CERN Accelerating science

Article
Title Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
Author(s) Stolzenburg, Dominik (Vienna U.) ; Fischer, Lukas (Innsbruck U.) ; Vogel, Alexander L (Frankfurt U. ; CERN ; PSI, Villigen) ; Heinritzi, Martin (Frankfurt U.) ; Schervish, Meredith (Carnegie Mellon U.) ; Simon, Mario (Frankfurt U.) ; Wagner, Andrea C (Frankfurt U.) ; Dada, Lubna (Helsinki U.) ; Ahonen, Lauri R (Helsinki U.) ; Amorim, Antonio (Lisbon U. ; CMAF, Lisbon) ; Baccarini, Andrea (PSI, Villigen) ; Bauer, Paulus S (Vienna U.) ; Baumgartner, Bernhard (Vienna U.) ; Bergen, Anton (Frankfurt U.) ; Bianchi, Federico (Helsinki U.) ; Breitenlechner, Martin (Innsbruck U. ; Harvard U.) ; Brilke, Sophia (Vienna U.) ; Mazon, Stephany Buenrostro (Helsinki U.) ; Chen, Dexian (Carnegie Mellon U.) ; Dias, António (CERN ; CMAF, Lisbon) ; Draper, Danielle C (UC, Irvine) ; Duplissy, Jonathan (Helsinki U.) ; Haddad, Imad El (PSI, Villigen) ; Finkenzeller, Henning (U. Colorado, Boulder) ; Frege, Carla (PSI, Villigen) ; Fuchs, Claudia (PSI, Villigen) ; Garmash, Olga (Helsinki U.) ; Gordon, Hamish (CERN ; Leeds U.) ; He, Xucheng (Helsinki U.) ; Helm, Johanna (Frankfurt U.) ; Hofbauer, Victoria (Carnegie Mellon U.) ; Hoyle, Christopher R (Zurich, ETH) ; Kim, Changhyuk (Caltech, Pasadena (main) ; Pusan Natl. U.) ; Kirkby, Jasper (Frankfurt U. ; CERN) ; Kontkanen, Jenni (Helsinki U.) ; Kürten, Andreas (Frankfurt U.) ; Lampilahti, Janne (Helsinki U.) ; Lawler, Michael (UC, Irvine) ; Lehtipalo, Katrianne (Helsinki U.) ; Leiminger, Markus (Innsbruck U.) ; Mai, Huajun (Caltech, Pasadena (main)) ; Mathot, Serge (CERN) ; Mentler, Bernhard (Innsbruck U.) ; Molteni, Ugo (PSI, Villigen) ; Nie, Wei (Nanjing U.) ; Nieminen, Tuomo (Kuopio U.) ; Nowak, John B (Aerodyne Research, Billerica) ; Ojdanic, Andrea (Vienna U.) ; Onnela, Antti (CERN) ; Passananti, Monica (Helsinki U.) ; Petäjä, Tuukka (Helsinki U.) ; Quéléver, Lauriane L J (Helsinki U.) ; Rissanen, Matti P (Helsinki U.) ; Sarnela, Nina (Helsinki U.) ; Schallhart, Simon (Helsinki U. ; Finnish Meteorological Inst.) ; Tauber, Christian (Aix-Marseille U.) ; Tomé, António (Beira Interior U., Covilha) ; Wagner, Robert (Helsinki U.) ; Wang, Mingyi (Carnegie Mellon U.) ; Weitz, Lena (Frankfurt U.) ; Wimmer, Daniela (Helsinki U.) ; Xiao, Mao (PSI, Villigen) ; Yan, Chao (Carnegie Mellon U.) ; Ye, Penglin (Carnegie Mellon U. ; Aerodyne Research, Billerica) ; Zha, Qiaozhi (Helsinki U.) ; Baltensperger, Urs (PSI, Villigen) ; Curtius, Joachim (Frankfurt U.) ; Dommen, Josef (PSI, Villigen) ; Flagan, Richard C (Caltech, Pasadena (main)) ; Kulmala, Markku (Helsinki U. ; Beijing U. of Chem. Tech.) ; Smith, James N (UC, Irvine) ; Worsnop, Douglas R (Helsinki U. ; Aerodyne Research, Billerica) ; Hansel, Armin (Innsbruck U.) ; Donahue, Neil M (Carnegie Mellon U.) ; Winkler, Paul M (Vienna U.)
Publication 2018
Number of pages 6
In: Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 9122-9127
DOI 10.1073/pnas.1807604115
Subject category Particle Physics - Experiment
Abstract Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from −25 °C to 25 °C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
Copyright/License publication: © 2018-2025 The authors (License: CC-BY-NC-ND-4.0)



 Запись создана 2019-08-23, последняя модификация 2022-08-10