conditions.
The dynamical degrees of freedom of the U(1) gauge field are included in the simulation
labeled Q*D1 in table 1. Q*D1 takes over the parameters from the H200 ensemble of the
Nf = 2+1 CLS [56] effort, except that the lattice extent is halved in each of the space–time
directions. As the dynamical U(1) degrees of freedom contribute to the renormalization
of the bare parameters, the estimate for the lattice spacing and pion mass cannot be
taken over from the CLS ensembles,5 but rather need to be estimated independently.
Such an endeavour is beyond the scope of this paper. However, an estimate for t0/a2

is given in table 1 for future reference. The reference flow time t0 is implicitly given by
[t20〈E(t0)〉] = 0.3 using the Wilson flow and clover discretisation of the SU(3) field strength
tensor in the definition of the energy density E(t) [57]. A rough estimate of a is given
after naively matching t0/a2 to the data provided in table III of ref. [52].

Although openQ*D allows for twisted–mass reweighting, that option is not required
for Q*D1 (µ = 0.0). All three bare sea quark masses, am0,i = 1/(2κi)− 4, are taken to be

5 Had the U(1) d.o.f. been switched off (α0 = 0), the chosen parameter set would correspond to
a ≈ 0.064 fm and mPS ≈ 420 MeV.
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Figure 7: Comparison of performance of various solvers and various electric charges as a function of
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residue of 10−8 has been chosen for the three solvers. The solver performance is insensitive to the
electric charge. As expected, the deflated solver loses efficiency at large values of µ and eventually
fails to converge for the three highest value.

degenerate. As demonstrated in the previous section and shown in fig. 5, this necessarily
leads to a large difference in the neutral pseudoscalar masses due to the differences in
quark charges. One thus ends up with a degenerate pair of down–type quarks (q = −1/3),
and a single but significantly heavier up–type quark (q = 2/3). Hence, the simulations
are essentially probing a somewhat unphysical version of the Nf = 2 + 1 theory, but are
sufficient to probe standard observables and performance of the code.

In fig. 8 a summary of selected observables is given for simulation Q*D1. The run was
stable and did not show any particular issue during the course of the simulation. Most of
the observables presented in the following include the thermalisation part. Starting from
a random configuration, the HMC energy violations, measured every trajectory (τ = 0.7
MDU), drop after a few iterations and stably fluctuate in the range [−0.5,+0.5]. The
simulation employs the OMF4 integrator without Fourier acceleration and the spectral
ranges of the individual quark flavours have been properly set. Next the average pla-
quette for the SU(3) and U(1) gauge fields are presented. The former is shifted by a
constant amount for better comparison. The SU(3) plaquette has much larger statistical
fluctuations and requires longer thermalisation times than the U(1) plaquette even with-
out Fourier acceleration. The next two plots show the two available definitions of the
(renormalized) energy density E(t) at a flow time t = 3.2 for the SU(3) and U(1) part,
respectively. The topological charge Q (measured at the same flow time) fluctuates well
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Figure 8: Selected observables for simulation Q*D1 including thermalisation part. Left–right/top–
bottom: HMC energy violations ∆H, average plaquette for SU(3) and U(1) gauge fields, energy
density E(t) for SU(3), energy density for U(1), topological charge Q(t), lowest eigenvalue λ̂min
in the spectrum of |γ5D̂|, and reweighting factors Wq for two different numerical accuracies, δ =
O(10−11) (left) and δ = O(10−9) (right).
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after rapid changes during the thermalisation phase of the run. The smallest eigenvalues
of |γ5D̂u| and |γ5D̂d/s| follow, confirming that the lower end of the spectral ranges of the
rational approximations have been chosen correctly. No exceptionally small values are
present, which is not surprising considering the heavy pseudoscalar mass simulated here.

The Q*D1 run has been produced with a rational approximation with relative precision
δ = O(10−11). A second run has been performed with the same parameters as Q*D1 except
for the rational approximation, which has been chosen with relative precision δ = O(10−9).
The logarithms of the reweighing factors for both runs are shown in the last two panes of
fig. 8. As expected, the reweighting factor for the run with a better rational appriximation
is closer to 1 (and its logarithm is closer to 0).

5 Summary and outlook

We presented openQ*D [1], the first open source package which allows to perform full
lattice simulations of QCD+QED, QCD or QED. The code implements the proposal of
ref. [18] and allows to choose C∗ boundary conditions along the spatial directions but also
periodic boundary conditions can be simulated efficiently. Moreover, the chosen theory
can be simulated by choosing either periodic, Schrödinger Functional or open boundary
conditions along the time direction.

The new code is based on the openQCD [2] package from which it inherits the highly
optimized implementation of the Dirac operator, of the solvers, of the HMC and of the
RHMC algorithms. The openQ*D package extends the algorithmic functionalities of the
openQCD code by giving the possibility of using multiple deflation subspaces in a sin-
gle simulation, of implementing rational approximations of generic powers of the Dirac
operator (with and without twisted–mass preconditioning) and by implementing Fourier
Acceleration for the evolution of the U(1) field.

We presented the main functionalities of the code and discussed the theoretical mo-
tivations behind the algorithmic choices and their specific implementations. We also pre-
sented a guide to instruct the user to run a full QCD+QED simulation with openQ*D and
discussed the results of some tests. These include low–level tests aiming at assessing the
correctness of the implementation of the different algorithms but also some benchmarks
to measure the performance of the code.

Given the good performance and high scalability on modern supercomputing cluster
architectures, openQ*D can profitably be used to generate QCD+QED gauge configurations
with C∗ boundary conditions (but not only) in a realistic setup with the aim of computing
QED radiative corrections to phenomenologically relevant observables.

Acknowledgements. The simulations were performed on the following HPC systems: Altamira,
provided by IFCA at the University of Cantabria; FinisTerrae II, provided by CESGA (Galicia
Supercomputing Centre); the Lonsdale cluster maintained by the Trinity Centre for High Perfor-
mance Computing; and the Lattice-HPC cluster at CERN. FinisTerrae II was funded by the Xunta
de Galicia and the Spanish MINECO under the 2007–2013 Spanish ERDF. Lonsdale was funded
through grants from the Science Foundation Ireland. We thankfully acknowledge the computer
resources offered and the technical support provided by the staff of these computing centers. We
thank the Theoretical Physics Department at CERN for hospitality during the workshop Advances
in Lattice Gauge Theory 2019, allowing us to jointly finalise the present work.

29



A Implementation of the RHMC

A.1 Rational approximation

It is convenient to introduce the hermitian operator Q̂ = γ5D̂, in terms of which D̂†D̂ =
Q̂2. Assume that the spectrum of |Q̂| is contained in the interval [ra, rb], and choose an
integer n. A rational function of order [n, n] in q2 has the form

ρ(q2) = A
n∏
j=1

q2 + ν2
j

q2 + µ2
j

. (A.1)

Without loss of generality one can assume

ν1 > ν2 > · · · > νn , µ1 > µ2 > · · · > µn . (A.2)

ρ(q2) is chosen to be the optimal rational approximation of order [n, n] of the function
(q2 + µ̂2)−α in the domain q ∈ [ra, rb], i.e. the rational function of the form (A.1) which
minimizes the uniform relative error

δ = max
q∈[ra,rb]

|1− (q2 + µ̂2)αρ(q2)| . (A.3)

As explained in sec. 3.2.2, the optimal rational approximation can be calculated with the
minmax code which implements the minmax approximation algorithm in multiple precision.

If ρ(q2) is the desired optimal rational approximation, the operator R which appears
in eq. (2.6) is defined simply as

R = ρ(Q̂2) = ρ(D̂†D̂) = A
n∏
j=1

D̂†D̂ + ν2
j

D̂†D̂ + µ2
j

. (A.4)

Eq. (A.3) implies the following norm bound

‖1− (D̂†D̂ + µ̂2)αR‖ ≤ δ . (A.5)

A.2 Frequency splitting and pseudofermion action

openQ*D inherits from openQCD the frequency splitting of the rational approximation: the
factors of the rational approximation can be split in different pseudofermion actions; the
corresponding forces can be included in different levels of the MD integrator, providing
a useful handle to optimize the algorithm. This procedure is similar to the Hasenbusch
decomposition for the HMC algorithm [58].

The rational approximation constructed in section A.1 is broken up in factors of the
form

Pk,l =
l∏

j=k

D̂†D̂ + ν2
j

D̂†D̂ + µ2
j

. (A.6)

For example, if n = 12 a possible factorization is

R = AP1,5P6,9P10,12 . (A.7)
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The contribution of R to the quark determinant is

detR−1 = constant× detP−1
1,5 detP−1

6,9 detP−1
10,12 . (A.8)

Each P−1
k,l determinant is simulated as usual by adding a pseudofermion action of the form

Spf,k,l = (φk,le , Pk,lφ
k,l
e ) , (A.9)

where the fields φk,le are independent pseudofermions that live on the even sites of the
lattice. By using a partial fraction decomposition

Pk,l = 1 +
l∑

j=k

σj

D̂†D̂ + µ2
j

, (A.10)

σj = (ν2
j − µ2

j )
∏

m=l,...,k
m6=j

ν2
m − µ2

j

µ2
m − µ2

j

, (A.11)

the pseudofermion action in eq. (A.9) is cast into a sum of terms of the type

Spf,k,l = (φk,le , φk,le ) +
l∑

j=k
σj (φk,le , (D̂†D̂ + µ2

j )−1φk,le ) . (A.12)

A.3 Reweighting factors

Let R̃ and R be the optimal rational approximations of order [n, n] for (D̂†D̂)−α and
(D̂†D̂ + µ̂2)−α respectively. It is assumed that the relative errors of the two rational
approximations are not greater than δ in the common spectral range [ra, rb].

The reweighting factor W defined in eq. (2.8) is decomposed in two factors which are
calculated separately, i.e.

W = WratWrtm , (A.13)
Wrat = det[(D̂†D̂)αR̃] , (A.14)
Wrtm = det[R̃−1R] . (A.15)

A.3.1 Reweighting factor Wrat

In the calculation of the reweighting factor Wrat in eq. (A.14), it is assumed that the
exponent α is a positive rational number of the form

α = u

v
, (A.16)

where u and v are natural numbers. The reweighting factor can be represented as

Wrat = det[Q̂2uR̃v]
1
v = det(1 + Z)

1
v , (A.17)

where the operator Z is defined as

Z = Q̂2uR̃v − 1 . (A.18)

31



The determinant in eq. (A.17) is estimated stochastically

Wrat = lim
N→∞

1
N

N∑
j=1

exp{−(ηje , [(1 + Z)−
1
v − 1]ηje)} , (A.19)

where the fields ηje are N independent normally–distributed pseudofermions that live on
the even sites of the lattice. From the norm bound in eq. (A.5) for µ̂ = 0, and the positivity
of R̃ (which is guaranteed if the relative error δ is small enough), it follows that

0 ≤ 1 + Z = Q̂2uR̃v = [Q̂2αR̃]v ≤ (1 + δ)v , (A.20)

which yields the norm bound

‖Z‖ ≤ ∆ = (1 + δ)v − 1 = vδ +O(δ2) . (A.21)

Therefore the Taylor series

(1 + Z)−
1
v = 1 +

∞∑
n=1

cv,n Z
n , cv,n = (−1)n

1
v ( 1
v + 1) · · · ( 1

v + n− 1)
n! , (A.22)

converges rapidly in operator norm. The exponent in eq. (A.19) can be estimated from
the first few terms of

(ηje , [(1 + Z)−
1
v − 1]ηje) =

∞∑
n=1

cv,n (ηje , Znηje) . (A.23)

It is possible to estimate the size of these terms by noting that ‖ηje‖2 is very nearly equal
to 12 times the number Ne of even lattice points. Taking the bound (A.21) into account,
the following estimate is obtained

|(ηje , Znηje)| ≤ ‖Z‖n ‖ηje‖2 ≤ ∆n‖ηje‖2 ' 12(vδ)nNe . (A.24)

The statistical fluctuations of the exponents in eq. (A.19) derive from those of the
gauge field and those of the random sources ηje . For a given gauge field, the variance of
the exponent is equal to

tr {[(1 + Z)−
1
v − 1]2} = 1

v2 trZ2 +O(δ3) ≤ 12Neδ
2 +O(δ3) . (A.25)

These fluctuations are guaranteed to be small if, for instance, 12Neδ2 ≤ 10−4. One can
then just as well set N = 1 in eq. (A.19), i.e. a sufficiently accurate stochastic estimate of
Wrat is obtained in this case with a single random source.

When the stronger constraint 12Neδ ≤ 10−2 is satisfied, the reweighting factor Wrat
deviates from 1 by at most 1%. Larger approximation errors can however be tolerated in
practice as long as the fluctuations of Wrat remain small.

A.3.2 Reweighting factor Wrtm

Let us choose a rational approximation R of order [n, n] for (D̂†D̂ + µ̂2)−α of the form

R = A
n∏
j=1

D̂†D̂ + ν2
j

D̂†D̂ + µ2
j

, (A.26)

ν1 > ν2 > · · · > νn , µ1 > µ2 > · · · > µn , (A.27)
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and a rational approximation R̃ of order [n, n] for (D̂†D̂)−α of the form

R̃ = Ã
n∏
j=1

D̂†D̂ + ν̃2
j

D̂†D̂ + µ̃2
j

, (A.28)

ν̃1 > ν̃2 > · · · > ν̃n , µ̃1 > µ̃2 > · · · > µ̃n . (A.29)

Let us rewrite eq. (A.15) as

Wrtm = det[R−1R̃]−1 . (A.30)

Notice that the operator R−1R̃ is also a rational function of Q̂2 = D̂†D̂. It is convenient
to break up this rational function in factors of the type

P̃k,l =
l∏

j=k

(D̂†D̂ + µ2
j )(D̂†D̂ + ν̃2

j )
(D̂†D̂ + ν2

j )(D̂†D̂ + µ̃2
j )
. (A.31)

If n = 12, for example, the reweighting factor Wrtm can be factorized as

Wrtm = constant× det P̃−1
1,5 det P̃−1

6,9 det P̃−1
10,12 . (A.32)

Each of the above determinants is estimated stochastically

det P̃−1
k,l = lim

N→∞
1
N

N∑
j=1

exp{−(ηje , [P̃k,l − 1]ηje)} , (A.33)

where the fields ηje are N independent normally–distributed pseudofermions that live on
the even sites of the lattice. It is useful to consider the partial fraction decomposition

P̃k,l = 1 +
l∑

j=k

(
σj

D̂†D̂ + ν2
j

+ σ̃j

D̂†D̂ + µ̃2
j

)
, (A.34)

σj =
(ν̃2
j − ν2

j )(µ2
j − ν2

j )
µ̃2
j − ν2

j

∏
m=l,...,k
m6=j

(ν̃2
m − ν2

j )(µ2
m − ν2

j )
(µ̃2
m − ν2

j )(ν2
m − ν2

j ) , (A.35)

σ̃j =
(ν̃2
j − µ̃2

j )(µ2
j − µ̃2

j )
ν2
j − µ̃2

j

∏
m=l,...,k
m 6=j

(ν̃2
m − µ̃2

j )(µ2
m − µ̃2

j )
(µ̃2
m − µ̃2

j )(ν2
m − µ̃2

j )
. (A.36)

Typically σj and σ̃j are found to have opposite signs. Also, for small values of j, |σj | and
|σ̃j | are of the same order of magnitude, therefore it is convenient for numerical stability
to use the following representation

P̃k,l = 1 +
l∑

j=k

(σj + σ̃j)(D̂†D̂) + σjµ̃
2
j + σ̃jν

2
j

(D̂†D̂ + ν2
j )(D̂†D̂ + µ̃2

j )
. (A.37)
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B Laplacian for the Fourier Accelerated Molecular Dynamics

The U(1) momentum is generally represented in momentum space as

π(x, µ) = 1
L3

∑
p0∈Eµ

∑
p∈P

eµ(p0, x0)eipxπ̃(p, µ) . (B.1)

The basis functions eµ(p0, x0) (for fixed µ) are orthogonal with respect to a weighted scalar
product∑

x0

wµ(x0)e∗µ(p0, x0)eµ(q0, x0) = δp0,q0 , (B.2)

where the weight wµ(x) is taken to be 1/2 if x belongs to an open boundary (i.e. x0 = 0
for open and open–SF b.c.s, and x0 = T − 1 for open b.c.s) and µ = 1, 2, 3. In all other
cases wµ(x) is taken to be 1. The relation between π and π̃ is easily inverted

π̃(p, µ) =
∑
x

wµ(x0)e∗µ(p0, x0)e−ipxπ(x, µ) . (B.3)

The set P is given by all spatial momenta p = (p1, p2, p3) of the form

pk = π
Lk

(2nk + ck) with nk = 0, . . . , Lk − 1 , (B.4)

where ck = 0 if k is a periodic direction and ck = 1 if k is a C∗ direction. The sets Eµ and
the eigenfunctions eµ(p0, x0) depend on the boundary conditions in time. In the following
k = 1, 2, 3.

• Open boundary conditions:

E0 = π

N0 − 1{1, . . . , N0 − 1} , Ek = π

N0 − 1{0, . . . , N0 − 1} , (B.5)

e0(p0, x0) = i

(1 + δp0,π)(N0 − 1) sin
[
p0

(
x0 + 1

2

)]
, (B.6)

ek(p0, x0) = 1
(1 + δp0,0 + δp0,π)(N0 − 1) cos(p0x0) . (B.7)

• SF boundary conditions:

E0 = π

N0
{0, . . . , N0 − 1} , Ek = π

N0
{1, . . . , N0 − 1} , (B.8)

e0(p0, x0) = 1
(1 + δp0,π)N0

cos
[
p0

(
x0 + 1

2

)]
, (B.9)

ek(p0, x0) = i

N0
sin(p0x0) . (B.10)

• Open-SF boundary conditions:

E0 = Ek = π

N0

(
{0, . . . , N0 − 1}+ 1

2

)
, (B.11)

e0(p0, x0) = i

N0
sin
[
p0

(
x0 + 1

2

)]
, (B.12)

ek(p0, x0) = 1
N0

cos
[
p0

(
x0 + 1

2

)]
. (B.13)
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• Periodic boundary conditions:

E0 = Ek = 2π
N0
{0, . . . , N0 − 1} , (B.14)

e0(p0, x0) = ek(p0, x0) = 1
N0

exp(ip0x0) . (B.15)

We use the Fourier decomposition to define the intermediate operator DN

[DNπ](x, µ) = 1
L3

∑
p0∈Eµ

∑
p∈P

eµ(p0, x0)eipxD̃N(p)π̃(p, µ) , (B.16)

D̃N(p) =

1 if p = 0
4∑µ sin2 pµ

2 otherwise
. (B.17)

Explicity

DN(x, µ; y, ν) = 1
L3

∑
p0∈Eµ

∑
p∈P

D̃N(p)δµνeip(x−y)eµ(p0, x0)e∗ν(p0, y0)wν(y0) . (B.18)

With respect to the scalar product defined by

(φ, φ)G = (φ,Gφ) , (B.19)
[Gφ](x, µ) = wµ(x0)φ(x, µ) . (B.20)

the operator DN is symmetric and strictly positive, i.e.

(φ′, DNφ)G = (DNφ
′, φ)G , (B.21)

(φ,DNφ)G ≥ 0 , (B.22)
(φ,DNφ)G = 0 ⇔ φ = 0 . (B.23)

The desired operator is defined as

∆ = G1/2DNG
−1/2 . (B.24)

Symmetry and strict positivity of ∆ with respect to the canonical scalar product of ∆
follow from the corresponding properties of DN. Notice that

Dα = G1/2Dα
NG
−1/2 . (B.25)

The openQ*D code uses the Fast Fourier Transform (FFT) algorithm to contruct
π̃(p, µ) from π(x, µ) and vice versa. The FFT is implemented in the module dft which is
an adaptation of the corresponding module in the NSPT-1.4 code written by Mattia Dalla
Brida and Martin Lüscher [25].
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C Sample input file

[Run name]
name pedro01

[ Directories ]
log_dir ./ log # absolute path , or relative path
dat_dir ./ dat # to the working directory of iso1
cnfg_dir ./ cnfg

[MD trajectories ]
nth 100 # multiple of dtr_cnfg
ntr 800 # multiple of dtr_cnfg
dtr_log 5
dtr_ms 10 # multiple of dtr_log
dtr_cnfg 50 # multiple of dtr_ms

[ Random number generator ]
level 0 # this should not be changed
seed 19521 # this can be any positive integer

[ Boundary conditions ]
type periodic # or SF , open , open -SF
cstar 3 # or 0, 1, 2

[SU (3) action ]
beta 5.3
c0 1.0 # 1= Wilson , 5/3= Lüscher -Weisz , 3.648= Iwasaki

[U(1) action ]
type compact # only option currently available
alpha 0.05 # bare fine - structure constant
invqel 6.0 # see " Dirac operators parameters "
c0 1.0 # Wilson action

[ Quark action ]
nfl 2

[ Flavour 0] # Down quark
qhat -2 # qhat must be integer

# el. charge = qhat / invqel = -2/6 = -1/3
kappa 0.136377 # hopping parameter
su3csw 1.909520 # u1csw = su3csw =0 => no O(a) improv .
u1csw 1.0 # u1csw = su3csw =1 => tree - level O(a) improv .

[ Flavour 1] # Up quark
qhat 4 # el. charge = qhat / invqel = 4/6 = 2/3
kappa 0.137312
su3csw 1.909520
u1csw 1.0

[ Rational 0]
power -1 4
degree 10
range 1.98000000e -03 7.62000000 e+00
mu 0.00000000 e+00
delta 5.9691841082503071e -05
A 2.04978213590663732591e -01
nu[0] 1.22647978559899293316 e+01
mu[0] 8.40737261524814627478 e+00
nu[1] 3.58475041480018230544 e+00
mu[1] 2.79734086059047637463 e+00
nu[2] 1.37354614313178191587 e+00
mu[2] 1.08904089757432842589 e+00
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nu[3] 5.45534380719472244969e -01
mu[3] 4.33597479995857904012e -01
nu[4] 2.17882243098165673256e -01
mu[4] 1.73241240349149644429e -01
nu[5] 8.70901176278380123597e -02
mu[5] 6.92465791863651897176e -02
nu[6] 3.47963276911667715452e -02
mu[6] 2.76565520583723425951e -02
nu[7] 1.38540251643490298916e -02
mu[7] 1.09844143754786495448e -02
nu[8] 5.39355078694815723989e -03
mu[8] 4.20882858056409459024e -03
nu[9] 1.79456777883689466702e -03
mu[9] 1.23015480378516474207e -03
x[0] 3.92039999999999976796e -06
x[1] 4.81832134522929173714e -06
x[2] 8.31937464355889515232e -06
x[3] 1.75765908325188680071e -05
x[4] 4.09284748868167719878e -05
x[5] 9.94161232736990132294e -05
x[6] 2.45725878382011789398e -04
x[7] 6.11688882726808629518e -04
x[8] 1.52696110343796594838e -03
x[9] 3.81619175022324466640e -03
x[10] 9.54119167823534904127e -03
x[11] 2.38582015157776800018e -02
x[12] 5.96499569883204849852e -02
x[13] 1.49077585046584693007e -01
x[14] 3.72142898437580804671e -01
x[15] 9.26380547538878773572e -01
x[16] 2.28972591430973704263 e+00
x[17] 5.56179223363444652506 e+00
x[18] 1.29510708833971612819 e+01
x[19] 2.73621135618227562247 e+01
x[20] 4.72437717308978761821 e+01
x[21] 5.80643999999999991246 e+01

[HMC parameters ]
actions 0 1 2 3 # List of action IDs , see below
npf 2 # Number of pseudofermions to be allocated
nlv 2 # Number of levels of integrator for MD eqs
tau 2.0 # MD trajectory length
facc 1 # Fourier acceleration for U(1) MD

# (0= not active , 1= active )

[ Level 0] # Innermost level
integrator OMF4 # Omelyan - Mryglod - Folk 4th order
nstep 2 # Number of times the elementary integrator

# is applied at this level
forces 0 1 # List of force IDs to be integrated at

# this level , see below

[ Level 1] # Outermost level
integrator OMF4
nstep 1
forces 2 3

[ Action 0] # No adjustable parameters here !
action ACG_SU3

[ Force 0]
force FRG_SU3

[ Action 1]
action ACG_U1
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[ Force 1]
force FRG_U1

[ Action 2]
action ACF_RAT_SDET # Rational approximation effective action
ipf 0 # Pseudofermion ID (a number from 0 to 1)
ifl 0 # Flavour ID ( down quark )
irat 0 0 9 # Use the rational approximation with ID =0

# Include all rat . appr . factors , 0 -> 9,
# i.e. no frequency splitting

isp 0 # Solver ID , used to generate the p.f. at
# the beginning of the MD and to calculate
# the Hamiltonian at the end of the MD

[ Force 2]
force FRF_RAT_SDET
isp 1 # Solver ID , used to calculate the force

[ Action 3]
action ACF_RAT_SDET
ipf 1 # Different pseudofermion ID
ifl 1 # Different flavour ID (up quark )
irat 0 0 9
isp 0

[ Force 3]
force FRF_RAT_SDET
isp 1

[ Solver 0]
solver MSCG # or CGNE , SAP_GCR , DFL_SAP_GCR
nmx 2048 # Maximum number of iterations
res 1.0e -11 # Residue

[ Solver 1]
solver MSCG
nmx 2048
res 1.0e -8

[ Wilson flow]
integrator RK3 # EULER : Euler , RK2 : 2nd order Runge - Kutta

# RK3: 3rd order Runge - Kutta
eps 2.0e -2 # Integration step size
nstep 700 # Total number of integration steps
dnms 5 # Number of steps between measurements
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